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We compare ergodic properties of the kinetic energy for three stochastic models of subrecoil-laser-cooled
gases. One model is based on a heterogeneous random walk (HRW), another is an HRW with long-range
jumps (the exponential model), and the other is a mean-field-like approximation of the exponential model (the
deterministic model). All the models show an accumulation of the momentum at zero in the long-time limit,
and a formal steady state cannot be normalized, i.e., there exists an infinite invariant density. We obtain the
exact form of the infinite invariant density and the scaling function for the exponential and deterministic models,
and we devise a useful approximation for the momentum distribution in the HRW model. While the models
are kinetically nonidentical, it is natural to wonder whether their ergodic properties share common traits, given
that they are all described by an infinite invariant density. We show that the answer to this question depends on
the type of observable under study. If the observable is integrable, the ergodic properties, such as the statistical
behavior of the time averages, are universal as they are described by the Darling-Kac theorem. In contrast, for
nonintegrable observables, the models in general exhibit nonidentical statistical laws. This implies that focusing
on nonintegrable observables, we discover nonuniversal features of the cooling process, which hopefully can
lead to a better understanding of the particular model most suitable for a statistical description of the process.
This result is expected to hold true for many other systems, beyond laser cooling.
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I. INTRODUCTION

In many cases in equilibrium statistical physics, a steady-
state solution of a master equation yields the equilibrium
distribution. However, the formal steady-state solution may
not be normalizable, especially for nonstationary stochas-
tic processes found in the context of anomalous diffusion
and non-normalizable Boltzmann states [1–10]. Such an
unnormalized formal steady state is called an infinite invari-
ant density, which is known from deterministic dynamical
systems [11,12]. Interestingly, dynamical systems with infi-
nite invariant densities exhibit nonstationary behaviors and
trajectory-to-trajectory fluctuations of time averages, whereas
they are ergodic in the mathematical sense [12].

The ergodic properties of dynamical systems with infinite
invariant densities have been established in infinite ergodic
theory [12–20], where distributional limit theorems for time-
averaged quantities play an important role. The distributional
limit theorems state that time-averaged observables obtained
with single trajectories show trajectory-to-trajectory fluctua-
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tions. The distribution function of the fluctuations depends on
whether the observable is integrable with respect to the infinite
invariant measure [17,18,21–23]. This distributional behavior
of time averages is a characteristic feature of infinite ergodic
theory. Similar distributional behaviors have been observed
in experiments such as the fluorescence of quantum dots,
diffusion in living cells, and interface fluctuations in liquid
crystals [24–31].

Subrecoil laser cooling is a powerful technique for cool-
ing atoms [32,33]. A key idea of this technique is to realize
experimentally a heterogeneous random walk (HRW) of the
atoms in momentum space. In a standard cooling technique
such as Doppler cooling, a biased random walk is utilized to
shift the momenta of atoms towards zero [32]. Thus, Doppler
cooling is routinely modeled using a standard Fokker-Planck
equation for the momentum distribution. In contrast to a ho-
mogeneous random walk, an HRW enables the accumulation
of walkers at some point without an external force induced by
the Doppler effect. In other words, the probability of finding
a random walker at that point converges to 1 in the long-time
limit due to an ingenious trapping mechanism, which gives
rise to a heterogeneous environment. Hence, for subrecoil
laser cooling, instead of a biased random walk, an HRW plays
an essential role. This was a paradigm shift for cooling and
useful for cooling beyond the lowest limit obtained previously
in standard cooling techniques [32].

It has been recognized that infinite ergodic theory provides
a fundamental theory for subrecoil-laser cooling [34]. In [35]
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three models of subrecoil laser cooling are proposed. One is
based on the HRW, another is obtained from the HRW model
with long-range jumps called the exponential model, and the
third is a mean-field-like approximation of the exponential
model called the deterministic model. It is known that the
infinite invariant density depends in principle on some details
of the system [7–9]. The question then remains: what ele-
ments of the infinite ergodic theory remain universal? These
questions with respect to the general validity of the theory are
particularly important because we have at least two general
classes of observables, i.e., integrable and nonintegrable with
respect to the infinite invariant measure. To unravel the uni-
versal features of subrecoil laser cooling, we explore here the
three models of subrecoil laser cooling.

The rest of the paper is organized as follows. In Sec. II,
we introduce the three stochastic models of subrecoil laser
cooling. In Sec. III, we introduce the master equation and the
formal steady-state solution, i.e., the infinite invariant density,
in the HRW model. In Secs. IV and V, we present the infinite
invariant densities and the distributional limit theorems for
the time average of the kinetic energy in the deterministic
and exponential model, respectively. While the master equa-
tions for the HRW and exponential model are different, we
show that the propagators and the distributional behaviors of
the time-averaged kinetic energy match very well. Section VI
is devoted to the conclusion. In the Appendixes, we give a
derivation of the moments of the associated action as a func-
tion of time t .

II. THREE STOCHASTIC MODELS

Here, we introduce the three stochastic models of subrecoil
laser cooling. All the models describe stochastic dynamics of
the momentum of an atom.

First, the HRW model is a one-dimensional continuous-
time random walk (CTRW) in momentum space p. Here,
we consider confinement, which is represented by reflecting
boundaries at p = −pmax and pmax. The CTRW is a random
walk with continuous waiting times. Usually, in the CTRW
the waiting times are independent and identically distributed
(IID). In the HRW model, they are not IID random variables.
In the HRW, the waiting time between stochastic updates of
momentum given p is exponentially distributed with a mean
waiting time 1/R(p). After waiting, the atom jolts and mo-
mentum is modified. We assume that the jump distribution
G(�p) follows a Gaussian distribution:

G(�p) = (2πσ 2)−1/2 exp[−�p2/(2σ 2)], (1)

where �p is a jump of the momentum of an atom and σ 2 is
the variance of the jumps. The heterogeneous rate R(p) is im-
portant to cool atoms and can be realized by velocity-selective
coherent population trapping in experiments [36]. In subrecoil
laser cooling, the jump rate R(p) is typically given by

R(p) ∝ |p|α (2)

for |p| → 0 [35], where α is a positive constant. This constant
can take any value in principle [37], for instance, α = 2 in
velocity-selective coherent population trapping [36]. In what
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FIG. 1. A typical trajectory of momentum p(t ) in the HRW
model, where R(p) = |p|2, p0 = 1, pmax = 3, and σ 2 = 0.01. The
inset is a schematic illustration of the jump rate R(p).

follows, we consider a specific jump rate:

R(p) =
⎧⎨⎩c−1|p|α (|p| < p0),

c−1|p0|α (|p| � p0),
(3)

where p0 is the width of the jump rate dip and c is a positive
constant (see Fig. 1). At p = ±pmax we have reflecting bound-
aries. A typical trajectory in the HRW model is shown in
Fig. 1. Since the HRW model is a nonbiased random walk, the
momentum will eventually reach high values. To prevent such
a situation, one considers a confinement in an experimentally
realizable way.

Next, we explain how we obtain the other two models, i.e.,
the exponential and the deterministic model, inspired by the
HRW model. The region in momentum space can be divided
into two regions, i.e., trapping and recycling regions [35]. The
trapping region is defined as |p| � ptrap, where we assume
ptrap � σ and ptrap < p0. The assumption ptrap � σ is used
in the uniform approximation stated below. In the recycling
region, the atom undergoes a nonbiased random walk, which
will eventually lead the atom back to the trapping region with
the aid of the confinement. The jumps of a random walker
are long-ranged in the trapping region in the sense that mo-
mentum after jumping in the trapping region is approximately
independent of the previous momentum. Therefore, the fol-
lowing assumption is quite reasonable. In the exponential
and the deterministic model, momentum after jumping in the
trapping region is assumed to be an IID random variable. In
particular, the probability density function (PDF) χ (p) for the
momentum at every jump in the trapping region is assumed to
be uniform [35,38,39]:

χ (p) = 1

2ptrap
for p ∈ [−ptrap, ptrap]. (4)

A trajectory for the exponential model is similar to that for
the HRW model. However, a crucial difference between the
HRW model and the exponential model is in the nature of the
waiting time: the waiting time is an independent random vari-
able in the exponential model, whereas it is not in the HRW
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model. In the HRW model, momentum performs a random
walk. When momentum changes due to photon scattering,
the renewed momentum depends on the previous momentum.
Hence in this sense we have a correlation of momentum that
spans several jolting events. On the other hand, the renewed
momentum is independent of the previous momentum in the
exponential model. In both models, the waiting time given p is
an exponentially distributed random variable with rate R(p).
Thus, the statistics of the waiting times in the two models
is different, because in the HRW model they are correlated
through the momentum sequence, whereas in the exponential
model they are not. However, in the exponential model the
momentum is always in the trapping region. In the HRW
model, it jumps in the recycling region. In other words, a
time of returning to the trapping region is not taken into
consideration in the exponential model.

A difference between the exponential and the deterministic
model is in the coupling between the waiting time and the
momentum. In the exponential model, momentum and waiting
time are stochastically coupled. As for the HRW, this model is
a Markov model and the conditional PDF of the waiting time
given the momentum p follows an exponential distribution
with mean 1/R(p). On the other hand, the deterministic model
is a non-Markov model. The waiting time given the momen-
tum p is deterministically prescribed as τ (p) = 1/R(p) [35].
In other words, the waiting time, which is a random variable
in the exponential model, is replaced by its mean in the de-
terministic model. In this sense, the deterministic model is a
mean-field-like model of the exponential model. Note that this
implies a double meaning of 1/R(p): in the HRW and in the
exponential model it is the mean waiting time, whereas in the
deterministic model it is the exact waiting time for a given
momentum p.

III. HETEROGENEOUS RANDOM WALK MODEL

Here, we consider the HRW model confined to the interval
[−pmax, pmax] [33,36]. The momentum p(t ) at time t under-
goes a nonbiased random walk. Jumps of the momentum are
attributed to photon scattering and spontaneous emissions.
Importantly, its jump rate R(p) follows Eq. (2) for |p| < p0

[33]. In this model, the conditional PDF q(τ̃ |p) of τ̃ given p
follows the exponential distribution:

q(τ̃ |p) = R(p) exp ( − R(p)τ̃ ). (5)

Clearly, the mean waiting time given p depends explicitly on
p when |p| < p0. Thus, the random walk is heterogeneous. A
confinement of atoms can also be achieved by Doppler cool-
ing [32,33]. However, for simplicity, we consider reflecting
boundary conditions at p = ±pmax. As will be observed later,
the size of the confinement or the width of the jump rate dip
does not affect the asymptotic behavior of the scaling function
of the propagator. More precisely, the scaling function and
fluctuations of the time-averaged energy do not depend on
pmax and p0. As shown in Fig. 1, the momentum of an atom
remains constant for a long time when |p| is small. On the
other hand, momentum changes frequently occur when |p| is
away from zero.

A. Master equation and infinite invariant density

The HRW model is a Markov model. In general, the time
evolution of the propagator of a Markov model can be de-
scribed by a master equation [1]. The time evolution of the
probability density function (PDF) ρ(p, t ) of momentum p at
time t is given by the master equation with gain and loss terms:

∂ρ(p, t )

∂t
=

∫ pmax

−pmax

d p′[W (p′ → p)ρ(p′, t )

−W (p → p′)ρ(p, t )], (6)

where W (p → p′) is the transition rate from p to p′. As will
be shown later, the formal steady-state solution for the master
equation may not provide a PDF but a non-normalized density,
i.e., an infinite invariant density. Jump and transition rates can
be represented as

R(p) =
∫ ∞

−∞
d p′W (p → p′) (7)

and

W (p → p′) = R(p)G̃(p′|p), (8)

respectively, where G̃(p′|p) is the conditional PDF of p′ given
p, where both the domain and the codomain of the function
G̃(p′|p) are [−pmax, pmax] because of the confinement. The
function G̃(p′|p) is equivalent to G(p′ − p) when p + �p
does not exceed the boundary, i.e., |p + �p| < pmax, where
�p is a momentum jump following the Gaussian distribution.
On the other hand, G̃(p′|p) cannot depend solely on the dif-
ference p′ − p when a random walker reaches the reflecting
boundary, i.e., |p + �p| > pmax. In particular, we have

G̃(p′|p) =
∞∑

n=−∞
G(2npmax − p + (−1)n p′). (9)

Because G(x) is a symmetric function (Gaussian distribution),
G̃(p′|p) is symmetric in p and p′: G̃(p′|p) = G̃(p|p′). It fol-
lows that the master equation [Eq. (6)] of the HRW model
takes the following form:

∂ρ(p, t )

∂t
= −R(p)ρ(p, t ) +

∫ pmax

−pmax

d p′ρ(p′, t )R(p′)G̃(p|p′).

(10)
The stationary solution ρ∗(p) is easily obtained from the

detailed balance in Eq. (6), i.e.,

W (p′ → p)ρ∗(p′) − W (p → p′)ρ∗(p) = 0, (11)

where ρ∗(p) is the stationary solution. As shown before,
the conditional PDF G̃(p|p′) is symmetric, i.e., G̃(p|p′) =
G̃(p′|p). Therefore, detailed balance yields

R(p′)ρ∗(p′) = R(p)ρ∗(p), (12)

which is fulfilled only if R(p)ρ∗(p) is constant. In subrecoil
laser cooling, the jump rate R(p) becomes a power-law form
near p ∼= 0, i.e., Eq. (2). For example, the velocity-selective
coherent population trapping gives α = 2 [36], and the Raman
cooling experiments realize α = 2 and 4 by one-dimensional
(1D) square pulses and the Blackman pulses, respectively
[40]. Therefore, for |p| � pmax, the steady-state distribution
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FIG. 2. Time evolution of the propagator in the HRW model
[p0 = pmax = 1, σ = 1, and R(p) = |p|2]. Symbols with lines are
the numerical results of the HRW model by simulating trajectories
of random walkers. The solid line represents a part of a steady-state
solution, ρ∗(p) ∝ |p|−α , for reference. The dashed lines represent
plateaus around |p| = 0, which shift up with time t . Initial momen-
tum is chosen uniformly on [−1, 1]. The number of trajectories used
in this and all subsequent simulation results is 106.

ρ∗(p) is formally given by

ρ∗(p) = const/R(p) ∝ |p|−α. (13)

For α � 1, it cannot be normalized because of the divergence
at p = 0, and ρ∗(p) is therefore called an infinite invariant
density. Although ρ∗(p) is the formal steady state, a steady
state in the conventional sense does not exist in the system
with α � 1. As will be shown below, a part of the infinite
invariant density can be observed in the propagator especially
for a large time. Moreover, it will be shown that t1−1/αρ(p, t )
converges to the infinite invariant density for t → ∞. There-
fore, the infinite invariant density is not a vague solution but
plays an important role in reality.

Figure 2 shows numerical simulations of the propagator
in the HRW model. The propagator accumulates near zero,
and ρ(p, t ) around p ∼= 0 increases with time t . Moreover, a
power-law form, i.e., p−α , of the formal steady state ρ∗(p)
is observed, especially when t is large, except for p ∼= 0 (see
also Fig. 3). Since the infinite invariant density ρ∗(p) cannot
be normalized, the propagator never converges to ρ∗(p).

IV. EXPONENTIAL MODEL

In this section, we give theoretical results for the exponen-
tial model, which were already shown in our previous study
[34]. Here, we consider the Laplace transform of the propa-
gator and execute the inverse transform to obtain the infinite
invariant density and the scaling function. The derivation of
the scaling function is different from the previous study [34],
where the master equation is solved directly.

A. Master equation, infinite invariant density,
and scaling function

In the exponential model, the jump distribution is inde-
pendent of the previous momentum, unlike the HRW model.

p
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γ
ρ
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)

t = 10 5
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t = 10 4

FIG. 3. Time evolution of the propagator, i.e., data from Fig. 2,
multiplied by t1−γ in the HRW model for different times (α = 2, c =
1, p0 = pmax = 1, and σ 2 = 1). Symbols with lines are the results
of numerical simulations for the HRW model. The dashed lines
represent the infinite invariant density, i.e., Eq. (28). The solid lines
represent rescaled scaling functions, tgexp(tγ p). The dotted lines
represent tgexp(0) for different values of t . The initial momentum is
chosen uniformly on [−1, 1].

Therefore, for the exponential model the conditional proba-
bility G̃(p′|p) in Eq. (8) can be replaced by a p-independent
function χ (p′) leading to

W (p → p′) = R(p)χ (p′). (14)

Inserting this into Eq. (6), the master equation of the exponen-
tial model becomes

∂ρ(p, t )

∂t
= −R(p)ρ(p, t ) + 1

2ptrap

∫ ptrap

−ptrap

R(p′)ρ(p′, t )d p′,

(15)
where we used Eq. (4). As a result, the second term, i.e., the
gain term, is different from that in the HRW model, Eq. (10).
In the exponential model, the momentum remains constant
until the next jump, and the conditional waiting time distribu-
tion given by momentum p follows an exponential distribution
with mean 1/R(p), which is the same as in the HRW model,
i.e., Eq. (5) holds also here. Because the conditional waiting
time distribution depends on p, the joint PDF of momentum p
and waiting time τ̃ ,

φ(p, τ̃ ) = 〈δ(p − pi )δ(τ̃ − τ̃i )〉, (16)

plays an important role, where δ( ) is the δ function, 〈 〉 rep-
resents the ensemble average, i is the ith emission event (i =
1, 2, . . . ), pi is the ith momentum, and τ̃i is the ith waiting
time. It can be expressed by

φ(p, τ̃ ) = q(τ̃ |p)χ (p), (17)

where q(τ̃ |p) is the conditional PDF q(τ̃ |p) of waiting time τ̃

given p, Eq. (5), and χ (p) is given by Eq. (4)
The unconditioned PDF of the waiting time is given by

ψ (τ̃ ) = 1

2ptrap

∫ ptrap

−ptrap

R(p) exp ( − R(p)τ̃ )d p, (18)
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which follows from averaging the joint PDF over the uniform
density χ (p). By a change of variables [y = R(p)τ̃ ], we have

ψ (τ̃ ) = c
1
α τ̃−1− 1

α

αptrap

∫ τ̃c−1 pα
trap

0
y

1
α exp(−y)dy (19)

∼ γ cγ �(1 + γ )

ptrap
τ̃−1−γ (τ̃ → ∞), (20)

where γ = 1/α. In what follows, we assume γ � 1, which
implies that the mean waiting time diverges. Therefore, as will
be shown, the dynamics of p becomes nonstationary.

The exponential model is a continuous-time Markov chain,
which is a special type of semi-Markov process (SMP).
Therefore, we utilize an SMP with continuous variables to
obtain analytical results for the exponential model. In an SMP,
the state value is determined by the waiting time, which is
randomly selected, or equivalently, the waiting time is de-
termined by the state value, which is randomly chosen. In
the latter case, the state value is renewed according to the
PDF χ (p). In general, an SMP is characterized by the state
distribution χ (p) and the joint PDF of the state value and
the waiting time φ(p, τ ), Eq. (17). The deterministic model,
which we will treat in Sec. V, is identical to the SMP with a
deterministic coupling between the state value and the waiting
time. On the other hand, the SMP with an exponential condi-
tional PDF of waiting times given the state is equivalent to
the exponential model. For the SMP with χ (p) and φ(p, τ ),
the Laplace transform of the propagator with respect to t is
obtained as in Ref. [41]. Applying the technique given in
Ref. [41] to the exponential model, we find

ρ̂(p, s) = 1

s

χ (p) − φ̂(p, s)

1 − ψ̂ (s)
, (21)

where φ̂(p, s) and ψ̂ (s) are the Laplace transforms of φ(p, τ̃ )
and ψ (τ̃ ) with respect to τ̃ , respectively. Here, initial condi-
tions as for ordinary renewal processes were used [41,42].

In the exponential model, the Laplace transform of the joint
PDF is given by

φ̂(p, s) = χ (p)R(p)

s + R(p)
. (22)

If follows from Eqs. (21) and (22) that ρ̂(p, s) becomes

ρ̂(p, s) = χ (p)

s + R(p)

1

1 − ψ̂ (s)
. (23)

In the long-time limit (s → 0), it becomes

ρ̂(p, s) ∼= 1

s + c−1|p|α
1

2�(1 − α−1)�(1 + α−1)(cs)α−1 ,

(24)
where χ (p) = 1/(2ptrap) is used. Interestingly, the Laplace
transform of the propagator does not depend on ptrap in the
long-time limit. To obtain the exponential model from the
HRW model, we assumed that ptrap is much smaller than
σ . However, the asymptotic behavior of the propagator is
independent of ptrap in the exponential model. Therefore, ptrap

introduced in the HRW model can be assumed to be arbitrary
small because the value of ptrap does not affect the asymptotic
behavior of the propagator of the exponential model. When
ptrap � σ , the distribution of momentum after jumping in the

trapping region, i.e., [−ptrap, ptrap], is approximately uniform.
Therefore, the exponential model with the uniform approxi-
mation for χ (p) is a good approximation for the HRW model
for large t . By the inverse Laplace transform, we have

ρ(p, t ) ∼= sin(πα−1)

2πcα−1
�(1 + α−1)

∫ t

0
dt ′e−c−1|p|α (t−t ′ )t ′α−1−1

(25)
for t → ∞. Through a change of variables (u = t ′/t), we
obtain

ρ(p, t ) ∼= sin(πα−1)tα−1

2πcα−1
�(1 + α−1)

∫ 1

0
du e−c−1|p|αt (1−u)uα−1−1.

(26)
Therefore, the cooled peak, i.e., ρ(0, t ), increases with tα−1

,
which means that the probability of finding the cooled state
(p ∼= 0) increases with time, i.e., this is a signature of cooling.

For |p| > 0 and t � 1, the integral in Eq. (26) can be
approximated, leading to

ρ(p, t ) ∼= sin(πα−1)tα−1−1

2πcα−1−1�(1 + α−1)

1

|p|α . (27)

Furthermore, an infinite invariant density is obtained as

lim
t→∞ t1−α−1

ρ(p, t ) = Iexp(p) ≡ sin(πα−1)|p|−α

2πcα−1−1�(1 + α−1)
(28)

for |p| � ptrap. The power-law form of Eq. (28), Iexp(p) ∝
|p|−α , in the exponential model matches with the infinite
invariant density, Eq. (13), in the HRW model.

Through a change of variables (p′ = tα−1
p/cα−1

), we obtain
the rescaled propagator ρres(p′, t ). In the long-time limit, the
rescaled propagator converges to a time-independent function
gexp(p′) (scaling function):

ρres(p′, t ) ≡ ρ(cα−1
p′/tα−1

, t )

∣∣∣∣ d p

d p′

∣∣∣∣ → gexp(p′), (29)

where the scaling function is given by

gexp(p′) ≡ sin(πα−1)

2π�(1 + α−1)

∫ 1

0
du e−|p′|α (1−u)uα−1−1. (30)

This scaling function describes the propagator near p = 0.
This result was previously obtained by a different approach
[34].

Here, we are going to demonstrate that the theory of the
exponential model describes the asymptotic behavior of the
propagator in the HRW model surprisingly well. Figure 3
shows that the propagator for the HRW model is in perfect
agreement with the analytical result of the exponential model,
i.e., Eq. (26). In the numerical simulations of the HRW model,
we generated 108 trajectories to obtain the propagator. There
are two forms in the propagator. The propagator near p = 0
increases with time t . On the other hand, the propagator for
p > 0 asymptotically approaches a power-law form, i.e., the
infinite invariant density. Figure 4 shows that the rescaled
propagator of the HRW model for different times is well
captured by the scaling function gexp(p′) without fitting pa-
rameters, where we generated 108 trajectories to obtain the
rescaled propagator. Because the scaling function describes
the details of the propagator near p = 0 and is universal in the
sense that it does not depend on ptrap in the exponential model,
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the dynamics of the HRW model near p = 0 should also be
universal and does not depend on the details of the jump
distribution G(�p). In fact, as shown in Fig. 4, the rescaled
propagator does not depend on σ 2. This is one of the reasons
why the uniform approximation works very well. Moreover,
because the momentum almost certainly approaches zero in
the long-time limit, the assumption of |p| � 1 is correct for
t � 1. Furthermore, it can be confirmed that Eq. (26) becomes
a solution to the master equation, Eq. (10), in the long-time
limit, where the momentum at every jump is approximately
renewed according to G(�p). Therefore, the theory of the ex-
ponential well describes the propagator for the HRW model.

B. Ensemble and time averages of observables

In this subsection, we consider the ensemble average of an
observable, which is defined as

〈O(p(t ))〉 ≡
∫ ptrap

−ptrap

O(p)ρ(p, t )d p. (31)

We assume that the observable is O(p) = C|p|β and β > −1.
For example, if β = 2 we are considering the kinetic energy
of the atom. Through a change of variables (p′ = tα−1

p/cα−1
)

and using the scaling function, Eq. (30), we have

〈O(p(t ))〉 ∼
∫ ( t

c )α−1
ptrap

−( t
c )α−1

ptrap

O

(
cα−1

p′

tα−1

)
gexp(p′)d p′ (32)

for t → ∞.
When |p|β is integrable with respect to gexp(p), i.e.,∫ ∞

−∞ gexp(p)|p|βd p < ∞, β satisfies −1 < β < α − 1. In this
case, the asymptotic behavior of the ensemble average be-
comes

〈O(p(t ))〉 ∼ Ccβα−1

tβα−1

∫ ∞

−∞
|p′|βgexp(p′)d p′ (t → ∞). (33)

On the other hand, when |p|β is integrable with respect to
Iexp(p), i.e.,

∫ ptrap

−ptrap
Iexp(p)O(p)dv < ∞, β satisfies β > α −

1 (> 0), implying that |p|β is not integrable with respect to the
scaling function, i.e.,

∫ ∞
−∞ gexp(p)|p|βd p = ∞. In this case,

the asymptotic behavior of the ensemble average becomes

〈O(p(t ))〉 ∼ tα−1−1
∫ ptrap

−ptrap

Iexp(p)O(p)dv (t → ∞). (34)

Therefore, the asymptotic behavior becomes

〈O(p(t ))〉 ∝ t−λ(α,β ) (t → ∞), (35)

and the integrability of the observable with respect to the
scaling function or the infinite invariant density determines
the power-law exponent λ(α, β ). In the case of β = α − 1,
the integrals of the observable with respect to both the scaling
function and the infinite invariant density diverge. In this case,
the integration in Eq. (32) contains a logarithmic divergence
for t → ∞. Therefore, the leading order for t → ∞ is

〈O(p(t ))〉 ∝ tα−1−1 ln t . (36)

The power-law exponent λ(α, β ) in the exponential model
is given by

λ(α, β ) =
{

1 − α−1 (β > α − 1),

βα−1 (β < α − 1).
(37)

As will be shown later, the decay process is universal in the
sense that λ(α, β ) does not depend on the three models that
we consider here. Moreover, the fastest decay, which implies
the maximum of λ(α, β ), is realized at the transition point be-
tween integrable and nonintegrable with respect to the infinite
invariant measure, i.e., α = β + 1. In particular, the fastest
decay of the kinetic energy, i.e., β = 2, can be achieved for
α = 3, which suggests that the cooling efficiency, in a sense, is
optimized at this point. As shown in the previous subsection,
the height of the cooled peak increases with tα−1

. Moreover,
the half-width of the cooled peak in the momentum distribu-
tion decays with t−α−1

. If we use the half-width of the cooled
peak in the momentum distribution to characterize the cooling
efficiency, the optimized parameter is α = 1. Therefore, the
most efficient cooling parameter depends on the definition of
efficiency.

C. Distributional characteristics of time-averaged observables

Here, we construct a theory of the distribution of time
averages in the exponential model. The time average of an
observable O(p) is defined by

O(t ) ≡ 1

t

∫ t

0
O(p(t ′))dt ′. (38)

We obtain the mean and variance for two cases, when the
observable is integrable with respect to the infinite invariant
density and when it is not. In what follows, we consider
kinetic energy as a specific example, i.e., O(p) = p2. The
integrated value of an observable O(p) denoted by S (t ) can
be represented by

S (t ) =
∫ t

0
O(p(t ′))dt ′ (39)

=
N (t )∑
i=1

�Si + O(pN (t )+1)(t − tN (t ) ), (40)

064126-6



INFINITE ERGODIC THEORY FOR THREE … PHYSICAL REVIEW E 105, 064126 (2022)

where �Si = O(pi )τ̃i, N (t ) is the number of jumps until time
t, pi is the momentum during [ti−1, ti ), and ti = τ̃1 + · · · τ̃i.
The integrated value S (t ) is a piecewise linear function of t
[34] because O(p(t )) is a piecewise constant function, where
pi and τ̃i are coupled stochastically. The joint PDF of �Si, τ̃i,
and pi denoted by φ3(x, τ̃ , p) is given by

φ3(x, τ̃ , p) = χ (p)R(p)e−R(p)τ̃ δ(x − O(p)τ̃ ). (41)

The joint PDF of the integrated value of an elementary step
and the waiting time τ̃ is given by

φ2(x, τ̃ ) =
∫ ptrap

−ptrap

d pφ3(x, τ̃ , p)

= 1

2ptrap
√

xτ̃
R(

√
x/τ̃ )e−R(

√
x/τ̃ )τ̃ (

√
x/τ̃ < ptrap).

Let Q(x, t ) be the PDF of x = S (t ) when a jump occurs
exactly at time t ; then, we have

Q(x, t ) =
∫ x

0
dx′

∫ t

0
dt ′φt (x

′, t ′)Q(x − x′, t − t ′) + Q0(x, t ),

(42)
where Q0(x, t ) = δ(x)δ(t ). The PDF of S (t ) at time t is given
by

P(x, t ) =
∫ x

0
dx′

∫ t

0
dt ′�2(x′, t ′)Q(x − x′, t − t ′), (43)

where

�2(x, t ) =
∫ ∞

t
d τ̃

∫ ptrap

−ptrap

d pχ (p)R(p)e−R(p)τ̃ δ(x − O(p)t ).

(44)
The double-Laplace transform with respect to x and t (u ↔ x
and s ↔ t) yields

P̂(u, s) = �̂2(u, s)

1 − φ̂2(u, s)
, (45)

where φ̂2(u, s) and �̂2(u, s) are the double-Laplace trans-
forms of φ2(x, τ̃ ) and �2(x, t ), which are given by

φ̂2(u, s) =
∫ ∞

0
dx

∫ ∞

0
dτ

∫ ptrap

−ptrap

d p e−ux−sτ φ3(x, τ, p)

=
∫ ptrap

0

c−1 p−1
trap pα

s + up2 + c−1 pα
d p (46)

and

�̂2(u, s) =
∫ ptrap

0

p−1
trap

s + up2 + c−1 pα
d p, (47)

respectively. Equation (45) is the exact form of the PDF of
S (t ) in Laplace space. Because 1 − φ̂2(0, s) = s�̂2(0, s), nor-
malization is actually satisfied, i.e., P̂(0, s) = 1/s.

The Laplace transform of the first moment of S (t ) can be
obtained as

− ∂P̂(u, s)

∂u

∣∣∣∣
u=0

= − �̂′
2(0, s)

1 − φ̂2(0, s)
− φ̂′

2(0, s)

s[1 − φ̂2(0, s)]
. (48)

For α < 3, φ̂′
2(0, 0) is finite, whereas it diverges for α � 3.

Therefore, α = 3 is a transition point at which the asymptotic

behavior of 〈S (t )〉 exhibits a different form. The asymptotic
behavior of 1 − φ̂2(0, s) for s → 0 is given by

1 − φ̂2(0, s) = s
∫ ptrap

0

p−1
trap

s + cpα
d p ∼ Aαs1/α, (49)

where Aα is given by

Aα = c1/α p−1
trapπ

α sin(π/α)
. (50)

For α < 3, the leading order of Eq. (48) is

− ∂P̂(k, s)

∂u

∣∣∣∣
u=0

∼ − φ̂′
2(0, 0)

Aαs1+ 1
α

, (51)

where the first term in Eq. (48) is ignored because �̂′
2(0, s) ∝

s3/α−2. Therefore, the asymptotic behavior of 〈S (t )〉 becomes

〈S (t )〉 ∼ −φ̂′
2(0, 0)

Aα�(1 + 1/α)
t

1
α (52)

for t → ∞, where −φ̂′
2(0, 0) = cp2−α

trap /(3 − α).
For α � 3, on the other hand, the asymptotic behavior

of 〈S (t )〉 becomes different from Eq. (52). For α > 3, the
asymptotic behaviors of −φ̂′

2(0, s) and −�̂′
2(0, s) for s → 0

become

−φ̂′
2(0, s) =

∫ ptrap

0

cp−1
trap p2+α

(s + cpα )2
d p ∼ bαs3/α−1 (53)

and

−�̂′
2(0, s) =

∫ ptrap

0

p−1
trap p2

(s + cpα )2
d p ∼ Bαs3/α−2, (54)

where bα and Bα are given by

bα = 3c3/απ p−1
trap

α2 sin(3π/α)
(55)

and

Bα = (α − 3)π p−1
trapc3/α

α2 sin(3π/α)
, (56)

respectively. Note that there is a logarithmic correction in the
asymptotic behavior of 〈S (t )〉 when α = 3. Therefore, the
asymptotic behavior of 〈S (t )〉 becomes

〈S (t )〉 ∼ bα + Bα

Aα�(2 − 2/α)
t1− 2

α

= c2/α sin(π/α)

�(2 − 2/α) sin(3π/α)
t1− 2

α (57)

for t → ∞.
The Laplace transform of the second moment of S (t ) can

be obtained as

∂2P̂(u, s)

∂u2

∣∣∣∣
u=0

= �̂′′
2 (0, s)

1 − φ̂2(0, s)
+ 2�̂′

2(0, s)φ̂′
2(0, s)

[1 − φ̂2(0, s)]2

+ �̂2(0, s)φ̂′′
2 (0, s)

[1 − φ̂2(0, s)]2
+ 2�̂2(0, s)φ̂′

2(0, s)2

[1 − φ̂2(0, s)]3
.

(58)
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FIG. 5. EB parameter as a function of γ (= 1/α) for the kinetic
energy, i.e., O(p) = p2. Symbols are the results of numerical sim-
ulations for the HRW, deterministic, and exponential models. The
solid line represents A(γ ) and ML(γ ) for γ < 1/3 and γ > 1/3,
respectively. The dashed line represents Eq. (68). The solid line
represents Eqs. (62) and (92).

For α < 3, the last term represents the leading term. There-
fore, we have

∂2P̂(k, s)

∂u2

∣∣∣∣
u=0

∼ 2φ̂′
2(0, 0)2

s[1 − φ̂2(0, s)]2
∼ 2φ̂′

2(0, 0)2

A2
αs1+2/α

(59)

for s → 0. It follows that the asymptotic behavior of 〈S (t )2〉
becomes

〈S (t )2〉 ∼ 2φ̂′
2(0, 0)2

A2
α�(1 + 2/α)

t
2
α (60)

for t → ∞. Because the ergodicity breaking (EB) parameter
is given by

EB ≡ 〈O(t )2〉 − 〈O(t )〉2

〈O(t )〉2
= 〈S (t )2〉 − 〈S (t )〉2

〈S (t )〉2
, (61)

we have the EB parameter for the kinetic energy:

EB → 2�(1 + 1/α)2

�(1 + 2/α)
− 1 (62)

for t → ∞. This is a consequence of the Darling-Kac theorem
[43]. Thus, this is a universal result that does not depend on
the subrecoil laser cooling model considered here (see Fig. 5).

On the other hand, for α � 3, all the terms in Eq. (58)
contribute to the asymptotic behavior of 〈S (t )2〉. For α > 3,
the asymptotic behaviors of �̂′′

2 (0, s) and φ̂′′
2 (0, s) for s → 0

become

φ̂′′
2 (0, s) =

∫ ptrap

0

2c−1 p−1
trap p4+α

(s + c−1 pα )3
d p ∼ cαs5/α−2 (63)

and

�̂′′
2 (0, s) =

∫ ptrap

0

2p−1
trap p4

(s + c−1 pα )3
d p ∼ Cαs5/α−3, (64)

where cα and Cα are given by

cα = 5(−5 + α)π p−1
trapc5/α

α3 sin(5π/α)
(65)

and

Cα = (−5 + α)(−5 + 2α)π p−1
trapc5/α

α3 sin(5π/α)
, (66)

respectively. It follows that

∂2P̂(u, s)

∂u2

∣∣∣∣
u=0

∼
(

cα + Cα

Aα

+ 2Bαbα

A2
α

+ 2b2
α

A2
α

)
s4/α−3

for s → 0. Therefore, in the long-time limit,

〈S (t )2〉 ∼
(

cα + Cα

Aα

+ 2Bαbα

A2
α

+ 2b2
α

A2
α

)
t2(1− 2

α
)

�(3 − 4/α)
, (67)

and the EB parameter becomes

EB → 2�(2 − 2/α)2

α�(3 − 4/α)

[
(−5 + α) sin2(3π/α)

sin(5π/α) sin(π/α)
+ 3

]
− 1

(68)
for t → ∞. As shown in Fig. 5, the EB parameter for the
HRW model matches with that for the exponential model.
Contrary to the universality in the case of α < 3, as will be
shown later, this result is different from that in the determin-
istic model.

V. STOCHASTIC MODEL WITH A DETERMINISTIC
COUPLING

Here, we consider a stochastic model with a deterministic
coupling, i.e., the deterministic model. This model is obtained
by replacing the conditional PDF of the waiting time given the
momentum by its mean. In this sense, this model is a mean-
field-like model of the exponential model. In the deterministic
model, the conditional PDF q(τ̃ |p) of τ̃ given p becomes
deterministic:

q(τ̃ |p) = δ(τ̃ − R(p)−1). (69)

Using Eq. (17) and integrating over momentum p yields that
the PDF of the waiting time follows a power law:

ψ (τ̃ ) = γ p−1
trapcγ τ̃−1−γ

(
τ̃ � cp−γ −1

trap

)
. (70)

A. Scaling function and infinite invariant density

The deterministic model is described by the SMP. Using
Eq. (21), we have

ρ̂(p, s) = χ (p)

s

1 − e−sR(p)

1 − ψ̂ (s)
. (71)

Because ψ (τ̃ ) follows a power law, i.e., Eq. (70), the asymp-
totic form of the Laplace transform ψ̂ (s) for s → 0 is given
by

ψ̂ (s) = 1 − asγ + o(sγ ), (72)

where a = �(1 − γ )p−1
trapcγ . In the long-time limit, the propa-

gator is expressed as

ρ(p, t ) ∼
⎧⎨⎩

sin(πγ )
2πγ

(
t
c

)γ
[|p| � pc(t )],

sin(πγ )
2πγ

tγ −[t−tc (p)]γ

cγ [|p| > pc(t )],
(73)
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where pc(t ) = (t/c)−γ and tc(p) = c|p|−γ −1
. We note that

ρ(p, t ) is discontinuous at |p| = pc(t ), in contrast to the HRW
model. Importantly, the asymptotic behavior of the propaga-
tor, as expressed by Eq. (73), does not depend on the details
of the uniform approximation, i.e., ρ(p, t ) is independent of
ptrap. For any small ε > 0, there exists t such that pc(t ) < ε

because pc(t ) → 0 for t → ∞. Therefore, for any small ε >

0, the probability of |p| > ε becomes zero for t → ∞. More
precisely, for t � tc(ε), the probability is given by

Pr(|p| > ε) ∼ sin(πγ )

1 − γ
(1 − ε1−γ )tγ−1. (74)

Therefore, the temperature of the system almost certainly
approaches zero in the long-time limit.

By changing the variables (p′ = tγ p/cγ ), we obtain the
rescaled propagator ρres(p′, t ). In the long-time limit, the
rescaled propagator converges to a time-independent function
gdet (p′) (scaling function):

ρres(p′, t ) ≡ ρ(cp′/tγ , t )

∣∣∣∣ d p

d p′

∣∣∣∣ → gdet (p′), (75)

where the scaling function is given by

gdet (p′) ≡

⎧⎪⎨⎪⎩
sin(πγ )
2πcγ−1γ

(|p′| < 1),

sin(πγ ){1−(1−|p′ |−γ−1
)γ }

2πcγ−1γ
(|p′| � 1).

(76)

This scaling function describes the details of the propagator
near p = 0. Furthermore, an infinite invariant density is ob-
tained as a formal steady state:

I∞(p) ≡ lim
t→∞ t1−γ ρ(p, t ) = sin(πγ )|p|−γ −1

2πcγ
(77)

for |p| < ptrap. In the long-time limit, the propagator can be
almost described by the infinite invariant density, whereas the
former is normalized and the latter is not. The infinite invariant
density I∞(p) is the same as the formal steady state obtained
using Eq. (13). However, the propagator described by Eq. (73)
is not a solution of the master equation, Eq. (10).

Figure 6 shows the scaled propagator of the determinis-
tic model. In the numerical simulations, we generated 108

trajectories to obtain the propagator. There are two forms of
the propagator. For |p| < pc(t ), the propagator increases with
time t . For |p| > pc(t ), the asymptotic form of the propagator
follows the infinite invariant density tγ−1I∞(p). Because the
constant tγ−1 approaches zero in the long-time limit, the prop-
agator outside pc(t ) becomes zero. A cusp exists at p = tc(t ),
in contrast to the HRW and the exponential model, where
no cusp exists in the propagator. Figure 7 shows numerical
simulations of the rescaled propagators in the deterministic
case for different χ (p), i.e., for uniform and Gaussian distribu-
tions. The propagators are compared with the scaling function
gdet (p′) without fitting parameters, where we generate 108

trajectories to obtain the rescaled propagator. Therefore, the
scaling function describes the details of the propagator near
p = 0 and is universal in the sense that it does not depend
on χ (p).
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FIG. 6. Time evolution of the propagator multiplied by tγ−1 in
the deterministic model for different times (α = γ −1 = 2, c = 1,
and ptrap = 1). Symbols with lines represent the results of numerical
simulations of the deterministic model. The dashed lines represent
the infinite invariant density I∞(p) given by Eq. (77). The solid
lines represent rescaled scaling functions, tgdet (tγ p). The dotted lines
represent tgdet (0) for different values of t . The initial position is
chosen uniformly on [−1, 1].

B. Ensemble and time averages of observables

Here, we consider the ensemble averages of observables
and show that the scaling function and infinite invariant den-
sity play an important role. In this subsection, we set ptrap = 1
for simplicity. The ensemble average of an observable O(p) is
given by Eq. (31), which can be represented using the scaling
function and infinite invariant density. To verify, we divide the

ρ
re

s(
p

,t
)
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FIG. 7. Rescaled propagators for different distributions χ (p)
(α = γ −1 = 2, c = 1, and ptrap = 1), where we consider the uniform
distribution χ (p) = 1/2 on p ∈ [−1, 1] and the Gaussian distribution
χ (p) = exp(−p2/2)/

√
2π . Symbols with lines are the results of the

numerical simulations of the deterministic model with t = 104. The
solid line represents the scaling function given by Eq. (76). The initial
position is chosen uniformly on [−1, 1]. Note that the results for
different χ (p) are indistinguishable.
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integral range as

〈O(p(t ))〉 =
∫ pc (t )

−pc (t )
ρ(p, t )O(p)d p

+
∫

|p|>pc (t )
ρ(p, t )O(p)d p. (78)

In the long-time limit, using the scaling function and infinite
invariant density, we have

〈O(p(t ))〉 ∼=
∫ 1

−1
gdet (p′)O(cp′/tγ )d p′

+ tγ−1
∫

|p|>pc (t )
I∞(p)O(p)d p, (79)

where we applied a change of variables in the first term and
used Eqs. (73), (76), and (77).

Here, we assume that O(p) ∼ C|p|β for p → 0 and that
it is bounded for p �= 0. In particular, the energy and the
absolute value of the momentum correspond to observables
with β = 2 and 1, respectively. When |p|β is integrable with
respect to gdet (p), i.e.,

∫ ∞
−∞ gdet (p)|p|βd p < ∞, γ −1 satisfies

the following inequality: −1 < β < γ −1 − 1. In this case, the
asymptotic behavior of the ensemble average becomes

〈O(p(t ))〉 ∼ Ccβ−γ+1 sin(πγ )

πγ (β + 1)
t−βγ (t → ∞), (80)

where we used Eq. (76):∫ 1

−1
gdet (p′)O(cp′/tγ )d p′ ∼ Ccβ

∫ 1

−1
gdet (p′)|p′|βd p′t−βγ

(81)
for t → ∞. Note that the second term in Eq. (79) can be
ignored in the asymptotic behavior because −βγ > γ − 1.
On the other hand, when O(p) is integrable with respect
to I∞(p), i.e.,

∫ 1
−1 I∞(p)O(p)d p < ∞, where β must satisfy

β > γ −1 − 1 (> 0), the asymptotic behavior of the ensemble
average becomes

〈O(p(t ))〉 ∼ tγ−1
∫ 1

−1
I∞(p)O(p)d p (t → ∞). (82)

Therefore, the asymptotic behavior of the ensemble average
becomes proportional to t−λ(α,β ), and the integrability of the
observable with respect to the scaling function or infinite
invariant density determines the power-law exponent λ(α, β ).
Note that the exponent γ is defined as γ = 1/α. Therefore,
the power-law exponent in decay processes of the ensemble-
and time-averaged observable is universal.

In the case of β = γ −1 − 1, the integrals of the observables
with respect to both the scaling function and infinite invariant
density diverge. In this case, Eq. (79) should be expressed as

〈O(p(t ))〉 =
∫ 1

−1
gdet (p′)O(cp′/tγ )d p′

+
∫

1<|p′|�tγ /c
gdet (p′)O(cp′/tγ )d p′. (83)

The first term decays as t−βγ because the integral of the
observable O(p) from −1 to 1 with respect to the scaling
function is finite. Because there is a logarithmic correction in

the second term, the second term yields the leading order for
t → ∞:

〈O(p(t ))〉 ∼ Ccγ −1−γ−1γ sin(πγ )

π
tγ−1 ln t . (84)

Here, we discuss the decrease of the energy. When the
observable is the energy, i.e., O(p) = p2, the asymptotic decay
is

〈p(t )2〉 ∼ t−2γ

β + 1
(t → ∞) (85)

or

〈p(t )2〉 ∼ tγ−1
∫ 1

−1
I∞(p)O(p)dv (t → ∞) (86)

for γ −1 > 3 and γ −1 < 3, respectively. Thus, the ensem-
ble average of the energy approaches zero in the long-time
limit. Interestingly, a constraint exists in the power-law expo-
nent λ(2, γ ), i.e., λ(2, γ ) � 2/3, where the equality holds at
γ −1 = α = 3. For general observables, the power-law expo-
nent is restricted as

λ(β, γ ) <
β

β + 1
. (87)

In the case of the absolute value of the momentum, it is
bounded as λ(1, γ ) < 1/2, which is maximized at γ −1 = 2.

C. Distributional characteristics of time-averaged observables

Distributional limit theorems for time-averaged observ-
ables in the SMP with continuous state variables were also
considered in Ref. [41], where the infinite invariant density
plays an important role in discriminating classes of observ-
ables. For the SMP, the integral of O(p(t )) is a piecewise
linear function of t and is called a continuous accumulation
process [18]. The ensemble average of an increment of one
segment, i.e.,〈∫ τ̃

0
O(p(t ′))dt ′

〉
≡

∫ ∞

0
τ̃O(cγ τ̃−γ )ψ (τ̃ )d τ̃ , (88)

may diverge for some observables. When it is finite, the
distribution function of the time-averaged observable fol-
lows the Mittag-Leffler distribution, which is a well-known
distribution in infinite ergodic theory [12,44] and stochastic
processes [43,45–54]. On the other hand, when it di-
verges, other non-Mittag-Leffler limit distributions are known
[17,18,34,41,52,54]. This condition of integrability of the
increment can be represented by the integrability of the ob-
servable with respect to the infinite invariant density.

Here, we consider energy as a specific example. The
distributional limit theorems derived in Ref. [41] can be
straightforwardly applied to this case. A derivation of the
distributional limit theorems is given in Appendix A. Here,
we simply apply our previous results. For γ < 1/3, the ob-
servable O(p) = p2 is integrable with respect to the infinite
invariant density, i.e.,

∫ 1
0 O(p)I∞(p)d p < ∞, where the en-

semble average of the increment is finite. Therefore, the
distribution of the time average follows the Mittag-Leffler
distribution. More precisely, the normalized time averages
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FIG. 8. EB parameter as a function of γ for two observables
O(p) = p2 and O(p) = I (|p| > 0.5), where O(p) = I (|p| > 0.5) =
1 if |p| > 0.5 and zero otherwise. The solid line represents A(γ )
and ML(γ ) for γ < 1/3 and γ > 1/3, respectively. The dashed line
represents ML(γ ) for γ < 1/3. Note that I (|p| > 0.5) is integrable
with respect to I∞(p) for all γ .

defined by O(t )/〈O(t )〉 converge in distribution:

O(t )

〈O(t )〉 ⇒ Mγ (89)

for t → ∞, where Mγ is a random variable, distributed
according to the Mittag-Leffler law [12,49]. The ensemble av-
erage of the time average decays as 〈O(t )〉 ∝ tγ−1 for t → ∞
and, in general, 〈O(t )n〉 ∝ t n(γ−1) for t → ∞. Thus, Mγ does
not depend on time t . in the long-time limit. The mean of Mγ

is 1 by definition, and the variance is given by

ML(γ ) ≡ 2�(1 + γ )2

�(1 + 2γ )
− 1. (90)

On the other hand, for γ � 1/3, the observable O(p) = p2

is not integrable with respect to the infinite invariant density,
and the ensemble average of the increment also diverges. In
this case, the normalized time average does not converge in
distribution to Mγ but rather to another random variable Cγ

[41]:

O(t )

〈O(t )〉 ⇒ Cγ (91)

for t → ∞. The ensemble average of the time average decays
as 〈O(t )〉 ∝ t−2γ for t → ∞ and, in general, 〈O(t )n〉 ∝ t−2nγ

for t → ∞. The variance of Cγ is given by

A(γ ) ≡ 6γ�(2 − 2γ )2

�(3 − 4γ )

[
3�(2 − 5γ )�(1 − γ )

5γ�(1 − 3γ )2
+ 1

]
− 1.

(92)
Since the distribution of the normalized time average defined
by O(t )/〈O(t )〉 converges to Mγ or Cγ for γ < 1/3 and
γ > 1/3, respectively, the EB parameter, which is defined
by the relative variance of O(t ), i.e., 〈O(t )2〉/〈O(t )〉2 − 1,
is given by A(γ ) and ML(γ ) for γ < 1/3 and γ > 1/3,
respectively. As shown in Fig. 8, the trajectory-to-trajectory

fluctuations of O(t ) are suppressed by increasing γ for γ >

1/3 and vanish for γ → 1. On the other hand, they show
a nontrivial dependence on γ for γ < 1/3. We note that
limγ→1/3 A(γ ) = limγ→1/3 ML(γ ).

VI. CONCLUSION

We investigated the accumulation process of the momen-
tum of an atom in three stochastic models of subrecoil laser
cooling. For the HRW and the exponential models, the formal
steady state of the master equation cannot be normalized when
α � 1. For all the models, the scaled propagator defined by
t1−γ ρ(p, t ) converges to a time-independent function, i.e., an
infinite invariant density. In the deterministic and exponential
models, we derived the exact forms of the scaling function
and the infinite invariant density. As a result, we found uni-
versality and nonuniversality in all three stochastic models. In
particular, the power-law form of the infinite invariant density
is universal in the three models, whereas there is a clear
difference in the scaling functions of the deterministic and
exponential models. A summary of the comparisons of the
three stochastic models is presented in Table I.

We showed numerically that the propagator obtained using
the exponential model is in perfect agreement with that in
the HRW model for large t , which means that the uniform
approximation used in the exponential model is very useful for
obtaining a deeper understanding of the HRW model. When
we focus on the jumps of the momentum to the trapping
region, the jump distribution can be taken as approximately
uniform in the trapping region because the trap size ptrap can
be arbitrarily small. We note that the uniform distribution for
χ (p) is necessary, but the value of ptrap is not relevant for
reproducing the statistical behavior of the HRW model. This
is the reason why the uniform approximation can be applied
to the HRW model. The relation between the exponential and
the HRW models is similar to that between the CTRW and the
quenched trap model (QTM) [55]. In particular, the waiting
times in the exponential model and the CTRW are IID random
variables, whereas those in the HRW and the QTM are not.
Moreover, it is known that the CTRW is a good approximation
of the QTM when the dimension is greater than 2 or under a
bias [56].

We showed that the integrability of observables with
respect to the infinite invariant density determines the power-
law-decay exponent in the decrease of the ensemble average
of the observables in the exponential and deterministic mod-
els. As a result, we found that the power-law exponent has
a maximum at the transition point for both models. Further-
more, we found that the integrability of the observable with
respect to the infinite invariant density plays an important
role in characterizing the trajectory-to-trajectory fluctuations
of the time averages in the three models. When the observ-
ables are integrable, the distribution is universal and described
by the Mittag-Leffler distribution. On the other hand, the
distribution differs for the exponential and the deterministic
model when the observables are not integrable. Using the EB
parameter, we showed numerically that the distribution in the
HRW model agrees with that in the exponential model even
when the observable is not integrable.
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TABLE I. Comparison of the infinite invariant density, the scaling function, the relaxation power-law exponent of the time- and ensemble-
averaged energy, and the EB parameter in three stochastic models.

HRW Exponential model Deterministic model

model Markov Markov non-Markov
invariant density ρ∗(p) ∝ |p|−α ρ∗(p) ∝ |p|−α ρ∗(p) ∝ |p|−α

scaling function same as in the exponential model Eq. (30) Eq. (76)
decay exponent same as in the exponential model Eq. (37) Eq. (37)

EB (integrable) same as in the exponential model
2�(1 + γ )2

�(1 + 2γ )
− 1

2�(1 + γ )2

�(1 + 2γ )
− 1

EB (nonintegrable) same as in the exponential model Eq. (68) Eq. (92)
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APPENDIX A: SIMULATION ALGORITHM

For all the models, we generate trajectories starting with
uniform initial conditions. In the HRW model, the momen-
tum jumps are generated by random variables following a
Gaussian distribution with mean 0 and variance σ 2 by the
Box-Muller method [57]. When momentum becomes p after
a momentum jump, the waiting time is a random variable

following an exponential distribution with rate R(p). In nu-
merical simulations, the waiting time τ̃ is generated by τ̃ =
− ln(X )/R(p), where X is a uniform random variable on
[0,1]. In the HRW model, we consider the reflecting boundary
condition at p = ±pmax. In particular, when the momentum
becomes p > pmax, we have 2pmax − p. If p < −pmax, we
have −2pmax − p.

For the exponential and deterministic models, updates of
the momentum are independent of the previous momentum
and generated by a uniform random variable on [−ptrap, ptrap].
The waiting time in the exponential model is generated in the
same way as in the HRW model. The waiting time given p in
the deterministic model is determined by τ̃ = 1/R(p).

APPENDIX B: ASYMPTOTIC SOLUTION TO THE MASTER EQUATION FOR THE HRW MODEL

Here, we show that the asymptotic solution of the master equation for the exponential model, i.e., Eq. (26), is also a solution
of the master equation for the HRW model. Differentiating Eq. (26) with respect to t gives

∂ρ(p, t )

∂t
∼= −R(p)ρ(p, t ) + sin(πα−1)tα−1−1

2πcα−1
�(α−1)

∫ 1

0
du e−R(p)t (1−u)uα−1−1. (B1)

The first term is the same as that of the master equation of the HRW model, i.e., Eq. (10). For |p| → 0, it becomes

∂ρ(p, t )

∂t
∼= −R(p)ρ(p, t ) + sin(πα−1)tα−1−1

2πcα−1
�(1 + α−1)

. (B2)

Using Eq. (26), we approximately calculate the second term of the master equation of the HRW model, i.e., Eq. (10),∫ pmax

−pmax

d p′ρ(p′, t )R(p′)G̃(p|p′) ∼= sin(πα−1)tα−1

2πcα−1
�(1 + α−1)

∫ ∞

−∞
d p′G(p − p′)

∫ 1

0
du R(p′)e−R(p′ )t (1−u)uα−1−1, (B3)

where we assumed |p|, |p′| � pmax and used G̃(p|p′) ∼= G(p − p′). Integrating Eq. (B3) by parts, we have∫ 1

0
du R(p′)e−R(p′ )t (1−u)uα−1−1 ∼= t−1 − (α−1 − 1)

∫ 1

0
du e−R(p′ )t (1−u)uα−1−2 ∼ t−1. (B4)

Thus, Eq. (B3) becomes ∫ pmax

−pmax

d p′ρ(p′, t )R(p′)G̃(p|p′) ∼= sin(πα−1)tα−1−1

2πcα−1
�(1 + α−1)

, (B5)

which is the same as the second term of Eq. (B2). Here, we confirmed that Eq. (26) is a solution to the master equation of
the HRW model under the assumption of |p| → 0. For the HRW model, momentum converges to p = 0 almost surely in the
long-time limit. Therefore, Eq. (26) is a solution to the master equation of the HRW model in the long-time limit.

064126-12



INFINITE ERGODIC THEORY FOR THREE … PHYSICAL REVIEW E 105, 064126 (2022)

APPENDIX C: DERIVATION OF THE nth MOMENT OF S(t )

Here, we derive the nth moments of S (t ) for α < 3 in the
exponential model. For α < 3, φ̂′

2(0, 0) < ∞. The leading
term of the Laplace transform of the nth moment is

∂nP̂(u, s)

∂u2

∣∣∣∣
u=0

∼ (−1)nn!φ̂′
2(0, s)n

[1 − φ̂2(0, s)]n
(C1)

for s → 0. It follows that the asymptotic behavior of 〈S (t )n〉
becomes

〈S (t )n〉 ∼ n!{−φ̂′
2(0, 0)}n

An
α�(1 + n/α)

t
n
α (C2)

for t → ∞. In the long-time limit, the nth moment of
S (t )/〈S (t )〉 converges to n!�(1 + 1/α)n/�(1 + n/α) for all

n > 0. Therefore, the random variable defined by S ≡
S (t )/〈S (t )〉 does not depend on time t in the long-time limit
and follows the Mittag-Leffler distribution with exponent 1/α,
where the Laplace transform of the random variable Mα fol-
lowing the Mittag-Leffler distribution with exponent 1/α is
given by

〈e−sMα 〉 =
∞∑

k=0

�(1 + 1/α)n

�(1 + n/α)
(−s)n. (C3)

In real space, the PDF fα (x) of Mα becomes

fα (x) = − 1

πα

∞∑
k=1

�(kα + 1)

k!
xk−1 sin(πkα). (C4)
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