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Finite-time scaling for epidemic processes with power-law superspreading events
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Epidemics unfold by means of a spreading process from each infected individual to a variable number of
secondary cases. It has been claimed that the so-called superspreading events of the COVID-19 pandemic are
governed by a power-law-tailed distribution of secondary cases, with no finite variance. Using a continuous-time
branching process, we demonstrate that for such power-law-tailed superspreading, the survival probability of
an outbreak as a function of both time and the basic reproductive number fulfills a “finite-time scaling” law
(analogous to finite-size scaling) with universal-like characteristics only dependent on the power-law exponent.
This clearly shows how the phase transition separating a subcritical and a supercritical phase emerges in
the infinite-time limit (analogous to the thermodynamic limit). We also quantify the counterintuitive hazards
posed by this superspreading. When the expected number of infected individuals is computed removing extinct
outbreaks, we find a constant value in the subcritical phase and a superlinear power-law growth in the critical
phase.
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I. INTRODUCTION

The ongoing COVID-19 pandemic has raised considerable
concern over the superspreading phenomenon. In the propa-
gation of infectious diseases, superspreading refers to when
a single infected individual triggers a large number of sec-
ondary cases. Superspreading has been previously proposed
to occur with diseases such as SARS [1], MERS [2], measles
[3], and the Ebola virus disease. The name of the disease is
Ebola virus disease [4]. Naturally, understanding superspread-
ing is crucial not only for identifying which events drive the
propagation, but also for implementing effective contention
measures [5–7].

Most definitions of superspreading have been rather vague
or arbitrary. For instance, some authors may define a su-
perspreading event if a single individual provokes the direct
contagion of at least 10 other individuals (secondary cases)
[5,8]. Lloyd-Smith et al. [3] associated the phenomenon to
the presence of outliers in the distribution of secondary cases
when these are modeled in terms of a Poisson distribution
(with a mean given by the empirically found value of the basic
reproductive number R0). Thus, an excess of outliers would
suggest that the Poisson distribution is not appropriate, and
a negative binomial is introduced instead [3,9,10] (this com-
prises Poisson as a particular case and arises as a mixture of
Poisson secondary cases with γ -distributed rates for different
individuals).

In other instances, superspreading has been associated
with the 20/80 rule [11], in which the top 20% of most
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infective individuals are the direct cause of a very large
percentage of direct transmission (e.g., 80%). But note that
the fulfillment of the 20/80 rule, providing a single pair
of numbers, is not sufficient to characterize a probability
distribution. In concrete terms, although for precise values
of its parameters the negative binomial distribution fulfills
the rule, other distributions may be tuned to fulfill the
rule as well (for instance, the power law [12]). In sum-
mary, the common approaches to superspreading identify
it with a distribution of secondary cases that has a large
variance [13] (or at least larger than that of a Poisson
distribution).

Recent empirical observations of SARS-CoV and SARS-
CoV-2 transmission showed that superspreading makes the
tail of the distribution of secondary cases in these diseases
incompatible with an exponential tail (which characterizes
the negative binomial). Instead, the decay is consistent with
a power-law tail [14] with an exponent γ in between 2 and 3
for the probability mass function pk [15–17]. A fundamental
difference between both types of distributions is that power-
law-tailed distributions (with such a value of γ ) cannot be
characterized by their variance, which diverges. In this con-
text, the mean, R0, is of limited applicability, as a standard
error cannot be associated with it and variability becomes
infinite, making the value of R0 difficult to constrain empir-
ically and making extremal superspreading events probable
occurrences. In an abuse of language, we will refer to “power-
law superspreading” when dealing with power-law tails with
an exponent in the range 2 < γ < 3. Although the empiri-
cal evidence supporting power-law superspreading could be
weak, we can speculate that the power-law scenario makes
sense in light of both our knowledge of human social behavior
and the airborne transmission of COVID-19 [18] (airborne
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transmission can skyrocket the number of secondary cases in
poorly ventilated indoor spaces).

In this article, we explore the mathematical consequences
of a power-law distribution of secondary cases, as claimed
for COVID-19 in Ref. [14]. In this way, we show that a
simple branching-process model teaches important lessons to
understand spreading in infectious diseases and its degree of
universality, in particular regarding power-law superspread-
ing. The advantage of using a simple model is that it can
be very transparent to show universal features, whereas more
complicated models may be of little practical use if their
parameters cannot be precisely constrained [19].

Although most used epidemic models are of the com-
partmental type (or are based on compartments) [13,20–22],
branching processes are well-known in the field [3,23–26],
and they are more convenient when dealing with stochasticity
(stochasticity is fundamental when there is large variability,
and superspreading is all about large variability), and when it
is required to count the number of individual cases.

Also, branching processes can approximate more compli-
cated stochastic models [27], and they are closely related to
well-studied epidemic models on random networks [28,29].
Indeed, the equivalence between epidemic percolation net-
works and branching processes has been considered before
[30], and it is known that under certain conditions both
models predict the same probability of epidemic, outbreak
size distribution, and epidemic threshold—at least during the
initial spread of the disease [31]. Recently, different types
of branching-process models have been applied to study
COVID-19 [32–35]. Further, network models with a power-
law distributed number of connections have been extensively
studied, e.g., in Refs. [21,36,37].

First, we introduce the well-known continuous-time
branching process; then, we study it for the infinite-variance
case using a rather general family of power-law-tailed dis-
tributions. We find that a finite-time scaling law provides a
universal description of power-law superspreading in terms
of a unique scaling function that is independent of model pa-
rameters. The finite-time scaling illustrates how a continuous
phase transition separating a subcritical and a supercritical
phase only emerges in the limit of infinite time (which plays
the role of a thermodynamic limit). Next, we compare with
the case of finite-variance spreading, with some counterintu-
itive results arising in the comparison. Finally, we identify
and quantify the hazard potentially arising from power-law
superspreading.

II. PRELIMINARIES

We consider the age-dependent branching process with
exponential lifetimes, also known as the continuous-time
branching process [38]. At t = 0 an initial element is cre-
ated. After an exponentially distributed lifetime, the element
generates a random number k of offspring elements and is
removed from the population. The new elements evolve in the
same stochastic way, each with an identical and independent
exponential distribution of lifetimes, with rate λ, and an iden-
tical and independent distribution of offspring, given by the
probability pk (with k = 0, 1, . . . ).

The branching-process assumption takes for granted a
well-mixed and infinite susceptible population (thus, one
only needs to care about infected individuals), as well as
totally independent secondary cases. There are no sources
of heterogeneity other than those coming from the offspring
distribution. Note that the time dynamics given by the expo-
nential lifetimes is different from the way time progression
is incorporated in network epidemic models [39,40]. The
higher-order structure of social interactions has been taken
into account in recent models [41].

In the epidemic-spread analogy, elements are infected in-
dividuals, offspring are secondary cases, and the removal of
individuals at the end of their lifetime corresponds either
to recovery or death. The total number of cases (secondary
and beyond) triggered by the initial infected individual will
constitute an epidemic outbreak. In usual approaches, the off-
spring distribution pk can be given by a Poisson distribution,
but, as we have mentioned, the negative binomial has been
used to account for superspreading [3]. In contrast, as was
recently proposed, we will consider pk as a power-law-tailed
distribution [14].

The offspring distribution is characterized by its probabil-
ity generating function (PGF), f (s) = ∑∞

k=0 pksk . The mean
(expected number of secondary cases, which is the basic re-
productive number) is obtained as R0 = 〈k〉 = f ′(s)|s=1 (the
prime denotes derivative). The key (random) variable is Z (t ),
which counts the number of infected individuals at time t . Its
PGF F (s, t ) obeys

∂F (s, t )

∂t
= λ[ f (F (s, t )) − F (s, t )], (1)

with initial condition F (s, 0) = s (at t = 0 there is one single
element) [38].

Derivation of F (s, t ) with respect to s and taking s = 1
yields μ(t ) = 〈Z (t )〉, the expected number of elements (in-
fected individuals) at t , fulfilling dμ(t )/dt = λ(R0 − 1)μ(t ),
with initial condition μ(0) = 1. We will refer to μ(t ) as the
mean instantaneous size of the outbreak, or just the size.
Straightforward integration leads to μ(t ) = e(R0−1)λt , which
is decreasing if R0 < 1 and increasing if R0 > 1. The case
R0 = 1 corresponds to the critical point (see below). It is
remarkable that the offspring distribution has null influence
on μ(t ), except for its mean value R0. In other words, su-
perspreading effects, no matter how they are defined (from
negative binomials or from power laws), do not change the
behavior, as long as R0 takes the required value.

The reason for this is that the mean number of infections
does not tell the whole story (only an averaged story). To
proceed, we need to calculate η(t ), the probability that the out-
break is extinct at time t , i.e., the probability of Z (t ) = 0. As
η(t ) = F (0, t ), we only need to take s = 0 in the equation for
F (s, t ), which leads to

dη(t )

dt
= λ[ f (η(t )) − η(t )], (2)

with η(0) = 0 [38]. As in the Galton-Watson (discrete-time)
model [38,42,43], the equation has a stable fixed-point solu-
tion, η∗, fulfilling η∗ = f (η∗), and f ′(η∗) � 1. Note that in
the equation for η(t ), the offspring PGF appears explicitly.
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III. POWER-LAW-TAILED OFFSPRING DISTRIBUTIONS

Although different definitions have been proposed [44],
one can simply consider power-law-tailed (PLT) distributions
as those that behave asymptotically as a power law, i.e.,
pkkγ −−−→

k→∞
c for c > 0 and an exponent 2 < γ < 3 ensuring

infinite variance. Power-law-tailed distributions defined in this
way constitute a subclass of the so-called regularly varying
distributions (or, roughly speaking, fat-tailed distributions,
which, in extreme-value theory, correspond to the so-called
Fréchet maximum domain of attraction [44]). See the Ap-
pendix B for other possibilities.

To find the expansion of the PGF fplt(s) of pk , we look
at f ′′

plt(s) = ∑∞
k=0 k(k − 1)pksk−2. Note that f ′′

plt(s) is well-
defined for 0 � s < 1 and diverges as s → 1 (divergence of
the second moment), and also k(k − 1)pk ∼ k2−γ for large
k. By an Abelian theorem [45] (applicable when γ − 2 < 1),
f ′′
plt(s) behaves as c�(3 − γ )/(1 − s)3−γ near s = 1. Integrat-

ing twice and using that fplt(1) = 1 and f ′
plt(1) = R0, we can

write fplt(1 − ε) ≈ 1 − R0ε + c�(1 − γ )εγ−1 for small ε.
Now we are able to find the probability of extinction from

Eq. (2) when this is close to 1. Let us introduce the survival
probability of the outbreak at time t , which is q(t ) = 1 − η(t ).
Notice that the survival probability is the survivor function of
the outbreak lifetime i.e., a complementary cumulative dis-
tribution function, but referring to outbreaks, not individuals,
and thus η(t ) is the corresponding cumulative distribution
function.

For long times, and close to the critical point (which sep-
arates sure extinction for R0 � 1 from a small probability of
survival for R0 > 1), η(t ) will be close to 1 and q(t ) will be
close to 0. So, we will be able to apply in Eq. (2) the previous
expansion of the PGF around η(t ) = 1 [i.e., q(t ) = 0] to get

dq(t )

dt
= λ[(R0 − 1)q(t ) − c�(1 − γ )q(t )γ−1],

disregarding terms O(q(t )2). As we cannot apply the original
initial condition, because the equation is not valid for short
times, we substitute it for q(t0) = q0, with q0 unknown. The
resulting solution is [46]

q(t )=
(

e(γ−2)(R0−1)λ�t (R0 − 1)/[c�(1 − γ )]

e(γ−2)(R0−1)λ�t−1 + q2−γ

0 (R0 − 1)/[c�(1 − γ )]

) 1
γ−2

(3)
with �t = t − t0.

IV. FINITE-TIME SCALING

Close to the critical point, the solution verifies a finite-time
scaling law (analogous to finite-size scaling replacing system
size by time [47,48]). Defining the rescaled variable

z = (γ − 2)(R0 − 1)λt (4)

with t − t0 
 t , and disregarding the last term in the denomi-
nator of Eq. (3) (which can be done close to the critical point,
equivalent to long times when z is finite), we can write

q(t ) =
(

1

(γ − 2)c�(1 − γ )λt

) 1
γ−2

Gγ (z) ∝ Gγ (z)

t1/(γ−2)
(5)

with the γ -dependent scaling function

Gγ (z) =
(

zez

ez − 1

) 1
γ−2

, (6)

and where the dependence on the unknown initial condition
has disappeared. Note that the new variable z, Eq. (4), absorbs
in a rescaled way both the temporal dependence and the dis-
tance to the critical point (thus, in the forthcoming equations,
time dependence is included both in t and z).

Therefore, for a fixed exponent γ , displaying
(cλt )1/(γ−2)q(t ) versus z yields a unique z-dependent
curve independent of λ, t , R0, and any other parameter
of the offspring distribution (as long as z is kept
constant). Further, for different values of γ , displaying
[(γ − 2)c�(1 − γ )λt]q(t )γ−2 versus z the curve becomes
additionally independent of γ , and therefore “universal,”
with γ -independent scaling function G(z) = [Gγ (z)]γ−2. The
universal γ -independent scaling law is

q(t )γ−2 = 1

(γ − 2)c�(1 − γ )λt
G(z) ∝ 1

t
G(z). (7)

The data collapses in Fig. 1, obtained from computer simula-
tions, show how these finite-time scalings work.

The limiting behavior of the scaling function is

Gγ (z) →

⎧⎪⎪⎨
⎪⎪⎩

(|z|e−|z|)1/(γ−2) for z → −∞,

1 for z = 0,

z1/(γ−2) for z → ∞
(8)

(it can be interesting to compare the resulting exponential de-
cay for q(t ) in the subcritical phase with the empirical findings
of Ref. [36]). Using this limiting behavior in the scaling law,
the asymptotics of q(t ) (limit t → ∞, close to the critical
point) becomes

q(t ) −−−→
t→∞

⎧⎪⎨
⎪⎩

0 for R0 < 1,

[(γ − 2)c�(1 − γ )λt]−1/(γ−2) for R0 = 1,

{(R0 − 1)/[c�(1 − γ )]}1/(γ−2) for R0 > 1.

(9)
This change of behavior at the critical value R0 = 1 can

be understood as a phase transition (and R0 = 1 as a critical
point), with R0 the control parameter and limt→∞ q(t ) the
order parameter, and with the asymptotic limit playing the
role of the thermodynamic limit (infinite-system-size limit).
This shows how the phase transition emerges when t → ∞.
As 2 < γ < 3, the order-parameter exponent β = 1/(γ − 2)
is in the range 1 < β < ∞ and the transition is not sharp but
continuous with a continuous first derivative at R0 = 1. So,
the order of the transition is higher than second (in contrast
to the finite-variance case; see below). The result for the
critical phase is in agreement with Ref. [49] for a discrete-time
branching process. An equivalent result to the one for the
supercritical phase is known in the context of percolation in
scale-free networks [50].

The close-to-critical regime, for which our results are valid,
can be of great practical interest, as spontaneous changes in
human behavior and implementation of contention measures
usually lead to a decrease in the value of R [51,52] (the
equivalent of R0 when this changes its value).
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FIG. 1. Results of computer simulations of the continuous-time
branching process with offspring distribution given by the shifted
power-law distribution (see the Appendixes ), for different values of b
(to sweep R0) and different values of γ and t , with λ = 1. (a) Survival
probabilities q(t ) versus R0. (b) Simple rescaling of q(t ) versus the
rescaled distance to the critical point z. (c) General rescaling of
q(t )γ−2.

V. COMPARISON WITH THE FINITE-VARIANCE CASE

The result for the case of finite variance [53] (Poisson, neg-
ative binomial, etc., but also power-law tail with γ > 3) can
be considered included in the previous expressions. Indeed,
taking Eqs. (4), (6), (5), and (9) and replacing γ − 2 by 1
and c�(1 − γ ) by σ 2/2, with σ 2 the variance of the offspring
distribution in the critical point, one recovers the formulas for
the finite-variance case [53].

Thus, the power-law behavior of the order parameter as a
function of R0 in the case of infinite variance, Eq. (9), trans-
lates into a linear function in the case of finite variance, i.e.,
q(t ) −−−→

t→∞ 2(R0 − 1)/σ 2, for R0 > 1. This highlights the im-

portance of determining not only the mean R0 of the offspring
distribution, but also its variance (when it is finite [10]). The
problem with using the Poisson distribution for offspring is
that the variance is equal to R0 and, close to the critical point,
both are close to 1. But there is nothing special with regard to
the negative binomial, apart from allowing a variance differ-
ent from R0; any distribution with the same variance and R0

would lead not only to the same asymptotic solution for q(t )
but to the same finite-time scaling law [53]. In other words,
superspreading with finite variance does not lead to any new
phenomenology. It is only for power-law superspreading (with
infinite variance) that superspreading becomes a new phe-
nomenon, in the sense that new universality classes arise.

The previous simple expression for the limit of q(t ) in
the finite-variance case [together with q(t ) → 0 for R0 � 1]
corresponds to the usual transcritical bifurcation [54]. Never-
theless, the power-law case with 2 < γ < 3 also corresponds
to a transcritical bifurcation, despite the fact that the behavior
in the supercritical phase is not linear. Comparing, for the
same values of R0, the supercritical phases for finite and
infinite variances, one can see that, sufficiently close to the
critical point, the linear term is above the nonlinear one, and
therefore the probability q(t ) that an outbreak does not be-
come extinct is smaller if there is power-law superspreading
(in fact, this probability is zero at first order in R0 − 1, in
comparison with the finite-variance case). Thus, power-law
superspreading makes extinction of the outbreaks easier.

We can quantify the differences in the outbreak lifetimes
t . This is a random variable with survivor function q(t ).
Although we have only calculated the tail of q(t ), this
is enough to characterize the expected lifetime 〈t〉 of an
outbreak. From Eqs. (8) and (9), it is clear that in the infinite-
variance case 〈t〉 is finite for R0 < 1 [because q(t ) decays
exponentially] and infinite for R0 > 1 [because q(t ) does not
tend to zero, and therefore it has a nonzero mass at infinity].
This is valid also for finite-variance offspring distributions.

The qualitative behavior at the critical point R0 = 1 is
different and counterintuitive. In both cases, we have critical
slowing down (power-law decay in time), but in the finite-
variance case q(t ) ∼ 1/t , which means that the power-law
exponent of the density is 2 and 〈t〉 diverges, whereas for
infinite variance, q(t ) ∼ 1/t1/(γ−2), leading to an exponent of
the density larger than 2 and therefore to a finite mean value
〈t〉. In other words, in the critical phase, spreading with finite
variance leads (despite the probability of extinction being 1)
to never-ending outbreaks (in expected value, not in single
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realizations), but infinite-variance superspreading reduces the
expected lifetime to be finite.

In any case, power-law-tailed outbreak lifetimes (or total
outbreak sizes [8,51,55,56]) are not an indication of power-
law superspreading, as in the critical point power laws arise
with any sort of spreading, whereas outside the critical point
power-law lifetimes do not take place, regardless of the
spreading. It is important then not to confuse these two dif-
ferent types of power laws. And of course, the occurrence of
large outbreaks is not an indication of superspreading (they
may arise even for the Poisson distribution if R0 � 0).

VI. HAZARD FROM POWER-LAW SUPERSPREADING

We have seen that the expected number of infected individ-
uals varies exponentially as μ(t ) = e(R0−1)λt , independently of
the spreading characteristics, but the survival probability of an
outbreak is decreased when there is power-law superspread-
ing. Which are the hazards coming from this, then? Obviously,
μ(t ) is not highly informative as it contains the contribution
from outbreaks that have become extinct (and contribute with
a value of zero, but are counted).

In a formula, μ(t ) = q(t )Isur(t ) + η(t ) × 0, with Isur(t ) the
expected number of infected individuals for outbreaks that
are not extinct at time t [note that Isur(t ) is an average be-
tween infected individuals, in contrast to μ(t )]; therefore,
Isur(t ) = μ(t )/q(t ), and the decrease in q(t ) for power-law
superspreading will yield an increase in Isur(t ). In concrete
terms, substituting the scaling law for q(t ) [Eq. (5)] we get
another finite-time scaling law,

Isur(t ) =
[

c�(1 − γ )(γ − 2)λt

(
ez − 1

z

)] 1
γ−2

−−−→
t→∞

⎧⎪⎪⎨
⎪⎪⎩

( c�(1−γ )
1−R0

)1/(γ−2)
for R0 < 1,

[(γ − 2)c�(1 − γ )λt]1/(γ−2) for R0 = 1,( c�(1−γ )
R0−1

)1/(γ−2)
e(R0−1)λt for R0 > 1

(10)

[the case of finite variance is recovered with the substitutions
c�(1 − γ ) → σ 2/2 and γ − 2 → 1].

These results mean that, in the subcritical phase, the very
few outbreaks that survive reach a fixed average (instanta-
neous) size Isur (while they survive [57]), with a higher Isur in
the case of power-law superspreading (in comparison with the
finite-variance case). In contrast, in the supercritical phase the
nonextinct outbreaks grow exponentially (with a prefactor that
can be very high when γ is close to 2). It is at the critical point
that one finds an important qualitative difference between the
finite-variance case and the power-law case: in the former
case, the average size of the outbreaks that survive diverges
linearly, but for power-law superspreading the growth is su-
perlinear (as a power law of t with exponent larger than 1).
We note then a trivial yet important observational bias, due
to the fact that, at time t , we only see the outbreaks that
have not become extinct. This is a dramatic realization of the
survivorship bias (where survivorship refers to the outbreak,
not to the individuals).

VII. DISCUSSION

We have made clear how a continuous-time branching
process with power-law-tailed secondary cases (in cor-
respondence with recent observational results describing
superspreading in COVID-19 [14]) has properties that are
qualitatively different from the case of finite variance. The lat-
ter constitutes a well-known mean-field universality class with
order-parameter exponent β = 1 [58], whereas the power-law
superspreading leads to a continuum of universality classes
depending on the value of the secondary-case power-law ex-
ponent γ [59]. Further, we derive the existence of a finite-time
scaling law describing the probability of outbreak survival as
a function of R0 and time, Eqs. (5) and (7), and we calculate
the exact value of the scaling functions, Eq. (6). These scaling
laws could be extended to random networks. We also show the
peculiar behavior of Isur(t ), Eq. (10).

It would be desirable to apply our results to the COVID-
19 pandemic in order to obtain the probability of outbreak
extinction after some time as a function of R0, for which the
offspring power-law exponent γ has been estimated. How-
ever, in addition to the exponent γ , knowledge of the constant
c in the asymptotic power-law formula is also fundamental (a
relation between c and R0 exists, but it is model-dependent).
In other words, it is not enough to know the distribution of
secondary cases for large k [14], but one needs to know the
whole “population” to which those large outbreaks belong.
Thus, concentrating only on large outbreaks is useless for the
calculation of the survival probability.
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APPENDIX A: SHIFTED POWER-LAW
OFFSPRING DISTRIBUTION

One particular case of a power-law-tailed distribution is
given by the shifted power-law distribution. This is given by

pk = 1

ζ (γ , b)(b + k)γ
(A1)

for k = 0, 1, . . . with γ the exponent, b a location parameter,
and ζ (γ , b) the Hurwitz zeta function, ensuring normaliza-
tion. γ > 2 leads to a finite mean and γ < 3 leads to an
infinite variance. This is the range we consider, together with
b > 0. The mean of the distribution can be calculated directly
to be R0 = ζ (γ − 1, b)/ζ (γ , b) − b. The case b = 0, trun-
cated from below at k = 1, would lead to the standard discrete
power law (straight in a log-log plot), whereas b > 0 leads
to a shifted discrete power law. The shift does not alter the
power-law behavior at the tail, i.e., pk ∼ 1/kγ , for any b > 0
and large k.

Using the notation in the main text, in this case we
have c = 1/ζ (γ , b). However, this simple case admits an
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alternative but equivalent analysis. The PGF of the
shifted power law (pl) is fpl(s) = �(s, γ , b)/ζ (γ , b), with
�(s, γ , b) = ∑∞

k=0 sk/(b + k)γ the so-called Lerch tran-
scendent and ζ (γ , b) = �(1, γ , b). When b = 1 one has
ζ (γ , 1) = ζ (γ ) (the Riemann zeta function) and �(s, γ , 1) =
Liγ (s)/s, with Liγ (s) the polylogarithm, arising in integrals
that appear in the study of the Bose-Einstein condensation
and whose asymptotic behavior near s = 1 is well known. A
generalization of this is possible [60], yielding

�(s, γ , b) = 1

sb
[�(1 − γ )(− ln s)γ−1 + ζ (γ , b)

+ ζ (γ − 1, b) ln s + O(ln2 s)],

valid for | ln s| < 2π , with b > 0 and γ a positive noninteger;
�() is the Gamma function. Since we are interested in s close
to but smaller than 1, we can write s = 1 − ε, and then s−b 

1 + bε and ln s 
 −ε; thus

fpl(1 − ε) = �(1 − ε, γ , b)

ζ (γ , b)

= 1 − R0ε + �(1 − γ )

ζ (γ , b)
εγ−1 + O(ε2),

where we have assumed the range of interest, 2 < γ < 3. The
rest of the calculation is identical to that in the main text, just
replacing c by 1/ζ (γ , b).

APPENDIX B: ALTERNATIVE POWER-LAW TAIL

Our results also hold for distributions pk that have similar
behavior to power-law-tailed distributions, but they do not
satisfy the condition pkkγ −−−→

k→∞
c. For instance, one could

consider distributions satisfying the alternative condition
∞∑

k=0

k2

(
pk − c

(k + 1)γ

)
< ∞ (B1)

for a given real positive constant c. Note that this condition
is in fact different from the one used in the main text, since
there are distributions satisfying this condition that do not
tend in the limit to a power law; e.g., any distribution obeying
pk ∼ (1 + (−1)k/2)k−γ for large k (the sum can be shown
to converge using Leibniz’s criterion for alternating series).
Conversely, there are also distributions for which the limit of
pkkγ for k → ∞ exists, but the condition above is not satisfied
[e.g., when pk ∼ k−γ (1 + 1/ ln k) for large k, with γ < 3].

To find the expansion of the PGF fplt(s) of pk when
pk verifies the condition given by Eq. (B1), we de-
fine g(s) = fplt(s) − cζ (γ ) fpl1(s) with ζ (γ ) the Riemann
zeta function and fpl1(s) the PGF of the shifted power
law with b = 1. The condition above guarantees the ex-
istence of g′(1) and g′′(1), and then g(1) = 1 − cζ (γ )
and g′(1) = R0 − cζ (γ )Rpl1, with R0 the mean of pk , and
Rpl1 the mean of the shifted power law. In this way, we
can write fplt(1 − ε) = g(1 − ε) + cζ (γ ) fpl1(1 − ε) = 1 −
R0ε + c�(1 − γ )εγ−1 + O(ε2), which is identical to the PGF
derived in the main text (although the range of validity is
different).
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