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Boundary fluctuation dynamics of a phase-separated domain in planar geometry
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Using phase-ordering kinetics and of renormalization group theories, we derive analytically the relaxation
times of the long wavelength fluctuations of a phase-separated domain boundary in the vicinity of (and below)
the critical temperature in the planar Ising universality class. For a conserved order parameter, the relaxation time
grows like �3 at wavelength � and can be expressed in terms of parameters relevant at the microscopic scale:
lattice spacing, bulk diffusion coefficient of the minority phase, and temperature. These results are supported by
numerical simulations of 2D Ising models, enabling in addition calculating the nonuniversal numerical prefactor.
We discuss the applications of these findings to the determination of the real timescale associated with elementary
Monte Carlo moves from the measurement of long wavelength relaxation times on experimental systems or
molecular dynamics simulations.
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I. INTRODUCTION

Phase separation phenomena are ubiquitous in nature, and
many of them are observed in two dimensions, on surfaces,
interfaces, or membranes [1,2]. When they belong to the Ising
universality class [3,4], they are often numerically tackled
with the help of this Ising model on a square or a triangular
lattice. Beyond the original issues in magnetism and critical
phenomena physics that motivated its intensive exploration
during the 20th century [5], the Ising model and its extensions
remain helpful to describe a wide range of phenomena in
modern physics [6,7] and its applications. Applications go
far beyond condensed matter physics, from the description
of cell membranes [8] or animal skin patterning [9], to em-
bryogenesis [10], and even to the dynamical description of
geographical patterns [11], to name a few. In most cases,
using the Ising model supposes having coarse grained a more
complex original system, and one is in fact dealing with a
mesoscopic model where microscopic degrees of freedom
have been integrated out. In particular, simulating a meso-
scopic, effective model enables one to save a considerable
amount of computational time by avoiding dealing with mi-
croscopic details. Then this Ising model can be coupled to
any mesoscopic model of interest, for example, a deformable
membrane [8].

Below the critical temperature, binary mixtures exhibit
fluctuating boundaries between separated phases, and deter-
mining the Ising parameter J from the spectral density of
their fluctuations follows a well-established procedure. When
the parameter J is just above its critical value, Jc, or equiv-
alently said when the temperature T is close enough to the
critical one, Tc, the underlying lattice has a limited importance
only, and one recovers at large, macroscopic length scales the
features of a continuous theory, notably the isotropy of the
original experimental system. For example, a droplet of the
minority phase then has a globally roundish shape [12,13], up
to thermal fluctuations. The continuous limit will be exten-
sively used in this work.

In the examples of applications given above, dynamical
issues are generally at stake. An issue arises when one is inter-
ested in simulating the dynamics of the systems under study,
because timescales of the real system and of the numerical
model must be precisely related. This is at the core of kinetic
Monte Carlo approaches relying on Monte Carlo local moves
endowed with realistic dynamics [14]. Here we address this
issue by calculating analytically the relaxation times of the
fluctuation modes of a thermally activated boundary between
phases in different geometries of interest. We use the exact
analogy between lattice gases and conserved-order magnetic
systems, and we follow the presentation of Bray [15] (here in
two dimensions). Our main contribution is to carefully take
into account the renormalization of the different quantities
entering the relaxation times close to Tc. In particular, the
spontaneous magnetization and the magnetic susceptibility
have nontrivial behaviors, described by universal critical ex-
ponents. However, due to the hyperscaling relation between
these different critical exponents, we end with a remarkably
simple expression of the relaxation times. At the end of the
calculation, we use numerical simulations on the very simple
Ising model to estimate the numerical prefactors, which are
not universal and cannot be derived from renormalization
group considerations. This answers the initial question by
relating explicitly the dynamics of the Ising model at the scale
of local moves to the one of the interface fluctuation modes at
large scales. The latter can in principle be measured either on
experimental systems [16] or on molecular dynamics (MD)
simulations [17]. Then one has access through our results to
the real timescale associated with local moves, to be imple-
mented in the numerical mesoscopic models of interest.

II. STRIPE GEOMETRY AND SQUARE AND
TRIANGULAR LATTICES

We consider an Ising model [5] on a square lattice of lattice
spacing a. The Ising variables (also usually called “spins”) are
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FIG. 1. Snapshot of Monte Carlo simulation of the Ising model
in equilibrium on a L = 64-long stripe at T = 1.8J/kB. White (resp.
black) squares represent si = −1 (resp. +1) Ising variables. The
simulation box height is H = 44. The height function h(x) encoding
the position of the interface between both phases is also shown in
blue. Far from the interface, i.e., in the bulk, both phases coincide
with the two equilibrium ones minimizing the free energy defined
below.

si = ±1, and the coupling is denoted by J > 0. The critical
temperature is [18]

Tc = 2

ln(1 + √
2)

J

kB
� 2.27

J

kB
. (1)

The first system of interest is a stripe of length L and height
H , as shown in Fig. 1, at 0 total “magnetization”

∑
i si, so

that there are exactly as many +1 and −1 Ising variables. The
stripe height H is sufficiently large so that the boundary hardly
ever hits the stripe upper or lower sides (H � √

L).1 Bound-
ary conditions are set to −1 (resp. +1) on the lower (resp.
upper) side, and are periodic between the vertical sides. Thus
the height function h(x), giving the position of the interface
(or domain wall) between both phases, is L-periodic.

We denote by ĥk (t ) the Fourier coefficients of h(x, t ), k ∈
Z:

ĥk (t ) = 1

L

∫ L

0
h(x, t )e−2iπkx/L dx. (2)

The associated wavelength is � = L/|k| for k �= 0. We as-
sume without loss of generality that h(x) fluctuates around
0, that is to say, h0 = 〈h(x, t )〉 = 0 by choosing properly the
origin of the ordinates.

We recall that in reality the interface has a finite width in
the y direction, set by the correlation length ξ . At a distance
much larger than ξ from the interface, bulk phases coincide
with the two equilibrium ones minimizing the free energy
defined below.

1The height fluctuations
√

〈h2〉 ∝ √
L for an interface with line

tension λ, using, for example, Eq. (25) and summing over modes k.
Hence

√
〈h2〉 
 H . Consequently the interface hardly ever hits the

upper or lower sides, as observed in practice in the simulations.

A. Continuous limit

We will adopt below a continuous field-theoretic approach
where the discrete Ising variables si = ±1 become a continu-
ous, coarse-grained real field φ(r) ∈ [−1, 1], the local average
of the si, governed by the Landau-Ginzburg free-energy func-
tional [5,15]

F [φ] =
∫

d2r
[

1

2
(∇φ)2 + V (φ)

]
. (3)

In this relation, V (φ) = r
2φ2 + uφ4 is a potential energy that,

below the critical temperature Tc, favors the coexistence of
two phases because r < 0. At very low temperature, the two
stable phases correspond to φ+ = 1 and φ− = −1, i.e., pure
+1 and pure −1 phases. However, thermal agitation brings
some disorder, so that φ+ and φ− get closer when T grows
and eventually become very close when reaching the critical
temperature Tc.

A very useful quantity below is the chemical potential
defined by the functional derivative of F [φ]:

μ(r) = δF

δφ
. (4)

It is shown in Ref. [15] that the bulk concentration relaxes
much faster than the interface does when the order parameter
is conserved, so that the concentration field φ obeys Laplace’s
equation ∇2φ = 0 in the bulk at the timescales of interest. It
ensues that μ depends linearly on φ in the bulk, and thus that
μ also obeys Laplace’s equation ∇2μ = 0 there.

We wish to emphasize here that in principle the order
parameter φ represents the magnetization field in the original
Landau-Ginzburg theory; however, it can also be considered
as a local concentration after some basic algebraic manipula-
tion: the field φ ∈ [−1, 1], so that c = (φ + 1)/2 ∈ [0, 1] is
the local fraction of one species and 1 − c the local fraction
of the other species if the Ising model is seen as a lattice
gas, where −1 and +1 spins now represent two coexisting
species (such as two atomic species in a binary alloy). Both
quantities, magnetization and concentration, are equivalent.
By extension, we shall generally use below the lattice-gas
vocabulary, even though φ and c do not exactly coincide.
Notably, the chemical potential μ would correspond to the
external magnetic field in the magnetism vocabulary.

The continuous limit is valid provided that ξ/a � 1. In
other words, the temperature T < Tc must be close enough
to Tc. More precisely [18]

ξ

a
� kBT

4J

(
1 − T

Tc

)−1

(5)

for the 2D Ising model on a square lattice, which sets the
regime of temperature for which the condition ξ/a � 1 is
fulfilled (in general, the behavior of ξ is governed by the
critical exponent ν [5], equal to 1 in the present case). We
also recall that a line tension, denoted by λ, is associated with
the interface because it bears an energy cost proportional to
its length. Thus λ has the dimension of a force. As discussed
below, it vanishes close to the critical point.
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B. Evolution equation and relaxation times

We consider a single mode k > 0 of interface fluctuation,
i.e., h(x, t = 0) = α0 cos(qx) with q = 2kπ/L = 2π/�. We
suppose that α0 is small, i.e., much smaller than all relevant
length scales apart from a. In particular, α0 
 �, so that we
work in the small gradient approximation, |h′(x)| 
 1.

We neglect the thermal noise in the interface dynamics,
so that it will spontaneously return to its equilibrium position
h = 0, driven by the line tension λ: h(x, t ) is expected to be of
the form h(x, t ) = α0 cos(qx)e−t/τq for t > 0.2 Langevin the-
ory asserts that the relaxation time τq that we will determine
below is equal to the decay time of the temporal correlation
function of the Fourier coefficient that we shall measure in
the presence of thermal fluctuations and thus in numerical
simulations.

Following Bray [15], section 2.4, one writes the evolution
equation of h(x, t ) by calculating the interface velocity v in the
y direction. We first need to compute the chemical potential
μ(x, y, t ). It satisfies Laplace’s equation ∇2μ = 0 far from the
interface (see above), and it is subject to the Gibbs-Thomson-
like boundary condition at the 1D interface [see Eq. (28) of
Ref. [15])]:

μ(x, h(x), t ) = −λK (x)

�φ
. (6)

Here �φ = φ+ − φ− is the difference of concentrations be-
tween both bulk phases (see below) and K (x) is the local
interface curvature. Introducing the vector ĝ = (gx, gy) nor-
mal to the interface [15], we see

K (x) = dgx

dx
= − h′′(x)

[1 + h′(x)2]3/2
� −h′′(x) = q2h(x). (7)

In addition, since α0 is assumed to be small, we can set h(x) =
0 in the left-hand side of Eq. (6), which now reads

μ(x, 0, t ) = −λq2h(x, t )

�φ
. (8)

We naturally assume μ to be of the form μ(x, y, t ) =
cos(qx) f (y)e−t/τq in the bulk, so that Laplace’s equation leads
to

f ′′(y) − q2 f (y) = 0. (9)

Since μ cannot diverge at ±∞, the only physical solution is
f (y) = Ae−q|y|.

With the boundary condition, one eventually gets the
chemical potential in the whole plane:

μ(x, y, t ) = −λα0

�φ
q2 cos(qx)e−q|y|e−t/τq . (10)

We can now infer the interface velocity v from μ by us-
ing the Eq. (29) of Ref. [15], v�φ = −�[ ∂μ

∂y ]ε−ε , where the
square brackets indicate the discontinuity across the interface.
Indeed, the interface moves because of the imbalance between
the currents flowing into and out of it, themselves proportional

2Anticipating the exponential time dependence of h(x, t ) is not a
prerequisite. Alternatively, one can just anticipate any factor �(t ) that
would satisfy a first-order ODE at the end of the calculation.

to the gradient of μ perpendicularly to the interface, ∂μ

∂y . Here
we have reintroduced a transport coefficient � that is implicit
in Bray, being “adsorbed into the timescale” [15]; �−1 is ho-
mogeneous to a drag coefficient per unit area, arising from the
continuity equation [below Bray’s Eq. (3), noted λ therein].
We have also identified Bray’s normal coordinate g with y in
the small-gradient approximation. It follows that

v(x, t ) = −2�λα0

(�φ)2
q3 cos(qx)e−t/τq = − 2�λ

(�φ)2
q3h(x, t )

(11)
because we have anticipated that h(x, t ) = α0 cos(qx)e−t/τq .
Note the q3 factor, coming from q2 in μ and the derivative ∂μ

∂y .

Now, by definition, v = ∂h
∂t = − 1

τq
h(x, t ). It follows that

τq = (�φ)2

2�λq3
. (12)

Far below Tc, φ± = ±1 so that �φ � 2, while it decreases to
0 when T goes close to Tc as discussed above. We shall return
to this point below.

C. Introduction of the bulk diffusion coefficient

We now relate the transport coefficient � to the bulk diffu-
sion coefficient D in each phase. We start from the evolution
equation governing the time evolution of the (conserved) order
parameter φ (model B or the Cahn-Hilliard equation) [5,15]:

∂φ

∂t
= �∇2 δF

δφ
, (13)

where we have also reintroduced the transport coefficient �

implicit in Bray. Here F [φ] is again the free-energy functional
of Eq. (3) with V (φ) the potential energy of the Landau-
Ginzburg theory [5]. In the bulk, if we now assume small
perturbations of φ close to φ+ (or equivalently φ−) so that
we can write φ = φ+ + φ̃, Eq. (13) becomes the diffusion
equation [see below Bray’s Eq. (21)]:

∂φ̃

∂t
= �V ′′(φ+)∇2φ̃. (14)

Below Tc, V (φ) has two minima φ = φ±. We assume for
simplicity that φ− = −φ+, V (φ+) = V (φ−), and V ′′(φ+) =
V ′′(φ−) because both bulk phases play the same role [15].
Hence one can identify �V ′′(φ+) with the diffusion coefficient
in the bulk D, so that Eq. (12) becomes

τq = V ′′(φ+)(�φ)2

2Dλq3
. (15)

The line tension λ being the driving force of the interface
relaxation, τq naturally appears to be inversely proportional
to λ in this expression. It directly ensues from Eq. (13), even
though λ is not the only factor to depend on T in this relation
as we shall see now.

D. Vicinity of the critical temperature

Now we determine how the factor V ′′(φ+)(�φ)2 depends
on the temperature close to Tc. We introduce the reduced
temperature θ = T/Tc < 1. First, �φ is twice the bulk con-
centration close to Tc. Thus, �φ ∝ (1 − θ )β , where we have
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used the definition of the critical exponent β [5]. Second, in
the bulk, φ is uniform, thus the chemical potential in Eq. (4)
is also uniform and reads μ = δF/δφ = V ′(φ) − ∇2φ. As al-
ready discussed, the last term is negligible in the bulk because
φ obeys Laplace’s equation at the timescales of interest [15]
and

V ′′(φ+) = dμ

dφ
(φ = φ+) (16)

= 1
dφ

dμ
(μ = 0)

(17)

= 1

χ (μ = 0)
(18)

∝ (1 − θ )γ , (19)

where χ is the (magnetic) susceptibility and γ the as-
sociated critical exponent. Indeed, using the previously
mentioned analogy between the chemical potential μ (resp.
the concentration φ) and an external magnetic field, h (resp.
magnetization m), we used the definition of the magnetic
susceptibility χ = ( ∂m

∂h )T (h = 0) [18]. To go from the second
to the third line above, we assumed that μ(φ) is locally bijec-
tive in the neighborhood of φ+, and we used that μ(φ+) =
0 since φ = φ+ (or φ−) at vanishing μ. It follows that
V ′′(φ+)(�φ)2 ∝ (1 − θ )2β+γ = (1 − θ )2 owing to the hyper-
scaling relation between critical exponents [5] 2β + γ = dν,
in dimension d = 2 where ν = 1 for the Ising model [18]. The
final behavior of V ′′(φ+)(�φ)2 is remarkably simple.

Beyond this scaling law, we are interested in the prefactors:
�φ has no dimension and V ′′ is proportional to J/a2. Indeed,
J ∝ kBTc is the only energy scale in the problem close to Tc

and there is one Ising variable per elementary square of area
a2 (see Ref. [8] for details). Hence

τ (�) = const
J

a2Dλ
�3(1 − θ )2, (20)

where we have written the relaxation time in function of
the wavelength � = 2π/q and const is a numerical con-
stant. Contrary to the critical exponents, this prefactor is not
universal; it depends on the microscopic details such as the
underlying lattice.

Furthermore λ = 4(1 − θ )J/a at first order in 1 − θ [12],
in other words, 1 − θ = 1

4λa/J . Injecting this relation in the
expression of τ (�), we get the simpler alternative expression

τ (�) = A
λ

DJ
�3, (21)

where A is a numerical constant, again nonuniversal. This is
our main result: once the constant A has been benchmarked
on well-defined numerical systems (see below), the measure
of τ (�) on experimental systems or MD simulations enables
one to infer the bulk diffusion coefficient D in real time units.

This dependence of the timescale on the cube of the length
scale, τ (�) ∝ �3, is reminiscent of the law governing the
coarsening of the same Ising model with conserved order
parameter after a quench from high to low temperature [15].
In the latter case, the relaxation time of a length scale L
also grows proportionally to L3. Both mechanisms are closely
related.

Remark 1: In principle, the diffusion coefficient D also
depends on the temperature T . First, quantifying how (out-of-
equilibrium) concentration fluctuations relax, as expressed by
Eq. (14), D is a cooperative diffusion coefficient (also called a
mutual or collective or gradient diffusion coefficient), to be
contrasted with the self-diffusion coefficient describing the
evolution of a single tagged particle [5,19]. Note that both
coincide in the limit of small density fluctuations. Critical
phenomena theory states that D goes to zero close to the
critical point, which is related to critical slowing down. This
is characterized by a dynamic critical exponent z relating the
correlation length ξ and the correlation time τ through τ ∼ ξ z

close to criticality. The diffusion coefficient then behaves like
D ∼ ξ 2/τ close to Tc [20], i.e. (see also Ref. [21])

D ∼ ξ 2−z ∝ (1 − θ )z′
(22)

with z′ = −ν(2 − z) = −(2 − z) in the present case accord-
ing to Eq. (5). If we specialize this result to the present
Ising model with conserved order parameter (model B), a
commonly accepted value is z = 4 − η where η is another
critical exponent equal to 1/4 in the present case [5], leading
to z′ = 7/4 (see Ref. [20] for recent numerical verification).

In practice, however, when going away from the critical
point, D goes to a finite value D0. Then the inverse diffusion
coefficient can be interpolated by

D−1 � D−1
0 + C(1 − θ )−z′

(23)

as proposed in Ref. [22], where C is a model-dependent
parameter that can be measured, from simulations or experi-
ments. From now, we assume that D0 dominates rapidly when
one goes away from Tc, in particular for the values θ studied
here, as observed experimentally in Ref. [22], and we write
D � D0.

Remark 2: In the Ising model of interest here, on a lattice
with lattice spacing a, let us denote by δt the (simulation) time
step associated with local flips. Then D = D0 = a2/(4δt ) for
a freely bulk-diffusing single spin in a sea of opposite spins,
i.e., at low enough density fluctuations.

Also using that λ = 4(1 − θ )J/a, we can then also write

τ (�)

δt
= A′(1 − θ )

(
�

a

)3

. (24)

One expects A and A′ = 16A to be slowly varying functions of
θ close to Tc, since the singularities are captured by the critical
exponents.

III. MONTE CARLO SIMULATION RESULTS
IN STRIPE GEOMETRY

We begin with simulations on the square lattice with
Kawasaki dynamics, at conserved order parameter [14]. In
practice, one must be as close as possible to Tc to use the
scaling relations, as well as to use the continuous approach
described above; however, close to Tc, the small-gradient ap-
proximation fails to describe the interface. A compromise
must be found and we focus on the temperature range θ = 0.6
to 0.8. A simulation snapshot is given in Fig. 1 at θ = 0.79,
i.e., T = 1.8J/kB. We have focused here on a relatively small
system, L = 64 and H = 44, in order to have good statistical
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TABLE I. Theoretically predicted and numerically measured line
tensions for L = 64 and 128-long stripes (square lattice) in function
of the reduced temperature θ = T/Tc and in units of J/a. The du-
ration of each simulation is 1012 and 12 × 1012 for L = 128) Monte
Carlo steps. Error bars are 68% confidence intervals.

T/Tc λtheo λnum,64 λnum,128

0.61 1.53 1.49 ± 0.11
0.70 1.18 1.16 ± 0.05 1.14 ± 0.07
0.79 0.83 0.79 ± 0.03

sampling. However, finite-size effects can affect the mea-
surements of some thermodynamic quantities, such as the
apparent localization of the critical temperature, or the ap-
parent critical exponents. This has been thoroughly explored
in the past [14]. Here the principal limitation comes from
the fact that the accessible wavelengths L/k, k integer must
be much larger than 1, so that the continuous limit remains
meaningful. To ascertain that our numerical findings are not
affected by such effects, we have performed a longer run on
one larger 128 × 65 system, as detailed below. Simulation
durations were chosen so that more than 1000 statistically
independent samples were computed for each condition (500
ones for L = 128). This number was obtained by taking into
account the slowest relaxation mode (k = 1) of the phase
boundary.

A. Line tension

We first extract the values of the line tension λ and check
their consistence w.r.t. the theoretical predictions. Owing to
the Equipartition Theorem in thermodynamic equilibrium, the
fluctuation spectrum depends on the line tension as.3

〈|ĥk|2〉 = L kBT

4π2λk2
. (25)

In practice, we regularly measure the height function h(x, t )
as follows. Confusion between the interface and small bubbles
must be avoided (see Fig. 1), all the more so as such bubbles
become more probable when getting close to the transition.
For each abscissa x ∈ [1, L], starting from the bottom of the
simulation box where −1 spins are the majority, we progress
upward until we encounter a series of four consecutive +1
spins or more, or alternatively we reach the upper side (which
is highly improbable because H � √

L). This numerically
defines h(x), in units of the lattice spacing a. The choice of
four consecutive spins above comes from the fact that for the
temperatures studied here, we have observed bubbles of this
size in the bulk phases to be very rare (see Fig. 1). We have
checked by visual inspection that this procedure faithfully
captures the domain boundary for the range of temperature
studied in this work.

3This relation ensues from the Equipartition Theorem [5] after
writing in the Fourier space the interface energy λ

2

∫ L
0 |h′(x)|2 dx in

the small-gradient approximation (see, for example, Ref. [16] for the
calculation in a similar context)

Then we compute the Fourier coefficients ĥk (t ) with a
fast Fourier transform (FFT) routine, and then average |ĥk|2
over simulation time. The values given below are obtained
by fitting the three first modes, k = 1 to 3. In Table I these
numerical values are compared to the (asymptotically exact)
theoretical ones close to Tc, i.e., λ = 4(1 − θ )J/a. The agree-
ment is good in spite of the diverse approximations used, such
as the small gradient approximation or the above asymptotic
behavior of λ close to the critical point.

Remark: To check the validity of the small gradient ap-
proximation, one can estimate the order of magnitude of the
gradient ∂h/∂x. Owing to the discrete version of Parseval’s
identity, the average value of |∂h/∂x|2 is computed as follows:

〈 1

L

∫ L

0

∣∣∣∣∂h

∂x

∣∣∣∣
2

dx
〉
=

∑
k

q2
k〈|ĥk|2〉 (26)

=
L/a−1∑

k=0

(
2kπ

L

)2 L kBT

4π2λk2
(27)

= kBT

aλ
. (28)

All modes contribute equally. Here owing to Table I, λ ≈
J/a = ln(1+√

2)
2 kBTc/a. Thus kBT

aλ
≈ 2

ln(1+√
2)

T
Tc

. It follows that
∂h/∂x is already of order 1 with the temperatures studied here,
and one cannot reasonably go closer to Tc, where λ would tend
to zero and the gradient diverge.

B. Relaxation times

Once line tensions have been determined, we can use
Eq. (21) to calculate the value of the numerical constant A.
In the simulation units, D = 1/4, implicitly in units of a2

per Monte Carlo sweep of duration δt [14]. In practice, for
a fixed mode k (or q = 2kπ/L), to compute τk , the coef-
ficients ĥk (t ) are Fourier transformed with respect to time
(again with the help of FFT), the new Fourier coefficients
being denoted by h̃k (ω). We are interested in the correlation
function Ĉk (s) = 〈ĥk (t )ĥ∗

k (t + s)〉, where the asterisk denotes
the complex conjugate. Owing to Wiener-Khinchin’s theorem
one finally gets

Ĉk (s) ∝ FT−1[|h̃k (ω)|2](s), (29)

where FT−1 is the inverse Fourier transform w.r.t. time, from
which we can extract the relaxation time τk of each mode k
by fitting Ĉk (s) in normal-log coordinates on its linear regime
[23]. Figure 2 provides examples of measured relaxation times
and illustrates that τ (�) ∝ �3.

Using Eq. (21), and averaging the measured τ (�)/�3 over
the three slowest modes, we eventually find A � 0.26 for θ =
0.61, A � 0.26 for θ = 0.70 (and A � 0.29 if L = 128 at this
temperature), and A � 0.32 for θ = 0.79 on the square lattice.
The relative lack of accuracy on the value of A principally
comes from two antagonistic constraints: the deviation from
the small gradient approximation increases when T gets too
close to Tc where λ vanishes, and by contrast, the first-order
expansion of Eq. (21) is valid only close to Tc.
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×
×

×
×

FIG. 2. Relaxation times (in units of δt) of the three slowest
modes (k = 1 to 3) in function of the wavelength � = L/k (in units
of a), for the reduced temperature θ = 0.70 and two system sizes
L = 64 (blue dots) and L = 128 (red dots). The two points at � = 64
are almost superimposed. Log-log coordinates. The continuous line
has slope 3 for comparison with the expected behavior of Eq. (21).

C. Triangular lattice

We now confront our analytical results to numerical ones
on an alternative 2D lattice. We adapt the above simulation
procedure to the triangular lattice. In addition to the N, S, W,
and E edges of the square lattice, we add NW and SE ones
so that each vertex in the bulk now has six nearest neighbors.
The boundary conditions are unchanged as compared to the
previous case.

The critical temperature becomes [18]

Tc = 4

ln 3

J

kB
� 3.64

J

kB
. (30)

Some care must be taken of the definition of the height func-
tion with the chosen boundary conditions. Indeed, we detect
the boundary along the sequence of spins parallel to the y axis,
at fixed abscissa. The so-obtained height must then be rescaled
by a geometrical factor

√
3/2 because the actual lattice unit

cell is an equilateral triangle of height
√

3a/2 along the y
axis. In Table II numerical values of the so-obtained line
tension λ are again compared to the theoretical ones close
to Tc, λ = 4

√
3(1 − θ )J/a on a triangular lattice [13], after

following the same process as above. The agreement is almost
as good as in the square lattice case.

Furthermore, using Eq. (21), and again averaging the mea-
sured τ (�)/�3 over the three slowest modes, we find on
the triangular lattice A � 0.10 for θ = 0.71 and A � 0.12 for
θ = 0.77. In this case, Eq. (24) still holds with A′ = 16

√
3A.

The value of A differs from the square-lattice one owing to the
nonuniversal character of this prefactor.

TABLE II. Theoretically predicted and numerically measured
line tensions for L = 64-long stripes (triangular lattice) in function
of the reduced temperature θ = T/Tc, in units of J/a. The duration
of each simulation is 1012 Monte Carlo steps. Error bars are 68%
confidence intervals.

T/Tc λtheo λnum

0.71 1.98 2.10 ± 0.08
0.77 1.60 1.73 ± 0.07

IV. CIRCULAR GEOMETRY AND POLAR COORDINATES

We now consider a quasicircular droplet of +1 spins in a
sea of −1 spins. The droplet radius is R0 � a if it were per-
fectly circular, i.e., its (conserved) area is πR2

0. We recall that
for temperatures close enough to Tc, the isotropy of the system
is restored at large length scales, independently of the lattice
symmetries. We again perturb the circular droplet by con-
sidering only the mode k. Taking into account conservation
of the order parameter is slightly more complex than in the
stripe geometry above. If we set the origin at the center of the
original circle, the boundary shape in polar coordinates reads
r(θ ) = R0[1 + u0 + uk cos(kθ )] = r0 + ρ0 cos(kθ ), consider-
ing again the mode k. Here r0 = R0(1 + u0) and ρ0 = R0uk 

r0. Indeed, one must keep the mode k = 0, u0, because con-
servation of domain area imposes a relationship between the
different modes uk [16]. It follows that r′′(θ ) = k2[r0 − r(θ )].

In polar coordinates, the curvature is given that

K = r(θ )2 + 2r′(θ )2 − r(θ )r′′(θ )

[r(θ )2 + r′(θ )2]3/2
� 1

r(θ )
− r′′(θ )

r2(θ )

= 1

r(θ )
(1 + k2) − k2r0

r2(θ )
(31)

in the small gradient approximation (ρ0 
 r0) where r′(θ ) and
r′′(θ ) 
 r(θ ). At order 1, one also gets

1

r(θ )
= 1

r0
− ρ0

r2
0

cos(kθ ), (32)

and K becomes

K = 1

r0

[
1 + (k2 − 1)

ρ0

r0
cos(kθ )

]
. (33)

To determine the chemical potential μ in the whole
plane, we use again the boundary condition μ(θ, r(θ ), t ) �
μ(θ, r0, t ) = − λK (θ )

�φ
. In polar coordinates, the Laplace equa-

tion ∇2μ = 0 reads

∂2μ

∂r2
+ 1

r

∂μ

∂r
+ 1

r2

∂2μ

∂θ2
= 0. (34)

We first determine μ outside the domain, i.e., for r >

r0. We look for a solution of the form μ(θ, r, t ) = μ0(r) +
f (r) cos(kθ )e−t/τk , where μ0(r) = − λ

�φ
ln r

r0 ln r0
is the solution

in two dimensions in the absence of boundary fluctuations.
It follows that

r2 f ′′(r) + r f ′(r) − k2 f (r) = 0. (35)

Looking for a power-law solution, f (r) = Brα , and injecting
it in Eq. (35), we get

α(α − 1)Brα + αBrα − k2Brα = (α2 − k2)Brα = 0. (36)

There are two independent solutions, α = ±|k| for |k| > 1,
and we choose α = −|k|, the only solution remaining finite at
infinity. The constant B is determined through the boundary
condition μ(r0, θ ) = − λ

r0�φ
− (k2 − 1) σ0ρ0

r2
0

cos(kθ ), we find
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B = const r|k|
0 . Finally, for r > r0,

μ(θ, r, t ) = λ

�φ

[
− 1

r0

ln r

ln r0

+ ρ0

r2
0

(k2 − 1)
( r0

r

)|k|
cos(kθ )

]
e−t/τk . (37)

Inside the domain, i.e., for r < r0, the trivial solution in
absence of fluctuations would be μ0 = const = − λ

r0�φ
. This

time, we look for a solution being regular at the origin O, so
that we keep only the solution α = +|k|:

μ(θ, r, t ) = λ

�φ

[
− 1

r0
+ρ0

r2
0

(k2 − 1)

(
r

r0

)|k|
cos(kθ )

]
e−t/τk .

(38)
We look for the discontinuity at r0:

r > r0:
∂μ

∂r
(r0 + ε)

=
[

− λ

r2
0 ln r0�φ

− λρ0

r3
0�φ

(|k|3 − |k|) cos(kθ )

]
e−t/τk

r < r0:
∂μ

∂r
(r0 − ε)

= λρ0

r3
0�φ

(|k|3 − |k|) cos(kθ )e−t/τk , (39)

where ε > 0 is vanishingly small. The interface velocity

v(θ, t ) is now given by [15] v�φ = −�[ ∂μ

∂r ]
r0+ε

r0−ε . We are
interested only in the contribution of v on the relaxation of
mode k. Indeed, there is also a contribution acting on r0 and
making it go to 0 at large times. In standard coarsening theory,
this expresses the evaporation of small domains to the benefit
of largest ones, elsewhere in the system (Ostwald ripening)
[15]. Here we are not interested in this very long timescale
process because we consider a single isolated domain on
shorter timescales. As u0 = O(u2

k ) [16], there is no coupling
between modes 0 and k at order 1. Thus

v(θ, t ) = −2
λ�ρ0

r3
0 (�φ)2

(|k|3 − |k|) cos(kθ )e−t/τk

= ∂r

∂t
= − 1

τk
r(θ, t ) (40)

leading to

τk = r3
0 (�φ)2

2�λ

1

|k|3 − |k| . (41)

Note that k = 1 is a soft mode in polar geometry, correspond-
ing to the translation of the domain center. Its relaxation time
is thus irrelevant in this geometry.

The connection with the above Cartesian geometry can be
done by identifying q = k/r0 = 2πk/L, because the unper-
turbed interface length is L = 2πr0. At large k, |k|3 − |k| �
|k|3 and we recover

τk � (�φ)2

2�λq3
, (42)

as in Cartesian geometry [see Eq. (12)] because the interface
is locally flat at the scale of the wavelength � 
 R0. Also note

that the chemical potentials in polar and Cartesian geometries
are equal close to the interface. Indeed, let us, for example,
consider the neighborhood of the point (0, r0) of the interface
and write (x, y) = (0, r0 + Y ), where Y is the distance to
the interface. If r > r0, i.e., Y > 0, (r0/r)k = exp[−k ln(1 +
Y/r0)] � exp(−qY ) provided that we identify q = k/r0 =
2πk/L, with L � 2πr0. In the same way (r/r0)k � exp(qY )
close to the interface if r < r0, i.e., Y < 0.

To conclude, since the large k behavior is the same for
stripe and circular geometries, it follows that the numerical
prefactor A determined in stripe geometry above, depending
on the underlying lattice, can also be used here to relate
numerically the relaxation times to the model parameters, as
follows:

τ (�) = A
λ

DJ

�3

1 − (
�

2πr0

)2 . (43)

This relation results from Eq. (41) by using the same calcu-
lation as above when deriving Eq. (21) from Eq. (12), but in
circular geometry instead of stripe geometry.

V. DISCUSSION

We come back to the initial issue raised in the introduction:
How to extract the real timescale associated with Kawasaki
local moves from the measurement of macroscopic timescales
of boundary relaxation modes? Assume that we can localize
and track experimentally or in MD numerical simulations
the interface between two phases, either in stripe or in po-
lar (droplet) geometry. To gain computational efficiency and
address larger system sizes on longer timescales, the system
can be advantageously simulated with the help of the coarse-
grained Ising model on a square or a triangular lattice (see,
e.g., Ref. [8]) provided that (1) the Ising coupling J and (2)
the time step δt associated with each Monte Carlo step are
suitably chosen. They significantly depend on the choice of
the lattice spacing a, which must be chosen to be smaller than
all length scales of interest in the problem considered (except
of course the molecular ones). We propose the following pro-
tocol to properly determine J and δt :

(1) Measure the line tension λ with the help of the in-
terface fluctuation spectrum in equilibrium measured on real
systems or MD simulations, as prescribed by Eq. (25) [16].

(2) T is set by the experimental conditions; thus Jc is

given by Jc = ln(1+√
2)

2 kBT (resp. ln 3
4 kBT ) on a square (resp.

triangular) lattice. Then J can be estimated close enough to Jc

by known exact expansions, J − Jc ∝ λa, or by exact results
farther from Jc [12,13,18].

(3) By measuring τ (�) on real systems or MD simula-
tions, one estimates D with our relation (21) and the numerical
coefficient A corresponding to the appropriate lattice.

(4) From the knowledge of D and the appropriate choice
of a (shorter than any relevant length scale above the molec-
ular ones), one eventually deduces the real time step δt
corresponding to a Monte Carlo step through δt = a2/(4D)
in two dimensions.

In the model B context under consideration here, com-
position fluctuations dissipate through the diffusion of mi-
croscopic constituents. The present work can in principle be
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extended to contexts where additional hydrodynamic effects
are taken into account. This is discussed in detail, for example,
in Refs. [20,23,24] in the context of biphasic lipid membranes,
where the internal membrane dynamics can additionally be
coupled to the 3D hydrodynamics of the surrounding solvent.
Instead of the model B used here, one would need to ap-
peal to the so-called models H or HC as discussed in these

references. Relating large-scale dynamics to coarse-grained
Ising-like model ones remains to be done in this more complex
situation.
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