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Virial coefficients of hard hyperspherocylinders in R4: Influence of the aspect ratio
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We provide second- to sixth-order virial coefficients of hard hyperspherocylinders in dependence on their
aspect ratio ν. Virial coefficients of an anisotropic geometry in four dimensions are calculated employing
an optimized Mayer-sampling algorithm. As the second virial coefficient of a hard particle is identical to
its excluded hypervolume, the numerically obtained second virial coefficients can be compared to analytical
relations for the excluded hypervolume based on geometric measures of the respective, convex geometry in
dependence on its aspect ratio ν.
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I. INTRODUCTION

Hard particles have been investigated thoroughly as a
model for many-particle systems for more than a century.
These studies have significantly contributed to the understand-
ing of self-organization in condensed matter [1]. The virial
series introduced by Kamerlingh Onnes [2],

p = �kBT
(
1 + B2� + B3�

2 + . . .
)
, (1)

where p denotes the pressure, kBT the thermal energy, and
� the particle number density, is the first attempt to describe
thermodynamic properties of imperfect gases. The coeffi-
cients Bi in the MacLaurin expansion in number density
accounting for the nonideal behavior are the virial coeffi-
cients. Introducing the volume fraction η = �VP as the product
of number density � and particle volume VP, with

p = η

VP
kBT

(
1 + B∗

2η + B∗
3η

2 + . . .
)
, (2)

an expansion in terms of the volume fraction η results, where
B∗

i = Bi/V i−1
P are reduced virial coefficients.

The first attempts to calculate virial coefficients use hard
spheres as a model system with its geometric constraint of
impenetrability [3–6]. The seminal work of Onsager with the
analytically treatable model of infinitely thin rods predicted
the formation of liquid-crystalline structures beyond a critical
volume fraction [7]. Based on the theoretical foundation by
means of statistical mechanics [8], with emerging computer
performance, virial coefficients of order 5 � i � 12 of hard
spheres have been computed [9–15]. These methods have
been extended to virial coefficients of anisometric hard bodies
with different topology and aspect ratio [16–24].

Virial coefficients of hard discs as two-dimensional analogs
of hard spheres have been theoretically [25,26] and numeri-
cally [27] calculated. For orders i > 5, in most cases, these
virial coefficients were calculated together with those of hard
spheres [10–12,28]. With these data, first insights into the
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dimensionality’s influence to the nonideal behavior of gases
and supercritical fluids with impacts on the maximum packing
fraction have been possible [29].

The extension of the hard-sphere model system to Eu-
clidean spaces with dimensionality D > 3, already published
by Ree and Hoover [30], does not only provide useful physical
insights [31], but also has implications to information theory
[32]. Virial coefficients of hard spheres in higher dimensions
interestingly become negative for even orders i in dimensions
D � 5 [33]. For hard hyperspheres, selected virial coefficients
up to order i = 64 and up to dimension D = 100 are known
[28]. Virial coefficients of anisometric, hard objects in dimen-
sions D > 3, however, are so far unknown.

The aim of this contribution is the calculation of uniaxial,
hard hyperspherocylinders’ virial coefficients for dimension
D = 4 in dependence on their aspect ratio ν. Since the second
virial coefficient of hard, convex objects equals the mutual ex-
cluded volume, its relation to geometric measures is analyzed
in dependence on the aspect ratio ν. Herewith, expressions
for a four-dimensional analog of the Isihara-Hadwiger relation
[34–36] can be tested.

II. THEORETICAL BACKGROUND

Using the Ree-Hoover reformulation, the virial coefficient
of order i can be written as

Bi = − i − 1

i!

∑
G∈RL

i

cGSG, (3)

where RL
i is the set of labeled Ree-Hoover graphs G with

i vertices and weighting factors cG, called Ree-Hoover star
contents, depending on the graph’s topology. SG is the config-
uration integral over interactions represented by the labeled
graph G. Since in the case of hard-body interaction a single
Ree-Hoover diagram contributes to the integrand, the calcula-
tion based on the Mayer-sampling method [37] can be done
employing an optimized algorithm with a bisection search in
an ordered list containing all labeled diagrams with their star
contents [23]. Mayer sampling as an importance sampling
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technique requires the simultaneous calculation of a known
reference integral. For the calculation of the second virial
coefficients the analytically known second virial coefficient of
hard hyperspheres is used as a reference for small aspect ratios
ν � 5. To increase the accuracy for aspect ratios ν � 6, as a
reference, the virial coefficient of hard hyperspherocylinders
with aspect ratio ν = 5 obtained with hard hyperspheres as
a reference is used. To minimize the total uncertainties for
ν � 6, this reference value is extensively sampled to reduce
the uncertainty of this numerically obtained reference integral.
For virial coefficients with order i � 3, however, integrals of
highly branched spanning trees containing i vertices, each
with the value (−2B2)i−1, are the more efficient choice as an
intrinsic reference integral [23].

A. Geometric measures of hyperspherocylinders in R4

A hyperspherocylinder is the union of hyperspheres with
radius req the centers of which are located at r = c + λû,
where c = (cw, cx, cy, cz)T is the hyperspherocylinder’s cen-
ter of mass and û = (uw, ux, uy, uz)T its direction indicated
by a Cartesian unit vector. The parameter −(ν − 1)req � λ �
(ν − 1)req defines the length of the hypercylinder barrel and is
related to the hyperspherocylinder’s equatorial radius req and
its aspect ratio ν � 1. The hypervolume V of a hypersphero-
cylinder with equatorial radius req and aspect ratio ν reads as

V = 16(ν − 1) + 3π

6
πr4

eq, (4)

and its hypersurface S can be written as

S = 2π [4(ν − 1) + π ]r3
eq. (5)

Its mean radius of curvature R̃ is accessible as the hyper-
surface integral of its mean curvature κ [38,39]. Since the
latter quantity is κ = 1/(3r2

eq ) in the hypercylindrical part
with length 2(ν − 1)req, 1/r2

eq in both hemihyperspheres, and
the curvature is continuous at the entire hypersurface, a hyper-
spherocylinder’s mean radius of curvature R̃ reads as

R̃ =
[

4(ν − 1)

3π
+ 1

]
req. (6)

B. Overlap criteria for hyperspherocylinders

Let c1 and c2 be two hyperspherocylinders’ centers of
mass, û1 and û2 unit vectors describing their orientation,
req their equatorial radius, and ν their aspect ratio. The
overlap problem of hard hyperspherocylinders in R4 can be
solved by determination of the minimum distance between
the two lines r1(λ) = c1 + λû1 and r2(μ) = c2 + μû2 un-
der the constraints |λ| � (ν − 1)req and |μ| � (ν − 1)req in
analogy to the overlap problem in R3 [40]. If the minimum
distance is |r1(λmin) − r2(μmin)| � 2req, both hypersphero-
cylinders overlap, otherwise not. This overlap criterion can
easily be extended to arbitrary dimensions D.

C. Simulation details

The calculation of the ith virial coefficient of an uniax-
ial solid of revolution in R4 requires an integration over a
7(i − 1)-dimensional configuration space which can be per-

formed efficiently using a Mayer-sampling algorithm [37]
extended to the four-dimensional space. In the case of hard-
body systems, the originally proposed acceptance criterion
has to be adapted by using a weighted sum of the integrands of
both the system of interest and the reference system [23]. The
algorithm is based on random translation and rotation attempts
of randomly selected particles.

Let � = (ϑ, χ, ϕ) be the angular coordinates of a ran-
dom unit vector in R4 with the probability densities p(ϑ ) =
2 sin2 ϑ/π , p(χ ) = sin χ/2, and p(ϕ) = 1/(2π ) in 0 �
ϑ � π , 0 � χ � π , and 0 � ϕ � 2π . With the abbrevia-
tions a = cos ϑ , b = sin ϑ cos χ , c = sin ϑ sin χ sin ϕ, and
d = sin ϑ sin χ cos ϕ, a randomly oriented unit vector û =
(−d,−c,−b, a)T is generated. A random translation of a
particle is achieved by choosing its center-of-mass position
cN+1 at step N + 1 relative to its previous position cN :

cN+1 = cN + �trans ξ û, (7)

where 0 � ξ � 1 is a uniformly distributed random number.
The maximum length of displacement �trans is tuned to obtain
an acceptance ratio of pacc ≈ 1/2.

Using again random angular coordinates �, a left isoclinic
rotation matrix in R4 can be written as

R(�) =

⎛
⎜⎝

a −b c −d
b a −d −c

−c d a −b
d c b a

⎞
⎟⎠ (8)

based on the Hamilton quaternion [41]. Additionally employ-
ing a rotation matrix

�(ψ ) = R(ψ, 0, 0)

=

⎛
⎜⎝

cos ψ − sin ψ 0 0
sin ψ cos ψ 0 0

0 0 cos ψ − sin ψ

0 0 sin ψ cos ψ

⎞
⎟⎠, (9)

a randomly rotated unit vector ûN+1 can be obtained from the
orientation of a given particle ûN at step N by

ûN+1 = R(�) · �(ψ ) · RT(�) · ûN . (10)

Choosing ψ with −�rot � ψ � �rot as a random number
with probability density p(ψ ) = 1/(2�rot ) allows an explo-
ration of the rotational configuration space with uniform
density at the unit hypersphere’s hypersurface as shown in
the Appendix complemented by a detailed description of the
rotation. The maximum rotation �rot is again chosen to obtain
an acceptance probability of pacc ≈ 1/2.

The calculation of virial coefficients with known overlaps
and nonoverlaps is independent of the systems’ dimensional-
ity and thus identical to the strategy in R2 and R3 as described
in [23]: After translation and rotation of a selected particle
i(i − 1)/2 Mayer f functions f jk are calculated based on
overlaps and nonoverlaps between particles j and k of the ob-
tained configuration, where, in the case of an overlap between
particles j and k, f jk = −1 is obtained and otherwise f jk = 0
results. Defining additionally e jk = f jk + 1, the contribution
of the generated configuration to the virial coefficient [Eq. (3)]
is a product of f and e functions of the single contributing
graph G weighted by its star content cG [10].
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TABLE I. Reduced virial coefficient B∗
i of hard, four-dimensional hyperspherocylinders with the aspect ratio ν.

ν B∗
2 B∗

3 B∗
4 B∗

5 B∗
6

1 32.4061 (19) 77.743 (9) 146.23 (6) 253.2 (8)
8 32.405759 . . .a 77.745183 . . .a 146.2451 (5)a 253.388 (6)a

2 9.6026 (4) 42.7361 (20) 96.325 (14) 174.58 (16) 340 (4)
3 11.9340 (6) 57.9720 (29) 108.70 (4) 270.5 (5) 444 (19)
4 14.3853 (7) 74.454 (9) 104.28 (5) 564.3 (13) −850 (40)
5 16.87831 (21) 91.606 (11) 81.18 (7) 1213.2 (22) −7000 (130)
6 19.3904 (11) 109.188 (21) 39.09 (14) 2363 (7) −23500 (400)
7 21.9132 (13) 127.076 (25) −21.31 (16) 4161 (12) −57500 (600)
8 24.4416 (16) 145.19 (4) −99.59 (24) 6723 (27) −119000 (1100)
9 26.9744 (11) 163.52 (5) −194.71 (24) 10180 (40) −215600 (1900)
10 29.5108 (17) 182.00 (9) −306.7 (6) 14581 (30) −360000 (4000)

aValue from [28].

For the calculation of virial coefficients of order 2–6 at
least 16 independent runs, each with 5 × 1010 Monte Carlo
steps, are used. The data provided are averages with confi-
dence intervals given by standard errors.

III. RESULTS AND DISCUSSION

The calculated virial coefficients of hard hypersphero-
cylinders with aspect ratios 1 � ν � 10 from order 2–6 are
compiled in Table I. The literature values for hard hyper-
spheres’ virial coefficients are in the limit ν → 1+ reproduced
within their uncertainties for the orders 3 � i � 6. Since the
scope of this paper is an aspect-ratio dependent approach
covering orientation averages of anisotropic particles, the nu-
merical effort is drastically increased. The larger uncertainties
compared to hard hyperspheres’ virial coefficients in [28] are
therefore not a principal limitation of the used algorithm,
but a consequence of the significantly enlarged computational
demands.

A. Second virial coefficient and excluded hypervolume

Using the geometric measures of hypersurface S, mean ra-
dius of curvature R̃, and particle hypervolume VP, the relation

B∗
2 = 1 + 7

4

SR̃

VP
(11)

was proposed for convex geometries as the excluded hy-
pervolume per particle in R4 [38], which is in the case of
hard-body interaction identical to the second virial coeffi-
cient. While this relation is valid for a hypersphere in the
limit ν → 1+, for larger aspect ratios severe discrepancies to
second virial coefficients calculated by means of Mayer sam-
pling arise (Fig. 1). However, the relation

B∗
2 = 2

SR̃

VP
= 8

π

[4(ν − 1) + 3π ][4(ν − 1) + π ]

16(ν − 1) + 3π
(12)

describes the reduced second virial coefficients for 1�ν�10
with high accuracy.

Recently, the same authors corrected their conjecture (11)
using mixed volumes and quermassintegrals [42]. For a con-
vex set K, the excluded hypervolume per particle vex and thus
the second virial coefficient can in the four-dimensional space

be written as

B2 = vex = 1

2κ4

4∑
i=0

(
4

i

)
Wi(K)W4−i(K), (13)

where κ4 = π2/2 is the hypervolume of the unit hypersphere
in R4 and Wi(K) are quermassintegrals of K. With the latter
quantities, B2 can be written as

B2 = 2

π2

[
W0(K)W4(K) + 4W1(K)W3(K) + 3W 2

2 (K)
]
. (14)

W0(K) = V (D)
P (K) is the D-dimensional hypervolume of a

convex shape, W1(K) = S(D−1)(K)/D its (D − 1)-dimensional
hypersurface, WD−1(K) = κDR̃ its mean radius of curvature R̃
multiplied by the hypervolume κD of a D-dimensional unit

FIG. 1. Reduced second virial coefficients B∗
2 = B2/VP for hard,

four-dimensional hyperspherocylinders in dependence on the aspect
ratio ν. The dashed red line represents relation Eq. (11), while the
blue solid line represents Eq. (12). The inset displays the relative
deviations �B∗

2 = B∗
2 − B∗

2,an between numerically calculated, re-
duced second virial coefficients B∗

2 and analytically calculated B∗
2,an

employing Eq. (12).
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hypersphere, and finally WD(K) = κD the hypervolume of the
D-dimensional unit hypersphere. Using these quantities, B2 of
a convex shape in R4 can be expressed as

B2 = V (4)
P (K) + S(3)(K)R̃(K) + 6

π2
W 2

2 (K) (15)

with the missing quermassintegral

W2 = π2

2
r2

eq + 4π

3
(ν − 1)r2

eq (16)

of a hyperspherocylinder in R4 [43,44]. As easily can be seen,
this leads to VP + 6W 2

2 /π2 = SR̃ and results in the analyt-
ical expression B2 = 2SR̃ and therewith B∗

2 = 2SR̃/VP. The
relation VP + 6W 2

2 /π2 = SR̃ is to our knowledge unique for
hyperspherocylinders in R4.

In the limit of infinitely long hyperspherocylinders,
Eq. (12) leads to

lim
ν→∞

B∗
2(ν)

ν
= 8

π
(17)

indicating an excluded hypervolume proportional to the aspect
ratio ν.

In the two-dimensional Euclidean space with the figure’s
area AF, the circumference S, and the mean radius of cur-
vature R̃ = S/(2π ), the reduced second virial coefficient can
be written as B∗

2 = 1 + SR̃/(2AF) = 1 + S2/(4πAF) [45]. In
the three-dimensional Euclidean space, the relation B∗

2 = 1 +
SR̃/VP is obtained with the surface S, the mean radius of
curvature R̃, and the particle volume VP [34–36].

Despite that the hypervolume in Eq. (12) is not an
additive contribution to the excluded hypervolume, the formu-
lation based on quermassintegrals [Eq. (15)] shows that the
hypervolume in fact contributes to the mutual excluded hy-
pervolume. In analogy to the excluded volume in the two- and
three-dimensional space, also in four- and higher-dimensional
Euclidean spaces, the D-dimensional hypervolumes are addi-
tive contributions to the mutual excluded hypervolume.

B. Higher-order virial coefficients

The excellent agreement of our numerical results for the
second virial coefficients with the analytical result [Eq. (12)]
proves the correctness of the Mayer-sampling algorithm and
the overlap criterion in R4. The third- to sixth-order virial
coefficients in Table I are calculated using this analytical result
as an exact reference integral. Noticeably, the higher-order
virial coefficients exhibit alternating signs between even and
odd orders at large aspect ratios: The even-order virial coeffi-
cients B∗

4 and B∗
6 are negative and strongly decrease with in-

creasing aspect ratio ν, while the odd-order virial coefficients
B∗

3 and B∗
5 are positive and notably increase with the aspect ra-

tio ν. This behavior is also known for hyperspheres in dimen-
sions D � 8 for third- and higher-order virial coefficients [28].

For convex figures in two dimensions and for oblate ge-
ometries in three dimensions, a nearly linear dependence of
reduced virial coefficients B̃i = Bi/Bi−1

2 on the inverse excess
part of the excluded volume α appears especially for lower-
order virial coefficients [23,46]. Employing Eq. (12), in four
dimensions α = (B2 − VP)/(7VP) = (2SR̃/VP − 1)/7 results,

FIG. 2. Reduced virial coefficients B̃i = Bi/Bi−1
2 in dependence

on the inverse of the rescaled, excess part α = (2SR̃/VP − 1)/7 of
the excluded hypervolume. The solid lines are least-squares fits em-
ploying a third-order polynomial as a heuristic approach.

where the scaling factor 1/7 guarantees α(ν → 1+) = 1 in
the limit of a hypersphere.

In the case of four-dimensional hyperspherocylinders, con-
sistent with results for three-dimensional spherocylinders
[47], already for the third-order reduced virial coefficient B̃3,
a significant nonlinearity is observed (Fig. 2). However, the
reduced virial coefficients B̃i of order 3–6 can excellently be
described using a third-order polynomial in dependence on the
aspect ratio ν and therewith reliably be interpolated.

IV. OUTLOOK

With the described approach, for the first time virial coeffi-
cients of four-dimensional, anisotropic objects are calculated.
Using hard hyperspherocylinders exemplarily as a convex
shape with tunable aspect ratio ν in R4, the impact of aniso-
metry to the geometric measures of hypervolume, hypersur-
face, mean radius of curvature, and the quermassintegral W2

can be analyzed and related to the second virial coefficient.
Our numerical results for B2 agree with the analytical re-

sult employing mixed volumes and quermassintegrals [42].
A remaining task is the calculation of virial coefficients
with order i > 6 for four-dimensional hyperspherocylinders
and virial coefficients of differently shaped, hard anisotropic
objects in R4.
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APPENDIX: EXPLORATION OF THE ROTATIONAL
CONFIGURATION SPACE

Let �N = (ϑN , χN , ϕN ) be generalized angular coordinates
describing the orientation of an uniaxial solid of revolution in
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R4 at step N . The orientation alternatively can be written as

ûN =

⎛
⎜⎝

sin ϑN sin χN cos ϕN

sin ϑN sin χN sin ϕN

sin ϑN cos χN

cos ϑN

⎞
⎟⎠ (A1)

using the Cartesian unit vector ûN . A random rotation in R4

can be achieved as follows.
(i) Generate a randomly oriented unit vector ûr . Let 0 �

ϑr � π be a random number with probability density p(ϑr ) =
2 sin2 ϑr/π , 0 � χr � π a random number with probability
density p(χr ) = sin χr/2, and 0 � ϕr � 2π a random number
with probability density p(ϕ) = 1/(2π ).

Using the definitions

d = sin ϑr sin χr cos ϕr, (A2a)

c = sin ϑr sin χr sin ϕr, (A2b)

b = sin ϑr cos χr, (A2c)

a = cos ϑr, (A2d)

a left isoclinic rotation matrix in R4 [41] can be written as

R(�r ) =

⎛
⎜⎝

a −b c −d
b a −d −c

−c d a −b
d c b a

⎞
⎟⎠ (A3)

with the generalized angular coordinates �r = (ϑr, χr, ϕr )
and the corresponding unit vector ûr = (−d,−c,−b, a)T. Us-
ing RT(�r ) · ûr, the random unit vector ûr is rotated, resulting
in a unit vector in the positive z direction ûz = (0, 0, 0, 1)T.

(ii) Using an additional rotation matrix

�(ψ ) = R(ψ, 0, 0)

=

⎛
⎜⎝

cos ψ − sin ψ 0 0
sin ψ cos ψ 0 0

0 0 cos ψ − sin ψ

0 0 sin ψ cos ψ

⎞
⎟⎠, (A4)

describing a counterclockwise rotation by ψ , the unit vector
ûψ = (0, 0,− sin ψ, cos ψ )T results from

ûψ = (0, 0,− sin ψ, cos ψ )T = �(ψ ) · ûz. (A5)

(iii) Applying

ûψ,�r = R(�r ) · ûψ, (A6)

the intermediate result ûψ is back-transformed to the initial
coordinate system. Combining (i)–(iii)

�(�r, ψ ) = R(�r ) · �(ψ ) · RT(�r ) (A7)

FIG. 3. Probability densities of polar angles ϑ , χ , and ϕ obtained
during 1010 random rotations according to Eq. (A8) with �rot = 1/2
starting from the initial orientation û1 = (0, 0, 0, 1)T. The solid lines
represent the theoretically expected probability densities.

results, which again is a rotation matrix in R4 with the
properties �T(�r, ψ ) · �(�r, ψ )=I and det(�(�r, ψ ))=1,
where I denotes the identity. Choosing a random orienta-
tion vector �r and a random number −�rot � ψ � �rot with
probability density p(ψ ) = 1/(2�rot ), a consecutive applica-
tion of �(�r, ψ )

ûN+1 = �(�r, ψ ) · ûN (A8)

to a particles’ orientation ûN at step N leads to a homogeneous
exploration of a unit hypersphere’s hypersurface as shown
in Fig. 3. The probability densities are obtained during 1010

random rotations employing Eq. (A8) using �rot = 1/2 and
starting from the initial orientation û1 = (0, 0, 0, 1)T. The
solid lines are the theoretical probability densities p(ϑ ) =
2 sin2 ϑ/π , p(χ ) = sin χ/2, and p(ϕ) = 1/(2π ). The excel-
lent agreement of the obtained probability densities with the
theoretical predictions proves a homogeneous exploration of
the rotational configuration space by the described method.
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