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Random adsorption process of linear k-mers on square lattices under the Achlioptas process
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We study the explosive percolation with k-mer random sequential adsorption (RSA) process. We consider
both the Achlioptas process (AP) and the inverse Achlioptas process (IAP), in which giant cluster formation
is prohibited and accelerated, respectively. By employing finite-size scaling analysis, we confirm that the
percolation transitions are continuous, and thus we calculate the percolation threshold and critical exponents.
This allows us to determine the universality class of the k-mer explosive percolation transition. Interestingly, the
numerical simulation suggests that the universality class of the explosive percolation transition with the AP alters
when the k-mer size changes. In contrast, the universality class of the transition with the IAP is independent of
k, but it differs from that of the RSA without the IAP.
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I. INTRODUCTION

The random sequential adsorption (RSA) model, which
describes the irreversible adsorption processes, plays an im-
portant role in statistical physics [1–3]. It has been widely
applied to multiple scientific fields such as physics, chemistry,
and biology, ranging from protein deposition kinetics [4],
adsorption and desorption of human serum albumin on hy-
droxyapatite [5], adsorption of Brownian particles onto solid
surfaces [6], nanoparticle deposition on heterogeneous sur-
faces [7], the kinetics adsorption of colloidal particles [8,9], to
the parking model [10]. In the RSA model, shaped objects are
randomly adsorbed on an initially empty substrate, with the
restriction that they are not allowed to overlap with each other.
In a lattice model, the deposited object can be represented by
a straight line with k nearest sites (or bonds), known as the
so-called k-mers [11,12].

In the RSA process of k-mers, when the concentration
of the deposited k-mers reaches a certain critical value, a
giant cluster with macroscopic scale arises, corresponding
to the percolation threshold [13]. Due to its importance
in critical phenomena, the criticality of the percolation of
k-mers has been extensively studied from miscellaneous
perspectives, including different lattice geometries (e.g.,
a square lattice [14–18], a triangular lattice [19–21], a
honeycomb lattice [22], and a three-dimensional square lat-
tice [23]), different k-mer shapes (e.g., the bendable k-mer
object [24–28], the site-bond mixed k-mers [21,29], heteronu-
clear dimers [30], and monomer-polyatomic mixtures [16]),
and extended k-mers RSA issues (e.g., the inverse adsorbed
process of k-mers [31–34], and the anisotropic and isotropic
adsorbed process of k-mers [35–40]). These studies show that
percolation properties depend strongly on the lattice struc-
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ture and the shape of deposited particles. The behavior of
the percolation threshold is also affected by impurity parti-
cles [11,12,19,27,30,34,38–43]. Despite much variability, it
has been well recognized that the percolation transitions of the
above-mentioned kaleidoscopic models all belong to the ran-
dom percolation universality class [11,12,15–17,21–26,31–
35,41,43,44]. These results agree with the spirit of univer-
sality, in the sense that the universality class is independent
of the microscopic details such as the shape of k-mers or the
geometry of the lattice.

Recently, the so-called explosive percolation was intro-
duced with the Achlioptas process (AP), in which a newly
added edge with minimum cluster production is chosen from
several random candidates during each step [45–47]. An im-
mediate result is that the percolation transition is delayed yet it
becomes sharper and more sudden. The explosive percolation
transition was first considered to be discontinuous, but soon
it was confirmed to remain continuous [48–54]. Despite the
subtle continuity [55], one finds that the universality class of
the explosive percolation is no longer the same as that of the
random percolation [51,56–58]. This motivates us to consider
the universality class of the explosive k-mer percolation. A
natural question arises regarding whether the percolation of
k-mer universality is robust and unrelated to the k-mer size
k when the AP is introduced. We also note that an inverse
Achlioptas process (IAP) has been considered in which the
critical exponent is equal to the random percolation [59]. In
the present article, the percolation of the AP and the IAP
adsorption of linear k-mers on two-dimensional (2D) square
lattices is investigated by using numerical simulations [60]
and finite-size scaling analysis [61,62]. The numerical results
of percolation thresholds are obtained as a function of the
size of k-mers, which show similar decreasing behavior with
the RSA process for the AP and the IAP. Interestingly, the
increasing value of critical exponent β/ν reflects that the
universality class is governed by the k-mer size for the AP,
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while for the IAP the invariant exponents β/ν and ν indicate
that the universality is irrespective of the k-mer size.

Our paper is organized as follows. The model for the k-
mer AP and IAP and the simulation algorithm are given in
Sec. II. The finite-size scaling of the percolation transition
is introduced in Sec. III. In Sec. IV, the results of numerical
simulation of the percolation threshold and critical exponents
are presented. Finally, we present a summary and discussion
in Sec. V.

II. MODEL

The linear k-mer object is defined as a linear array of k
occupied sites on a lattice. The k-mer percolation model de-
scribes the dynamic process, in which the lattice is randomly
filled with k-mers. With a large enough concentration of the
deposited k-mers, a macroscopic scale of the k-mer cluster
emerges. Conventionally, the model assumes the absence of
overlap of the new incoming k-mers with the previously added
ones. It leads to the jamming limit in the k-mer adsorption
dynamics [63,64], which is reached when it is not possible to
place any more k-mers before the lattice is fulfilled. Thus, it is
possible that the jamming happens before it percolates if the
value of k is large. In this work, however, we consider only
small values of k, where the jamming effect is irrelevant.

We consider the deposition of the k-mer model incorporat-
ing the AP [45]. Starting from an empty lattice, two candidate
k-mers are chosen uniformly at random at each discrete time
step. Each k-mer may connect a certain number of clusters,
and the picked k-mer is the one minimizing the product of
the sizes of clusters linked by the k-mers. This competitive
procedure, called the product rule, slows down considerably
the emergence of the percolation cluster of k-mers. Thus, it
is extremely abrupt when the so-called explosive percolation
transition eventually happens. In the simulation, one of the
two k-mers is deposited randomly but competitively on the
lattice. To be more precise, the procedure for the product rule
consists of five steps:

(i) Initially, two k-mers of length k are chosen from any
available lattice sites at random.

(ii) The candidate k-mers are adjacent to a certain number
of distinct clusters with sizes, respectively, denoted by the set
Sc = {Sc1, Sc2, . . . , Sci}.

(iii) Next, we calculate the product of the candidate k-mer
by

∏
ci Sci.

(iv) The candidate k-mer with a smaller product is kept
as new occupied sites on the lattice, while another one is
eliminated.

(v) Repeat the previous steps until jamming happens.
For comparison, we might as well introduce the IAP [59]

as well, which only needs to retain the k-mers with a large
product instead of the small ones in step (iv) of the above
procedure. Contrary to the AP, the IAP will reward the growth
of large clusters.

In Fig. 1, we present a schematic description of the product
rule of the AP. At a given instance, the lattice has deposited a
few clusters, namely a cluster of 12 sites and four clusters of
3 sites. Two candidate k-mers of length k = 3, i.e., k1 and k2,
are selected randomly. The k2 k-mers will be kept because the
product of the cluster sizes that connects (3 × 3 × 3 = 27) is

FIG. 1. For k = 3, the products of two candidate k-mers (labeled
by k1 and k2) are calculated. The product of k1 is 12 × 3 = 36 and
the product of k2 is 3 × 3 × 3 = 27. According to the product rule,
the k-mers k2 should be retained finally for the AP, while for the IAP
the k-mers k1 should be kept.

smaller than that of the k1 k-mers (12 × 3 = 36). For the IAP,
the winner of the competition should be k1 k-mers.

To investigate the k-mers percolation of the AP and the
IAP, we trace the clusters in Monte Carlo simulation, espe-
cially for the largest cluster and the second largest cluster. We
can perform the task by using the Union-Find algorithm of
Ziff and Newman [60]. The second cluster will probably be
annexed by the rest of the clusters in some steps; to traverse
the lattice for the new second cluster is a compromise.

In the later period, straightforward attempts of mass-
election for candidate k-mers are time-consuming due to the
scarcity of viable lattice sites. This problem can be solved by
generating four arrays of viable sites [65] as a starting point,
and a k-mer can be placed in the corresponding orientation.
Randomly, the candidate k-mers are selected from the updat-
ing arrays at each step until all elements are exhausted.

In our simulations, a set of 2 × 106 independent ran-
dom samples are prepared for small k-mers (1 � k � 10).
In addition, we consider the substrate being represented
by a 2D square lattice of N = L × L sites with periodic
boundary conditions. For each length k of k-mers, the
finite-size effect is examined on lattices of linear size L =
512, 1024, 2048, 4096 for both AP and IAP.

III. FINITE-SIZE SCALING

The percolation transition of Achlioptas-type processes has
been proved as a second-order phase transition [48,51], and
the k-mer explosive percolation is expected to be the same.
As is known in the percolation theory, the probability of the
percolation increases with the concentration p. For continu-
ous percolation systems on a finite lattice, the scaling theory
allows us to estimate the dependence of the percolation cluster
size S(k; p, L) on the linear lattice size L. Near the transition
point pc of the percolation, a finite-size scaling form of re-
duced sizes

s(k; p, L) ≡ S(k; p, L)

L × L
(1)
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is anticipated as [61,62]

s(k; p, L) = L−β/ν s̃(k; tL1/ν ), (2)

which is supposed to be valid in the asymptotic critical re-
gion of L � k and ‖t‖ � 1. Here t = (p − pc)/pc, and the
correlation-length exponent ν describes the power-law diver-
gence of the correlation length ξ at the critical threshold pc,
i.e., ξ = ξ0‖t‖−ν . For the largest cluster of k-mers on the
lattice, the scaling form in Eq. (2) is rewritten as

s1(k; p, L) = L−β/ν s̃1(k; tL1/ν ). (3)

Similarly, for the second largest cluster of k-mers, it yields

s2(k; p, L) = L−β/ν s̃2(k; tL1/ν ). (4)

In the thermodynamic limit L → ∞, the order parameter
s1 abruptly increases to a finite value at p = pc. For p > pc,
s1 ∝ tβ .

By observing Eqs. (3) and (4), a finite-size scaling form of
the ratio parameter U could be defined:

U (k; tL1/ν ) ≡ s2/s1 = s̃2(k; tL1/ν )/s̃1(k; tL1/ν ). (5)

In addition, by taking the logarithm of Eq. (3), we can have
the following relationship:

ln s1(k; p, L) = −(β/ν) ln L + ln s̃1(k; tL1/ν ). (6)

At the critical point p = pc, the ratio parameter U reads

U (k; tL1/ν ) = (s2/s1)|p=pc = U (k; 0), (7)

which is independent of the lattice size L. Therefore, there is
a fixed point U (k; 0) for curves of U versus L at the critical
threshold. In the actual numerical simulations, the asymptotic
behavior of the cross point is predictable due to the finite-size
correction term. Thus, a larger lattice size L is better.

Moreover, according to Eq. (5), for a given k-mer of length
k, in the range of p → pc and L � k, using the scaling
variable tL1/ν with a properly chosen exponent ν, different
curves of U (k; tL1/ν ) with various lattice sizes L collapse onto
the size-independent scaling function. At the critical point
p = pc, according to Eq. (6), we have

ln s1(k; p, L) = −(β/ν) ln L + ln s̃1(k; 0), (8)

where ln s̃1(k; 0) is a constant. This indicates the linear re-
lationship between ln s1(k; p, L) and ln L. Thus, the critical
point pc and the critical exponent β/ν can be determined.

IV. NUMERICAL SIMULATION RESULTS

A. Percolation threshold

In the preceding section, the finite-size scaling of percola-
tion was introduced. To proceed, as an illustrative example,
we present the detailed numerical results of the percolation
threshold and critical exponents through finite-size scaling
for the k-mers with k = 6 in the given AP. In Fig. 2(a), for
lattice sizes L from 512 to 1024, we plot the reduced sizes
of the two largest clusters s1 and s2 as a function of the
reduced k-mer numbers p = kNp/N , where Np is the number
of deposited k-mers on the lattice. The order parameter s1

becomes macroscopic for p > pc. As the lattice size increases,
the phase-transition process becomes abrupt and marked.

FIG. 2. (a) The reduced sizes of the largest (second largest)
cluster s1 (s2) and (b) the ratio parameter U as a function of the
concentration p with different lattice sizes for the AP with k = 6.

As we have discussed in Sec. III, the critical point can be
determined by two methods. According to Eq. (7), for k = 6,
an observed fixed point U (k|=6; tL1/ν |=0) is independent of
the system size at the phase-transition point. As is shown in
Fig. 2(b), the curves of the ratio s2/s1 are shown as a function
of the concentration p. For different L, the curves cross each
other at p = 0.664 95 ± 0.000 15, which allows for the de-
termination of the percolation threshold pc1 = 0.664 95(15).

10-7

FIG. 3. (a) ln s1 vs ln L for different concentrations p with k = 6
in the AP. Here L = 512, 1024, 2048, and 4096. The black dot-
ted lines are linear rules to guide the eyes. When p � 0.6630 and
p � 0.6662, the curves show the obvious deviation from the linearity.
(b) The residual sum χ 2 of the least-squares method for curves
0.6642 � p � 0.6650. At p = 0.6646, the curve with the smallest
χ 2 is closest to the linearity, implying the critical threshold pc2 =
0.6646(4) and critical exponent β/ν = 0.123(9).
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FIG. 4. For small-size k-mer percolation for (a) the AP and
(b) the IAP, 1 � k � 10, the critical thresholds pc1 and pc2 decrease
with k. We can use the exponentially decreasing function in Eq. (9)
to fit the monotonic behavior of the critical threshold. The fitting
parameters for the AP are p∗

c = 0.6515(3), � = 0.169 91(17), and
κ = 2.413(4). The fitting parameters for the IAP are p∗

c = 0.3508(3),
� = 0.2495(1), and κ = 3.32(1).

In addition, according to the theoretical prediction in Eq. (8),
for the exact linear relationship between ln s1 and ln L, the
corresponding concentration p yields the critical threshold. As
is shown in Fig. 3(a), the colored solid lines denote ln s1 as
a function of ln L for different values of p, while the black
dotted lines are the corresponding linear guide to the eye.
The slopes of curves change with p from negative to positive
at p = 0.6616, 0.6630, 0.6646, 0.6662, and 0.6686. When
p � 0.6630 and p � 0.6662, the curves show obvious devi-
ations from the linearity, The curve is closest to being linear
around 0.6642–0.6650. As is shown in Fig. 3(b), in order to
determine the most linear curve, we plot the residual sum χ2

of the least-squares method for different p values in this range.
At p = 0.6646, the curve with the smallest χ2 is closest to the
linearity. Thus, we obtain the critical point pc2 = 0.6646(4)
and critical exponent β/ν = 0.123(9).

The procedure for obtaining pc1 and pc2 can be repeated
for k ranging between 1 and 10. The numerical results are
shown in Fig. 4 and Table I. It is evident that the difference
between pc1 and pc2 is negligible. For small-size k-mers (1 �
k � 10), the percolation threshold as a function of k shows an

exponential decrease, which resembles the RSA process on
the square lattice [15]. We can use the following ansatz to fit
the explosive percolation threshold:

pc(k) = p∗
c + � exp

(
− k

κ

)
. (9)

The obtained fitting parameters of k-mers for the AP are
p∗

c = 0.6515(3), � = 0.169 91(17), and κ = 2.413(4). How-
ever, these fitting parameters are different from those in the
RSA process, namely, p∗

c = 0.456(31),� = 0.196(5), and
κ = 2.92(20) (see our calculation in the Table I), which are
almost equal to the values in Ref. [15]. The difference of p∗

c
can be well understood because the AP will delay the percola-
tion. The parameters � and κ characterize the extent to which
the length of k-mers affects the percolation threshold. This
indicates that the sensitivity of the percolation threshold of the
AP to the k-mer size is different from that in the RSA process.
Similarly, we can obtain the percolation thresholds pc1 and pc2

of the IAP, which are shown in Fig. 4 and Table I. The fitting
parameters p∗

c = 0.3508(3), � = 0.2495(1), and κ = 3.32(1)
according to Eq. (9). With the values of the critical points in
hand, we can discuss finite-size effects. An effective critical
point pc(L) can be defined as the peak position of the second
largest cluster sizes (s2) with a certain system size L. We
expect a power-law relation between pc(L) and pc in the
thermodynamic limit:

|pc − pc(L)| = ξL−θ , (10)

where ξ is a universal constant and θ is a critical exponent.
This relation can be rewritten as

ln |pc − pc(L)| = ln ξ − θ ln(L), (11)

showing a linearity between ln(L) and ln |pc − pc(L)|. In
Fig. 5, we take the k = 6 case for an example to show the
validity of Eq. (11).

B. Critical exponents and universality class

In this section, for the k-mer explosive percolation of the
AP, critical exponents β/ν and ν are calculated, which sig-
nificantly determine the universality class. Without a loss of
generality, the case choosing k = 6 as an example is pre-
sented. In Fig. 3, the linear relationship between ln s1 and

TABLE I. For the AP, IAP, and RSA, the critical threshold pc and exponents β/ν, ν of different k values are shown.

Rule AP IAP RSA

k pc1 pc2 β/ν ν pc1 pc2 β/ν ν pc β/ν ν

1 0.76337(8) 0.7633(6) 0.0100(8) 2.42(6) 0.5349(2) 0.53476(5) 0.111(4) 1.40(3) 0.59274(3) 0.106(4) 1.33(1)
2 0.72776(10) 0.7276(6) 0.0106(9) 2.40(6) 0.4892(3) 0.48898(5) 0.112(3) 1.41(3) 0.59191(3) 0.107(3) 1.34(2)
3 0.69929(11) 0.6990(13) 0.0113(5) 2.40(4) 0.4523(2) 0.45220(4) 0.110(3) 1.39(3) 0.52792(4) 0.106(4) 1.33(2)
4 0.68351(11) 0.6833(8) 0.0116(6) 2.41(5) 0.4247(2) 0.42455(5) 0.111(3) 1.39(2) 0.50496(5) 0.106(5) 1.34(2)
5 0.67350(18) 0.6733(7) 0.0117(10) 2.42(4) 0.4053(2) 0.40519(7) 0.110(5) 1.39(3) 0.49000(5) 0.105(4) 1.33(2)
6 0.66495(15) 0.6646(4) 0.0123(9) 2.36(6) 0.3925(2) 0.39242(5) 0.109(3) 1.38(3) 0.48021(5) 0.107(4) 1.34(2)
7 0.66247(25) 0.6621(6) 0.0128(9) 2.38(6) 0.3802(2) 0.38009(5) 0.109(3) 1.37(3) 0.47388(5) 0.106(4) 1.34(2)
8 0.65894(14) 0.6585(5) 0.0129(12) 2.38(6) 0.3725(2) 0.37238(5) 0.110(3) 1.38(2) 0.46971(4) 0.106(3) 1.33(2)
9 0.65627(10) 0.6558(7) 0.0133(13) 2.36(6) 0.3670(2) 0.36694(5) 0.109(3) 1.37(3) 0.46697(4) 0.107(3) 1.33(3)
10 0.65311(13) 0.6526(7) 0.0133(13) 2.38(6) 0.3638(2) 0.36369(5) 0.109(3) 1.38(3) 0.46523(4) 0.108(3) 1.32(2)
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FIG. 5. ln |pc − pc(L)| vs ln L for k = 6, where
L = 512, 1024, 2048, and 4096.

ln L is identified at pc2 = 0.6646(4), and correspondingly the
critical exponent β/ν = 0.123(9) is retrieved from the slope.
According to the finite-size scaling theory in Eq. (5), using
the obtained value of the critical point pc1 = 0.664 95(15) and
the properly chosen value of the correlation-length exponent
ν = 2.36(6), the curves U of different lattice sizes collapse
together; see Fig. 6.

Accordingly, the scaling exponents β/ν and ν are nu-
merically calculated for the k-mer explosive percolation with
1 � k � 10, and they are listed in Table I. As is shown in
Fig. 7, we plot the extracted critical exponent ν versus k. For
k � 10, the obtained ν is almost unchanging within the error
bar. Furthermore, Fig. 8 shows β/ν with respect to k. Never-
theless, one sees that β/ν increases monotonically with k. It is
well known that systems belong to the same universality class
when critical exponents and scaling functions are the same.
It is anticipated that the percolation transition of the k-mer
RSA process, which is independent of k, belongs to the same

FIG. 6. The scaling function U ≡ s2/s1 with respect to the vari-
able tL1/ν with t = (p − pc )/pc. When ν = 2.36 and pc = 0.664 95
are chosen, curves of different lattice sizes collapse together near
tL1/ν = 0.

FIG. 7. For k-mer AP percolation, the critical exponent ν with
respect to k in the range of 1 � k � 10.

universality class with the random percolation. However, for
the k-mer explosive percolation model, the exponent β/ν is
different for each k, suggesting that it is in different univer-
sality classes. The fact that critical exponent β/ν is model
parameter k-dependent demonstrates the nonuniversality of
percolation phenomena for the AP of k-mers.

Similarly, the critical exponents for the IAP can be re-
trieved. The correlation-length exponents ν and β/ν versus
k are plotted in Figs. 9 and 10, respectively. One readily
finds that they almost remain constant, i.e., ν ≈ 1.39(3) and
β/ν ≈ 0.110(3), as is shown in Table I. The feature that the
universality behavior of the IAP is not related to the k-mer size
is similar to that of the RSA process. It is known that the RSA
process belongs to the random percolation universality class
with critical exponents β/ν = 5/48 and ν = 4/3. However,
the exponents of the IAP are subtly different.

V. DISCUSSION AND SUMMARY

In the present work, we study k-mer percolation (1 � k �
10) with both the AP and the IAP on two-dimensional square
lattices. The percolation thresholds and critical exponents are

FIG. 8. For k-mer AP percolation, in the range of 1 � k � 10,
the critical exponent β/ν is obviously increasing with k. This sug-
gests that the k-mer explosive percolation for each k belongs to
different universality classes.
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FIG. 9. The critical exponent ν for k-mer IAP percolation, in the
range of 1 � k � 10.

calculated using Monte Carlo simulation with finite-size scal-
ing analysis. We find that, with increasing k, the thresholds
of the explosive k-mer percolation decrease, which agrees
well with the ansatz in Eq. (9). For the AP, the correlation-
length critical exponent ν is independent of k, while the
order-parameter critical exponent β/ν increases with increas-
ing k. To this end, we find an interesting phenomenon in that
the universality class alters with the size of the microscopic
component of the system. It has been recognized that a de-
crease of the critical exponent β corresponds to an increasing
level of the competition [50]. Thus, it could suggest that the
competition of the AP is depressed when k becomes larger.
For the IAP, both the critical exponents ν and β/ν seem
independent of k. The k-mers percolations with IAP belong to
the same universality class for different values of k. We note
that, in Ref. [59], an IAP independent critical exponent of τ is
reported. However, in our study the exponent ν is different
with and without the IAP. Thus, a comprehensive study is

FIG. 10. The critical exponent β/ν for k-mer IAP percolation in
the range of 1 � k � 10.

more likely to conclude that the percolation with and without
IAP belongs to different universality classes. We also notice
that a sufficiently large value of k could make a difference. For
example, Eq. (9) breaks when k is sufficiently large [18,65].
Therefore, further study on the universality class of the k-mer
explosive percolation should be interesting.
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[27] I. Lončarević, L. Budinski-Petković, D. Dujak, A. Karač, Z. M.
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