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Fluctuation relations in a nonequilibrium system: Surface tension
and effective temperature in an Ising-doped voter model
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Fluctuation relations of Jarzynski and Crooks enable efficient calculations of a free-energy difference between
equilibrium states. In the present paper, we provide some numerical evidence that these relations can also
be used for a two-dimensional Ising-doped voter model, which is a nonequilibrium system with a violated
detailed balance. Adopting the method of Híjar and Sutmann, we implement a protocol that switches between
periodic and antiperiodic boundary conditions and induces formation of an interface in the model. Assuming
that a suitably interpreted Ising Hamiltonian can be considered as a pseudoenergy of the model, we examine
fluctuations of work performed during these processes and estimate the surface tension. Our results confirm that
the surface tension remains positive in this model except a limiting case of the voter model, where it seems to
vanish. Comparing the free-energy estimates at different speeds of the switching process, we also estimate an
effective temperature in the model. Perhaps coincidentally, the effective temperature of the voter model appears
to be close to the critical temperature of the Ising model.
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I. INTRODUCTION

Equilibrium statistical mechanics provides a solid foun-
dation to investigate many-body systems [1]. Indeed, the
existence of the Gibbs measure enables us to determine ther-
modynamic potentials or correlation functions for a variety of
systems. However, for most natural processes, conditions for a
thermal equilibrium are not met and as a result the system re-
mains in nonequilibrium. An analysis of such systems is much
more difficult and requires a fundamentally different approach
[2] but, in some cases, progress has been achieved [3].

Recent studies show that fluctuation theorems provide
valuable insight into nonequilibrium processes. Of particular
interest is the theorem obtained by Jarzynski [4] that relates
free-energy change �F to the probability distribution of work
A extracted during the experiment that moves the system
between two equilibrium states,

〈exp(−βA)〉 = exp(−β�F ), (1)

where β is the inverse of the temperature. Subsequently,
Crooks has shown that Eq. (1) can be considered as a special
case of the more general relation [5],

PF (A) = PR(−A) exp[β(A − �F )], (2)

where PF (A) and PR(−A) are probability distributions for the
so-called forward and backward protocols.

Relations Eqs. (1) and (2) offer an interesting and efficient
method to estimate free-energy differences, as demonstrated
with the use of Monte Carlo simulations, molecular dynamics
[6], and in some single-molecule experiments [7]. Let us
emphasize that the transitions in relations Eqs. (1) and (2)
are between equilibrium states. It would be very desirable to
develop analogous relations for transitions between nonequi-

librium steady states. Research along these lines for systems
described by the Langevin dynamics was initiated by Hatano
and Sasa [8] but the absence of a statistical description in
the form of the Gibbs measure makes such an approach very
challenging.

Statistical mechanics concepts are often formulated or ver-
ified with the use of lattice models, the Ising model being
perhaps a prime example. In addition to numerous magnetic or
lattice-gas studies, the Ising model was also examined in the
context of opinion formation [9]. In such an interpretation,
opinion of a given spin is set according to the cumulative
effect of all neighboring spins, possibly perturbed with some
(social) temperature noise. In an alternative approach, the so-
called voter model [10], opinion of a spin is set as the opinion
of a randomly chosen neighbor.

Taking into account the heterogeneity of human population
and multiplicity of factors affecting opinion formation pro-
cesses prompted us to examine the Ising-doped voter model
that is a mixture of the Ising and voter-model dynamics [11].
Let us notice that such a model combines the equilibrium
dynamics, which generates the surface tension (Ising), and
the dynamics, which is tensionless (voter) [12]. In the Ising-
doped voter model, the detailed balance is broken and is thus
a nonequilibrium system. Simulations [11] indicate that the
dynamics of the model shares some similarity to the Ising
model, suggesting that a certain effective surface tension is
generated. Let us notice that such tension appears also in some
other nonequilibrium models of opinion [13] or language
[14] formation as might be inferred from some dynamical
behavior, e.g., power-law coarsening. In equilibrium systems,
the surface tension is defined as a certain free-energy differ-
ence [15], but such an approach is usually not available for
nonequilibrium systems.
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FIG. 1. Exemplary steady-state configurations with antiperiodic boundary conditions at the horizontal boundary (see Fig. 2) and periodic
ones at the vertical boundary for 64 × 64 lattices and different concentrations of the Ising spins p. The temperature is equal to T = 1.8, which
for p = 0.7 and 0.1 is below the critical point. As the concentration of Ising spins is reduced (and the temperature is kept constant), the system
moves toward the transition point [11] and for p = 0.01 it is already in the disordered regime. (a) p = 0.7. (b) p = 0.1. (c) p = 0.01.

In the present paper, we use relations Eqs. (1) and (2) to
estimate the surface tension in a two-dimensional Ising-doped
voter model [11]. For the Ising model, the calculation of the
surface tension using fluctuation theorems has already been
made [16] and our work constitutes an extension of these cal-
culations for a nonequilibrium model with a broken detailed
balance. Assuming that the work extracted during nonequi-
librium protocols can be related to a certain pseudoenergy of
the model, we calculate the surface tension and show that the
fluctuation relations enable us to extract information about the
properties of such systems.

II. MODEL

We examine a two-dimensional Ising-doped voter model
[11]. On each site i of a square lattice of size L × L, we have
a binary variable (spin) si = ±1, which initially is assigned to
evolve according to an Ising-type heat bath dynamics or using
the voter model dynamics [12]. Our model is thus a quenched
mixture of the Ising and voter variables selected randomly
with probability p and 1 − p, respectively. An elementary step
of the dynamics in our model is defined as follows.

(1) Select an agent, say i.
(2) If the variable si is of the Ising type, update it according

to the heat-bath dynamics, namely, set as +1 with probability

r(si =1) = 1

1 + exp(−2hi/T )
, hi =

∑

j

Ji, j s j, (3)

and as −1 with probability 1 − r(si =1). The temperaturelike
parameter T controls the noise of the system and the summa-
tion in Eqs. (3) is over the four neighbors of the site i.

(3) If the variable si is of the voter type, select one of its
neighbors, say j, and set si = s j .

We define a unit of time (Monte Carlo step) as L2 ele-
mentary steps and Ji, j is the coupling constant between spins
i and j. Let us note that the presence of the voter agents
(p < 1) implies a violation of the detailed balance. Indeed,

when a voter-type agent and all its neighbors are in the same
state, then a flip of this agent is strictly forbidden. Since
the reversed transition is allowed, it means that the detailed
balance in our model (for p < 1) does not hold. Numerical
simulations indicate [11] that certain steady-state and dynam-
ical characteristics of the Ising-doped voter model on two- and
three-dimensional lattices, even for a very small concentration
of the Ising spins p, show some similarity to the pure Ising
model. Figure 1 demonstrates some typical interfacial and
disordered configurations in the system.

III. METHOD

The surface tension in the Ising model has already been
determined with the use of fluctuation theorems by Híjar and
Sutmann [16] and we will adapt their method. First, we sketch
the method for the Ising model (p = 1). The idea is based on
the observation that antiperiodic boundary conditions induce
an interface in the Ising model, which raises the free energy
of the model. Then one examines protocols that quasicon-
tinuously change the boundary conditions from periodic to
antiperiodic or vice versa. It means that the coupling Ji, j in the
Ising model along a certain, e.g., horizontal line (see Fig. 2)
changes from +1 to −1 (or inversely for reverse processes) in
n equal steps � = ± 2

n . Outside this line, the coupling constant
equals unity. After each of these steps, the system is allowed
to thermalize for t = 1 Monte Carlo steps.

The work A extracted after these changes equals the
change of the energy, which is defined by the Ising model
Hamiltonian

H = −
∑

(i, j)

Ji, j sis j, (4)

where the summation is over square lattice bonds and the
indices in Ji, j indicate that due to the changing boundary
conditions, the coupling constant is spatially dependent. With
such a definition of the energy, the extracted work A can be
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FIG. 2. For the antiperiodic boundary conditions that we im-
posed, the coupling constants at the bottom line (short vertical
dashes) are switched to −1. During nonequilibrium protocols, these
interactions quasicontinuously change from 1 to −1 or vice versa.

written as [16]

A = −�

n−1∑

i=0

∑

j, j′
s(i)

j s(i)
j′ , (5)

where the first summation is over steps where the coupling
constant changes and the second summation is over all (L)
pairs of spins along the boundary, where the coupling is mod-
ified. The upper index in s(i)

j s(i)
j′ indicates the spin variables

at the ith step. Simulations start by equilibrating the system
for 105 Monte Carlo steps and then the nonequilibrium pro-
tocol that changes the boundary conditions is implemented.
To estimate the free-energy difference, the nonequilibrium
protocol should be reversible, which means that the number
of steps n when the coupling J changes should be large. Such
simulations are repeated many times and the values of the ex-
tracted work are collected. We distinguish forward processes
as such where the boundary conditions change from periodic
to antiperiodic and reverse processes where they change from
antiperiodic to periodic. Having the probability distributions
of A, one can estimate the free-energy difference �F ei-
ther from the Jarzynski relation for the forward processes
�F = − 1

β
ln 〈exp(−βA)〉F or for the reverse processes �F =

1
β

ln 〈exp(−βA)〉R. Alternatively, from the Crooks relation, we
obtain that �F = A at the intersection point of these distri-
butions, namely, for PF (A) = PR(−A). Having estimated the
free-energy difference, we can calculate the surface tension σ

of the Ising model that is defined as σ = �F/L.
We adopt the above scheme for the Ising-doped voter

model. It is relatively simple to implement antiperiodic
boundary conditions in the presence of voter agents. The
antiferromagnetic link for a voter agent means that the agent

gets the opposite orientation of the chosen neighbor. To have a
possibility of gradual transition from periodic to antiperiodic
boundary conditions, we introduce a probability r with which
a given voter-type agent gets the same orientation (and with
probability 1 − r, it gets the opposite orientation). The change
from periodic to antiperiodic boundary conditions along a
chosen line implies a gradual change of the coupling J from
1 to −1, which depending on the type of a chosen agent, is
either interpreted as the Ising coupling for an Ising-type agent
or a parameter that sets r = (1 + J )/2 for a voter.

Although for p < 1, the model lacks the Hamiltonian de-
scription, we would like to suggest that the ordinary Ising
Hamiltonian Eq. (4) may be interpreted as the pseudoenergy
of our Ising-doped voter model, with the interpretation of the
coupling Ji, j depending on the agents it connects. Let us note
that for the pure voter model, the value of the expression
Eq. (4) is (approximately) related to the distance from the
absorbing state (where all spins are aligned), perhaps similarly
as the energy Eq. (4) in the Ising model specifies the distance
from the ground state. We expect that such a similarity can
be also reflected in the dynamical behavior, which could be
captured by the fluctuation-theorem methodology. Additional
hints supporting such an assumption come from a recent work
on the Ising-doped voter model on the complete graph [17]. In
this case, one can show that for an arbitrary concentration of
the Ising spins, the steady-state magnetization obeys the same
equation as for the pure Ising model. It can suggest that even
though the Ising-doped voter model is nonequilibrium, the
Ising Hamiltonian is (to some extent) still related to its behav-
ior. On finite-dimensional lattices, the behavior of the model is
different since, for example, the critical temperature depends
on the concentration of the Ising spins [11]. Nevertheless, one
might hope that even in this case the pseudoenergy, which has
a form of the Ising Hamiltonian, to some extent governs the
dynamics of our model. We admit that our assumption that
Eq. (4) defines the pseudoenergy in our model is somewhat
speculative. However, taking the assumption, we find that the
work extracted during the protocols that change boundary
conditions is given by the same Eq. (5).

IV. RESULTS

We made simulations for lattices of size L = 8, 16, and
32 and p = 1 (pure Ising model), 0.7, 0.3, and 0 (pure voter
model). First, we distribute randomly Ising and voter agents,
with probability p and 1 − p, respectively. Simulations start
from setting random initial values of variables si and subse-
quently the model is equilibrated for 105 Monte Carlo steps.
Then we implement nonequilibrium protocols that switch
boundary conditions from periodic to antiperiodic or vice
versa. The switch is quasicontinuous with n steps (n = 5,
10, 20, 50, 100, and 200). For the pure Ising (p = 1) and
pure voter (p = 0) models, the experiment is repeated 107

times. For the mixed cases p = 0.7 and 0.3, the distribution
of the Ising and voter variables introduces a certain quenched
disorder and we average over 103 of such distributions with
105 experiments for each distribution. Simulations were made
for temperature T = 1, which for p = 1, 0.7, and 0.3 is
below the critical temperature in this model [11]. For the
voter model (p = 0), the parameter T is meaningless. During
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FIG. 3. Probability distributions of work PF (A) and PR(−A) for a 16 × 16 lattice, β = 1, and four different concentrations of the Ising
spins p. Distributions for forward processes are plotted with solid lines and for reverse ones with dashed lines. Black vertical lines indicate
intersections of respective distributions and correspond to the free-energy differences obtained using the Crooks method. (a) p = 1, Ising
model. (b) p = 0.7, mixed model. (c) p = 0.3, mixed model. (d) p = 0, voter model.

each experiment, we calculate the extracted work A Eq. (5)
and collect the data to produce two probability distributions.
Forward processes that change periodic boundary conditions
into antiperiodic (creation of the interface) produce PF (A) and
reverse processes give PR(A). From the Jarzynski Eq. (1) and
Crooks Eq. (2) relations, we can then infer the (effective)
free-energy change and the (effective) surface tension.

A. Surface tension

Probability distributions PF (A) and PR(−A) for L = 16 are
presented in Fig. 3 and similar distributions were obtained
for L = 8 and 32. We did some simulations also for L = 64
but for such a large system at a relatively low temperature,
fluctuations are small and estimations of the free energy are
subject to considerable errors. For p = 1, our results are very
similar to those obtained by Híjar and Sutmann [16]. Using
these distributions, we estimate the surface tension σ and the
results are presented in Fig. 4. In analogy to transitions be-

tween equilibrium states, we plot numerical data as a function
of 1/n and analyze the data in the limit n → ∞.

For p = 1 [Fig. 4(a)], the estimation of σ is close to 1.7. In
this case, our estimate can be compared with an exact result
for the pure Ising model, due to Onsager [18],

σ = 2 − 1

β
ln[coth(β )], (6)

which gives σ ≈ 1.7277 . . . for β = 1.
For p = 0.7 [Fig. 4(b)] and 0.3 [Fig. 4(c)], only a fraction

of spins operate according to the Ising heat-bath dynamics.
Consequently, the parameter β, which enters the fluctuation
relations Eqs. (1) and (2), most likely is different than 1/T . In
such a case, we estimate the surface tension using only the
Crooks relation Eq. (2) since this method does not depend
on the explicit value of temperature. The obtained results
indicate that the surface tension for p = 0.7 and 0.3 remains
positive. Such a result confirms the earlier findings [11] that
the model coarsening dynamics indicates the existence of a
certain effective surface tension. Values of the surface tension
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FIG. 4. Surface tension estimates σ for β = 1 and four different concentrations of the Ising spins p. For the pure Ising model (a), three
methods were used because the temperature is known. For other cases, only the effective temperature exists but the Crooks method is still
applicable. (a) p = 1, Ising model. (b) p = 0.7, mixed model. (c) p = 0.3, mixed model. (d) p = 0, voter model.

that are lower than for p = 1 are also plausible since the
critical temperature decreases for decreasing p and thus the
model shifts toward to the transition point.

We also ran simulations for the pure voter model (p = 0)
[Fig. 4(d). In this case, the surface tension seems to have much
smaller values and the bending of our data indicates that it can
even converge to 0. Such a result is consistent with some other
indications that the voter model can be tensionless [12].

An important property of the surface tension in the Ising
model is its vanishing at the critical point. To verify this be-
havior, we did calculations of the surface tension for p = 0.7
and for several values of temperature. The obtained results
(Fig. 5) suggest that the surface tension vanishes around T =
2.2 and such behavior is consistent with the estimation of the
critical temperature based on the behavior of magnetization
[11].

B. Effective temperature

As we have already mentioned, for p < 1 due to a frac-
tion of the voter agents, there are some strictly forbidden

transitions between configurations in our model and the
detailed balance is broken. In such a case, the model is
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FIG. 5. Surface tension σ as a function of temperature T for p =
0.7 and n = 200.
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FIG. 6. Crossings of the free-energy differences for the 32 × 32 Ising model (a) and the voter model (b). Based on the crossings, we
estimated the effective temperature, which is plotted as a function of the system size L (c). (a) p = 1, Ising model. (b) p = 0, voter model.
(c) βeff.

nonequilibrium and the temperature T has only a dynamical
meaning, namely, it is a parameter governing the evolution
of the Ising spins. Nevertheless, one can assume that the
steady state of our model is characterized by a certain effective
temperature, which for p < 1 is most likely different than
T . In this section, we would like to suggest that probability
distributions P(A) and fluctuation theorems can allow us to
determine such an effective temperature.

In particular, we examined the free-energy difference as
calculated from the Jarzynski relation for reverse processes
�F = 1

β
ln 〈exp(−βA)〉R and the results are plotted as a func-

tion of β in Figs. 6(a) and 6(b). One can note that when
plotted for several values of n, these results seem to cross
at a certain value of β and such behavior is particularly
transparent for the voter model [Fig. 6(b)]. One might expect
that for the plotted free-energy differences, the dependence
on the number of steps n is similar to the size dependence
for some equilibrium quantities. For example, for the Binder
cumulant, such crossing is a frequently used method to locate
the phase transition [19]. Based on the intersection of the
highest n data (n = 50, 100, 200), we estimate the effective
β and the results are plotted in Fig. 6(c) For the Ising model
(p = 1), our method fairly well reproduces the expected value
β = 1. For decreasing p, the estimated β decreases and for
the voter model (p = 0), we obtain β ∼ 0.44. This value
corresponds to T = 2.27, which is very close to the critical
temperature of the Ising model [18]. Let us notice that at
the critical point, the Ising model becomes tensionless, sim-
ilarly to the voter model. However, the Ising model remains
tensionless at any temperature higher than the critical temper-
ature and further studies would be needed to verify whether
this is just a numerical coincidence or a manifestation of an
interesting relation between Ising and voter models dynam-
ics. Let us also note that for some nonequilibrium systems,
the effective temperature can be determined using general-
ized fluctuation-dissipation relations [20]. Such an approach
used for the voter model predicts the effective temperature
T = 3.641 [21].

V. CONCLUSIONS

In our paper, we presented numerical evidence that the fluc-
tuation relations of Jarzynski and Crooks can be used to study
transitions between the stationary states of a nonequilibrium
model. In particular, we calculated the surface tension and
the effective temperature for an Ising-doped voter model. We
adapted the method developed for the Ising model [16], which
utilizes switching between periodic and antiperiodic boundary
conditions.

The obtained results confirm the earlier observation [11]
that the model dynamics generates an effective surface ten-
sion. In the limiting case of the voter model, our simulations
support the expectation [12] that in this case the dynamics
is tensionless. From the crossing of the free-energy differ-
ences calculated at various speeds of the numerical protocol,
we estimated the effective temperature of the model. It is
perhaps worth further studying why the effective temper-
ature of the voter model happened to be very close to
the temperature where the Ising model loses the surface
tension.

To extract the work performed during nonequilibrium pro-
cesses that switch boundary conditions, we assumed that the
expression analogous to the Ising Hamiltonian defines a pseu-
doenergy of our model. We suggested that for the Ising-doped
voter model, there can be some reasons justifying such an
assumption, although, in general, a possible existence and
the form of such a pseudoenergy certainly remains an open
problem.
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