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Signals as departures from random walks
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We study statistics of data ranking, focusing on the recently discovered distribution-invariant discrete eigen-
value spectrum for an independent and identically distributed (IID) process. We employ a variant of a cumulative
distribution function in rank and time that maps the sampling variability for an IID process onto a set of random
walks. This mapping admits confidence bounds on whether the residual (data with signal removed) arises solely
from IID sampling variability. Any deviations judged significant are regarded as signals, whether deterministic,
chaotic, or random. Unlike our recent work on extracting unknown signals in arbitrary noise, here we focus on
aspects that are easily combined with any other methods of signal extraction. The ubiquitous case of a single
trace receives particular attention. The approach is illustrated on dark current and gamma-ray arrival datasets
where we examine the residual for consistency with the expected sampling variability of IID noise.
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I. INTRODUCTION

Perhaps no task is more ubiquitous in physical science
and data analysis than detection, separation, and extraction
of signals from noise, e.g., the detection of a gravitational
wave (weak) signal, arrival of a high energy cosmic ray, or
laser-induced fluorescence. Consequently, the literature on
the subject is vast, and spans many disciplines such as an
interdisciplinary field of statistical signal processing and non-
parametric statistics [1]. Throughout this literature, the noise
is typically assumed to be additive, Gaussian, and white. In
contrast, here we focus on developing a method capable of
handling arbitrary and unknown noise, i.e., of an unknown
arbitrary distribution, including heavy-tailed and infinite vari-
ance, undefined mean such as Cauchy (Lorentzian), etc.

The problem is significant because the outliers (“rare
events”) unduly influence the conventional methods such as
least squares, but the corresponding literature is considerably
narrower [2]. Unlike our earlier work [3–5], throughout this
paper, we stress the modularity of the approach. The reader
may use any method to extract a signal from data. We then
furnish simple means based on a universal spectrum of eigen-
values for independent and identically distributed (IID) noise
for answering whether the residual data (after signal removal)
has arisen solely from the ever-present sample-to-sample fluc-
tuations (sampling variability).

Our route to distribution-invariant results is to rank the
data. Here ranking by magnitude is meant; i.e., a sequence
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[0.94, 1.87, 0.60] converts to 2,3,1 where the lowest value
maps to rank 1. Although much effort has been devoted to
rank-based decision tests in the nonparametric statistics lit-
erature [6], there is a dearth of rank-based approaches to
signal retrieval. For example, the three-volume set [1] does
not include any ordinal methods.

To that end, we developed such a method in a sequence
of recent papers [3–5]. This article aims to expand on the
part of our method that is readily combined with any other
method of signal extraction and/or fitting. First, we elucidate
the relationship between ranking and conditions imposed on
white noise and map sampling variability of an IID random
process to realizations of a pinned (returning or clamped, all
used interchangeably) random walk. We then focus on the
ubiquitous and practically important case of a single time
series (n = 1) and illustrate the new method on dark current
noise data from a camera and from an astrophysical time
series.

II. RANKING AND WHITE NOISE

Because of the scarcity of rank-based approaches to signal
analysis and to illustrate counterintuitive features of rank,
before embarking on our main thrust of evaluating quality of
signal extraction, we begin with a brief excursion on rank-
ing of white noise. Typically, in the physics literature, δ−
correlation in time defines whiteness as the spectrum flat-
ness then follows from the Wiener-Khinchin theorem (e.g.,
p. 237 of [7]). However, we begin with the stricter case of
perfect white noise, that is, a random process of identically
distributed, meaning the same probability density function
(pdf), and independently drawn trials, the IID process. Let
n denote the number of series and each series be of length
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FIG. 1. Ranking patterns distinguish variants of white noise. [(a)–(d)] Four traces of length N = 32. Panel (a) is an output of a strict (IID)
Gaussian white noise whereas (b)–(d) are white (δ correlated) but not IID. Panel (b) (“strong but not strict white noise”) is an uncorrelated but
dependent random variable z j ≡ x j x j−1, with IID x drawn from N (0, 1). Panel (c) (“white chaos”) is the output of logistic map x j+1 = ax j (1 −
x j ), uncorrelated at the chosen a = 4.0. Panel (d) (“wide-sense stationary”) is from a Pearson pdf with a quadratically varying kurtosis. The
four data traces look similar but panels (e)–(h), paired with (a)–(d) and based on n = 107 realizations each, differ in standard deviation of rank
patterns. (e) The mean value of σrank for IID noise for equally likely integers 1, 2, . . . , 32 is given by

√
(N − 1)(N + 1)/12 = √

341/2 ≈ 9.23.
However, despite the whiteness, this statistically uniform σrank profile for IID noise is disturbed by the spikes in (f) and (g) at j = 1, 32 (see
Appendix A for details). (h) σrank follows the subtle kurtosis pattern, despite the constant variance of the data itself.

N . When averaged over a large number of series, the sample
mean of the data, by the law of large numbers, will approach
the true mean (a constant) and so will the mean rank (and all
higher moments) as time slots in a series are indistinguishable
in the IID case and can be reshuffled.

Note, however, that not all white noise is created equal,
e.g., δ correlation can hold but statistical independence be
lacking (e.g., see Fig. 1). Indeed, the notion of “white noise”
is not treated uniformly throughout the literature (e.g., pp.
114–115 of [8]) but we reserve the phrase “purely random
sequence” or a “strictly white noise” for the IID process as in,
e.g., pp. 254–256 of [9]. This raises an interesting question: Is
the ranking operation sensitive only to whiteness or to other
attributes, such as the lack of statistical independence? The
purpose of Fig. 1 is to demonstrate that the answer is the lat-
ter and that departure from uniformity of rank variance tran-
scends the scope of correlation. Although there are white
noise tests in the literature, e.g., the Bartlett test [8] and rank
correlation tests such as the Kendall τ test [10], we have not
seen this question raised about patterns of rank. In Fig. 1

we highlight the differences in the response of the ranking
operation to variants of white noise and chaos.

Specifically, Fig. 1 shows that departing from the IID
conditions, e.g., introducing uncorrelated but dependent
noise or white chaos, creates patterns in rank statistics
[Figs. 1(f)–1(h)]. These patterns constitute signals that the
conventional correlation analysis would miss. For example,
Fig. 1(b) is a series of trials from zk ≡ xk xk−1 with the x
being IID and N (0, 1) [11]. Hence, z is white insofar as en-
tries are not correlated, zero mean, and identically distributed.
However, statistical independence is gone so this is a strong
but not strict white noise [9]. For this stationary, uncorrelated
but dependent process, Fig. 1(f) shows enhanced fluctuations
of rank at each end, presumably because each has only one
neighbor. Based on this hunch, one would expect an increase
in end effects with decreasing data segment length N and this
is, indeed, the case. Once independence is lost, asking whether
the entry in, say, the first time slot is the smallest becomes a
question of conditional probability. This is discussed explic-
itly for the example of white chaos in Appendix A.
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FIG. 2. A new distribution-invariant description of an IID discrete random process: joint rank-time empirical cumulative distribution.
(a) Magnitude f (t ) of a log-normally fluctuating quantity vs time t . To emphasize the general setting, f (t ) is measured in arbitrary units and
sampled unevenly. (b) Rank r vs time t for the data of panel (a). Monotonic transformation of data, inset F ( f (t )), yields the same r vs t as rank
depends solely on serial order. Nor does the nonuniform sampling in time affect the abscissa as the time index is also integer valued from 1 to
10. (c) Time vs rank for the data of panel (a): t and r are statistically indistinguishable for a discrete IID process. (d) Joint rank-time histogram,
whose normalized version is a probability mass function (pmf). (e) Joint deviation cumulative distribution function (cdf), δC, defined in Eq. (1),
i.e., the difference between the actual and theoretical IID cdf, for data of panel (d), designed to contrast the actual sampling variability with
that of an IID process. (f) Same as panel (d) but extending the dataset in (a) to n = 100, yielding a histogram closer to the ensemble limit pmf
U (1, N ) × U (1, N ). (g) Relative fluctuations of δC, similar to those in (e) but with the decrease in amplitude by a factor of

√
n = 10. For any

n, each row and column slice of the augmented δC is a pinned random walk (see text).

In Figs. 1(d) and 1(h) we highlight detection of a sub-
tle nonstationarity by ranking. Here the data are wide-sense
stationary, drawn from a Pearson distribution whose four mo-
ments are independently adjusted parameters. In this case, the
first three moments—mean, variance, and skewness—are all
constant with time but the fourth (kurtosis) has a parabolic
profile in time. Figure 1(h) shows the standard deviation of
rank, which detects the parabolic profile of the raw data kur-
tosis. The global nature of the ranking operation causes this
spillover of high-order moment information into lower ones
and suggests simple, quick, and robust (distribution-invariant)
means of detecting high-order nonstationarity in raw data.

The above comments and Fig. 1 are meant to interest the
reader in the unusual properties of rank, but the approach
described here is of conceptual rather than practical interest
as the required number of series n is large [12]. We note that
there is an extensive literature on practically useful detection
of statistical dependence (e.g., [13,14]) extending beyond the
single time series case discussed here, probing for dependence
between distinct random variables (RVs) X and Y .

Next, we proceed with the expansion of the ranking into
the rank-time plane, as shown in Fig. 2. Our goal here is to
describe a fundamental modal expansion of the IID process, a
complete characterization that can be used with any method

of signal extraction to answer the question: Is the residual
(data with signal removed) IID noise? To that end, Fig. 2
supplies a detailed description of our procedure, initially pro-
posed in [5]. In typical applications the required n is often
quite modest including the common case of n = 1, empha-
sized below. The guiding principle is simple: invariance with
respect to data reshuffling in the IID case. In other words, all
permutations of N ranks among the N indexed “time” slots
are equally likely, occurring with probability 1/N!. This is
the context for Figs. 2(a)–2(c). Figure 2(b) shows the result
of ranking by magnitude [15]. The setting is rather general
insofar as the data can be sampled nonuniformly and the
units are arbitrary because ranking is not affected. Nor are the
results affected by any monotone transformation of the data
as illustrated by the inset of Fig. 2(a) where the data are
barely recognizable yet the same rank is obtained. This kind
of robustness is lacking in conventional methods such as least
squares.

The purpose of flipping the axes in Figs. 2(b) and 2(c) is
to emphasize that rank and time are statistically indistinguish-
able for IID processes: Figs. 2(b) and 2(c) occur with the same
frequency. This rank-time parity does not hold for all variants
of stationary white noise as Figs. 1(b) and 1(f) show, an insight
we missed in earlier work [5].
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III. EMPIRICAL RANK-TIME CUMULATIVE
DISTRIBUTION FUNCTION

Guided by this indistinguishability and invariance under
exchange of rank (r) and time indices (t) for the IID process,
we introduce a mapping to the rank-time (r, t ) plane, as shown
in Figs. 2(d) and 2(f), for n = 1 and n = 100, respectively.
This rank-time distribution function must satisfy additional
constraints that stem from the global nature of rank. For n = 1
in Fig. 2(d), there is one unique rank k for each time interval j,
that is, one unit entry per each row and column. Thus, the row
and column sums are all unity. For the sum of n permutation
matrices, each of the rows and columns add up to n.

Initially, we searched for a representation of an IID ran-
dom process that takes maximal advantage of the available
symmetries such as the interchange of time and rank, their
reshuffling, etc. This is the reason for the move from the
customary pdf to a (deviation) cdf [Figs. 2(e) and 2(g)] and
from one to two dimensions: rank and time, to examine joint
distributions. [16]. In the large number of time series limit,
n → ∞, the rank-time joint pdf is jointly uniform, i.e., a
perfect horizontal surface at the value of 1/N2 in the two-
dimensional (2D) rank-time space, U (1, N ) × U (1, N ), for
N points in a data sequence where U denotes the uniform
distribution. However, for a finite n, sampling variability is
present and signal-induced departure from uniformity must be
distinguished from this sampling variability. Thus signal de-
tection becomes a “judgment call” that must be supplemented
or quantified with some level of confidence.

For example, Fig. 2(d) is the 2D histogram (pmf) in the
rank-time space for n = 1 where the bar heights are either 0
or 1, with a single unit entry in each row and column. The
relative height spread in the analogous Fig. 2(f) is

√
100 = 10

smaller, as the sampling variability is O(
√

n). For the sin-
gle series case (n = 1), the 2D rank-time discrete pdf is
anything but a uniform horizontal planar surface, and sam-
pling variability is extreme. However, as shown below, the
sampling variability of the smoother cdf is amenable to an
analytic treatment and follows a simple convergent eigen-
function expansion for all n, even n = 1. In fact, sampling
variability of the deviation cdf, to be defined shortly, maps
onto pinned (or clamped, the two terms used interchangeably)
random walks—hence the title of this paper. Our next move to
Figs. 2(e) and 2(g) is therefore to construct the 2D rank-time
cumulative deviation empirical distribution, denoted as δC.

To motivate the construction, recall that a uniform pdf
p(x, y) = 1 over a square is the continuous analog to
U (1, N ) × U (1, N ), for N data points and the associated cdf
is simply C(x, y) = xy, paralleling the one-dimensional (1D)
case, C(x) = x for the uniform pdf in one dimension. There-
fore, to focus on the contrast between the actual and IID
sampling variability, given the cdf C for a sample time series,
the deviation cdf is defined on the discrete lattice as

δCk,l =
k∑

i=1

l∑
j=1

(
pi, j − 1

N2

)
, {k, l} = 1, 2, . . . , (N − 1),

(1)
where pi, j is the probability mass function (pmf) and the
symbol δ indicates deviation [17]. Again, the main motivation
is to zoom in on the deviation from the IID limit. In order

to clarify the link to random walks (IID increments implied
throughout when using this term), and to minimize a vexing
artifact of discretization, in all figures, we augment δC with
a zero boundary so that there are N + 1 (rather than N − 1)
points on the rank and time axes of all δC surface plots. How-
ever, all calculations, including the eigenfunction expansion,
rely on Eq. (1).

Signals, trends, correlations, etc., occur in time, thereby
lacking the rank-time symmetries of pure randomness. We
exploit this contrast to extract signals from data via departures
from various symmetries such as rank-time parity. The prob-
abilities of such rank-time symmetries define the IID process
uniquely and departures from this baseline can then be used
to address the perpetual difficulty of separating true signals
from sample-to-sample fluctuations (sampling variability). In
this regard the δC construct proves crucial as it furnishes a
universal analytic and convergent eigenfunction expansion for
the IID case [5], thus allowing efficient signal extraction, even
in the case of a single time series, n = 1.

IV. IID PROCESS IN RANK-TIME AND PINNED
RANDOM WALKS

At any n, rows and columns of an IID sample δCs such as
Figs. 2(e) and 2(g) or Figs. 3(b) and 3(e) are pinned at the
ends, whether IID or not. This pinning stems from the rank-
time pdf constraint that rows and columns of the normalized
probability mass function add up to 1/N and then subtraction
in the definition (1) of δC annuls it. This is illustrated in Fig. 3
where Figs. 3(c) and 3(f) project out individual sheets of the
associated δC surfaces in Figs. 3(b) and 3(e). These IID-based
δC slices (rows and columns) are samples of a pinned random
walk.

The data in Fig. 3 are for dark current, collected with the
lens blocked and due to the thermally generated electrons
flowing in the absence of incident photons. Figure 3(a) shows
a 128 pixel sample of this shot noise (from spontaneously
generated electrons within the 5464 × 8192 CMOS chip).
These are the raw data: output from a 14 bit A-D converter
on a Canon R5 camera. We ask: Is there an instrumental bias
or inhomogeneity on this spatial scale or are the data from
an IID process? As it turns out (see below), the answer is
the latter but, given the sampling variability, the answer must
be statistical, i.e., a judgment call, supplemented by some
specified level of confidence. How should such a judgment
be made?

One simple albeit crude approach is to pick a scalar metric,
e.g., some integral characteristic of δC, for an IID process and
compare it to the data at hand. For example, a simple average
over the (N − 1) × (N − 1) rank-time grid cells, δC, defined
by

δC ≡ 1

(N − 1)2

N−1∑
j=1

N−1∑
k=1

δC j,k, (2)

is zero for an IID process in the n → ∞ limit. Given a
dataset consisting of a finite number of time series n (each
of length N) the question then is whether the value of δC
differs from zero significantly beyond the expected sampling
variability, O(1/

√
n). In [4] we showed that signals can be
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FIG. 3. Rank and time slices of IID-based sample δC [empirical deviation cdf; see Eq. (1)] are pinned random walks. (a) A 128 pixel
sample of dark current (IID proxy), recorded as the raw output of a 14 bit A-D converter from 1 s exposure on a Canon R5 camera, in the
absence of incident photons (lid closed). (b) δC calculated from panel (a) data. (c) The middle row and column slices of panel (b) δC: rank and
time are statistically equivalent for IID processes. Panels (d)–(f) parallel the top three panels but for a 128 pixel segment taken from a different
row of the image. As illustrated in panels (c) and (f), all IID-based δC slices (rows and columns) execute pinned random walks (see text). The
universal eigenfunction expansion (see goodness of fit section) shows that lowest frequency mode [“half wave,” red dashed curves in panel (c)]
is prominent, accounting for about 61% and 37% of the variance in 1D and 2D IID variability, respectively. In panel (f), the δC slices for panel
(d) project most on the second and third mode (on average 15.2% and 6.8% of 1D variance, respectively). For illustrative purposes, traces in
panels (c) and (f) were picked among several hundreds for the closest resemblance to pure modes.

detected efficiently on this basis, particularly when employing
δC-based metrics, supplemented by symmetry considerations,
e.g., separating odd and even parity components. In the case of
dark current, or residual examination generally, where one is
searching for subtle departures from an IID process, variance
metrics are more suitable.

In the ensemble limit n → ∞, δC is a perfectly smooth
horizontal surface at zero. But Fig. 3 presents single data
sequences (n = 1). Are Figs. 3(b) and 3(e) rugged δC surfaces
within the typical range of IID variability? Analogous tradi-
tional metrics suggest δCrms as a measure of such roughness.
We define it as

δCrms ≡
√

δC2 ≡ 1

(N − 1)

[
N−1∑
j=1

N−1∑
k=1

(δC j,k )2

]1/2

. (3)

For the dark current data in Fig. 3(a), Eq. (3) yields a
value of δCrms that ≈6% of IID-based samples exceed, but
for data in Fig. 3(d), ≈76% of IID-based samples exceed
this rms variability. Insofar as both values are within the 2σ

(95%) rule, one might conclude on this limited basis that the
dark current noise variability is within a typical range for an
IID process. As it turns out, a more comprehensive test of
a central patch of 128 × 128 pixels confirms this conclusion
overwhelmingly. We note in passing that this method reveals
significant instrumental bias such as spatial inhomogeneity in
the mean count, variance, etc., but only near the sensor edges
in a border about 20 pixels wide. For clarity, we do not digress
here but press on towards the fundamental characterization of
the IID process and its link to random walks.

The slices in Figs. 3(c) and 3(f) differ in the number of
zero crossings, prompting one to ask which patterns are more
likely to occur for an IID process. Are zero crossings frequent
in the IID case? Another natural question is: What kind of time
series yields extremes of δCrms? A monotonic rank sequence,
e.g., 1, 2, . . . , N , maximizes it while a rapidly oscillating time
series yields minimal δCrms values. The δC shape for the
monotonic data sequence is a single hill centered in the rank-
time square (zero crossings only at the boundary). This can
be seen at the level of the Fig. 2 histograms. While the trace
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FIG. 4. An agnostic criterion for judging fits to data: To what confidence level is the residual IID? (a) Simulated counts of γ -ray photons,
received at the BATSE instrument [21], (apj457785), with three constant rate intervals marked by red and durations determined in [21] via
Bayesian change point analysis. As ranking is unaffected by a constant offset, either one or two rate constants are to be fitted. (b) A single
parameter to fit (d = 1) the middle excess rate relative to the first segment in (a) is subtracted. The residual is shown in red. (c) Data in (a) after
removing two excess rates (d = 2) as in [21], now second and third segments shown in red. (d) Top view (color map) of the deviation cdf δC
for the raw data in (a), with a pronounced “hill-valley” pattern, signaling a strong deviation from IID. (e) δC for the data in (b) (same color
range) and no clear pattern. (f) Same as (e) but for data in (c) and no pattern evident. (g) Values of δCrms are overlaid on the IID distribution to
answer the question: How likely is a given trace to have arisen from pure noise? Raw data δCrms = 0.0208 are exceedingly unlikely, but which
is “better”: the d = 1 or d = 2 fit? (In both cases, the residual data are white as judged by δ correlation and a flat FFT.) (h) The d = 2 residual
results in a rather small δCrms, exceeded by pure noise 98% of the time whereas the d = 1 fit δCrms residual variance is exceeded by 9.1% of IID
realizations (see inset table). The insets are rank-time color maps (top view) of the outstanding modes of δC and the associated signal patterns
in time. These results suggest that two parameters are not needed. The new expansion (see text) pinpoints oversuppression of the second mode
(darker gray bar) as the cause.

1, 2, . . . , N maximizes δCrms, data series that minimize δCrms

do so by inducing frequent zero crossings in both directions,
thus bounding the amplitude of the height swings.

Although the data in Fig. 3(a) are not in a monotonic pat-
tern, even a tiny spurious trend causes the hill in the middle of
the associated δC surface in Fig. 3(b), albeit with some asper-
ities. This hill (lowest mode as discussed below) contributes
on average 37% to the variance of δC. From the random walk
perspective, such lowest mode prominence is analogous to the
gambler’s ruin and arcsin laws, which render frequent zero
crossings unlikely in any single realization.

In earlier work on signal extraction [3] we took for granted
proper signal extraction minimizing δCrms of the residual.
However, we have realized that overfitting is also possible
insofar as the residual (data with signal removed) may re-
sult in too little variability, i.e., with δCrms that is almost
always exceeded by IID noise, as will be illustrated shortly in
Fig. 4(g). Furthermore, the δCrms is a restricted metric because
its value is disproportionately affected by the “low frequency”
components such as the slices of Fig. 3(c) [18]. Both of these
concerns are resolved by the universal eigenfunction charac-
terization of the rank-time IID process to which we now turn.
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A formal proof of the link between fluctuations of δC and
random walks in two dimensions was given in [5] but here
we focus primarily on the n = 1 case and strive for a more
conceptual and intuitive understanding via the notion of δC
slices such as those in Figs. 3(c) and 3(f). Consider δC vs
time, for instance. Why the clamped ends? All cumulative
distributions begin at zero by definition, 1D slices as well
as 2D cdf edges. But generally, slices of 2D cdfs are not
cdfs themselves, nor are those of the more restricted class of
rank-time cdfs. However, as we prove next, even in the case
of n = 1 (extreme sampling variability), the deviation slices
and deviation rank-time cdfs end at zero as well. This is so
because the pure noise cdf “xy” baseline is known and can be
subtracted off. In addition, the constant row and column sum
constraints ensure that the subtraction annuls the ends for each
δC realization. Every column sum of δC vanishes because

N∑
i=1

(
pi, j − 1

N2

)
= 0, (4)

as row and column sums of the rank-time matrix are all equal
to 1/N (for n = 1 only one rank can occupy any given time
slot). The raw occupancy (permutation) matrix has a single
“1” in every row and column. Neither superposition of rank-
time (permutation) matrices (n > 1) nor normalization (pmf)
alters that row and column sum constancy. The present sum
of 1/N is then canceled by the N-fold sum of the negative
constant term in Eq. (4).

Returning to the slices in Figs. 3(c) and 3(f), for the middle
rank slices, δC64,k , one can separate their calculation into a
first “vertical” sum, described by the auxiliary variable

τ j =
64∑

i=1

(
pi, j − 1

N2

)
, j = 1, . . . , 128, (5)

where τ is meant to suggest integration in time. Now the slices
plotted in Figs. 3(c) and 3(f) are given by

δC64,k =
k∑

j=1

τ j (6)

so that the walk is a sum over the RV τ j . Why is it pinned at
the end, i.e., δC64,128 = 0? Because upon substituting Eq. (5)
into Eq. (6), setting k = 128, and interchanging the order of
the two sums, the inner sum

∑128
j=1 becomes a complete row

sum in the form (4) which, as noted above, vanishes. The re-
maining sum

∑64
i=1 is hence a sum of 64 zeros and thus the

walk—each rank slice—is pinned. One simply reverses the
argument for the time slices [19]. In summary, the additional
(permutation matrix) constraints ensure that pinning holds for
each realization.

We now turn to the “random” element in the random walk
(understood throughout the paper as a walk with IID incre-
ments) as in the slices in Figs. 3(c) and 3(f). Whether the
steps τ j come from a true IID process, a correlated one, or
one with trends, the individual slices may look similar at first
glance but the process information is stored in the texture; e.g.,
positively correlated RVs might produce a smoother trajectory
than, say, δC64,k in Fig. 3(c). It is only for an IID process that
the increments τ j are independent and each δC slice such as

in Eq. (6) accumulates τ js as a pinned walk with independent
increments.

Rank-time exchange symmetry and independence for IID
processes permit factorization of the 2D underlying covari-
ance matrices as a Kronecker product of their 1D counterparts
[5]. However, our extension to the rank-time plane is beyond
a simple outer product as all the 2(N − 1) slices contribute
to the detection of departures from IID noise. For all slices,
sample-to-sample fluctuations of IID-based walks obey the
laws of Brownian bridges [5]. To see this link for the discrete
rank-time case, define

X̃k =
k∑

j=1

r j, k = 1, . . . , N, (7)

where r j is the jth rank, chosen by sampling without replace-
ment from the integers 1 to N . The ensemble consists of the N!
permutations of rank. For IID noise, all such permutations are
equally likely. We can render Eq. (7) a random walk beginning
at the origin by defining X̃0 = 0. But the terminus is always
X̃N = N (N + 1)/2 as the ordering of the fixed complement
of steps varies.

A pinned (returning to the origin) random walk results if
we subtract the mean step size, (N + 1)/2, from each term.
Dropping the tilde, we have

Xk =
k∑

j=1

(r j − (N + 1)/2), k = 1, . . . , N, X0 = 0.

(8)
The covariance matrix for Xk is then

KXj ,Xk = E[(Xj − E[Xj]) (Xk − E[Xk])],

where E is the expectation value over an ensemble. With
Eq. (8) we have that E(Xi ) = 0 and hence

KXj ,Xk = E[XjXk].

After some algebra, the following results:

KXj ,Xk ≡ K j,k := N + 1

12
(N min( j, k) − j k), (9)

and the associated eigenvalue problem

Kψm = μmψm, (10)

for which

ψm(xk ) =
√

2

N
sin(m xk ), (11)

μm = N (N + 1)

24 (1 − cos(mπ/N ))
, (12)

(k, m) = 1, . . . , N − 1,

where xk = kπ/N .
In common application of the discrete Karhunen-Loève

transform (or principal component analysis), the covariance
matrix is based on observation. In that context, the eigenvalues
μm are the main concern as they indicate the amount of signal
variance captured by a proposed low-order approximation.
Higher modes are discarded, reflecting either noise or under-
resolved structure. Our approach here is distinct, a hybrid. The
covariance matrix is exact, deriving from the N! permutations
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of Eq. (8). But, unlike the continuous eigenvalue problem for
the Brownian bridge, the eigenvalue problem (10) is discrete.

Moreover, the approach to signal extraction is not tendered
as a problem in variance capture because, unlike the empirical
setting, here one knows that the modal expansion coefficients
in the case of IID noise are independent RVs. When suitably
normalized they follow an N (0, σ ) distribution, where σ is
the standard deviation of the noise. The relevant standard for
a signal is hence the determination of which normalized com-
ponents exceed a stated confidence level. That normalization
is not that given by μm. Rather, we appeal to the singular
value decomposition, for which the columns of U are the
eigenvectors (modes) ψm, and then the appropriate weight is
σm/

√
N! = √

μm where σm is the mth singular value.
The low frequency modes, m = 1, 2, are shown in dashed

red lines in Figs. 3(c) and 3(f), respectively. It can be seen
from these panels that the projections on the low frequency
modes are larger than on the high frequency ones. In fact, the
discrete IID process is uniquely characterized by the decay of
such projections; that is, the eigenvalues in Eq. (12) initially
decay as m−1. With increasing m, the eigenvalues exceed the
pure algebraic rate of m−1 by a factor which reaches π/2 for
m = (N − 1) (for Brownian bridges the decay is pure m−1

[20]).
Due to the IID rank-time equivalence and the associated

Kronecker factorization of the underlying covariance matri-
ces, the eigenvalues for fluctuations of the IID δC in two
dimensions are given by the product of the 1D solutions:

λn,m = 1

2N
√

N − 1

√
1

(1 − cos(mπ/N )) (1 − cos(nπ/N ))
,

(13)
where {m, n} = 1, . . . , N − 1 and the eigenfunction associ-
ated with λn,m is

ψn,m = ψn(t j ) ψm(rk ), { j, k} = 1, 2, . . . , N − 1, (14)

with the component eigenfunctions on the right, given by
Eq. (11). Because of the rank-time symmetry of IID processes,
there is the λn,m = λm,n degeneracy.

We can now understand the emergence of a discernible hill
in both Figs. 3(b) and 3(e). The average variance captured by
the hill, that is, the lowest 2D mode ψ (1, 1), is given by

λ2
1,1∑N−1

m=1

∑N−1
n=1 λ2

n,m

.

This ratio can be approximated by[ ∞∑
m=1

∞∑
n=1

1

m2 n2

]−1

= 36

π4
≈ 0.37 . . . .

Loosely speaking, so significant a fraction in one mode
means that quite often, as in the dark current noise surface plot
of Fig. 3(b), one sees a large mound in the center. Correlations
(positive or negative), trends, and all manner of signals will
alter the decay of the modal coefficients. Thus, the modal
spectrum of Eq. (13) constitutes a signature of the IID process
as represented by the fluctuating δC in rank time. There are
2(N − 1) slices, e.g., 2 × (127) in Figs. 3(b) and 3(e) and
(127)2 modes and sample eigenvalues. All departures of the

TABLE I. The lowest mode, ψ1,1 (hill) captures 37% of the
IID variance, on average. The δC of Fig. 3(b) has nearly twice the
expected amount and mode ψ3,1 at 14% triples the expected value.
With these two accounting for 84% of the total variance, there is a
deficit of other modes, e.g., the mode ψ1,2 accounting only for 0.5%
instead of the expected 9%. In contrast, Fig. 3(e) has both modes ψ1,2

and ψ3,1 in abundance.

ψ1,1 (% var) ψ1,2 (% var) ψ3,1 (% var)

Fig. 3(b) 2.233 (0.700) −0.187 (0.005) 0.995 (0.139)
Fig. 3(e) −0.675 (0.197) −0.745 (0.239) 0.622 (0.166)
σ = λ j,k 1.151 (0.370) 0.576 (0.092) 0.384 (0.041)

data modal coefficients from the IID eigenvalues carry infor-
mation about possible departures from an IID process.

Goodness of fit

The IID spectrum can serve as a “goodness of fit” matrix,
once a signal has been removed. For example, the expected
37% of ψ1,1 for the IID process differs from the actual pro-
jection of the data in Fig. 3(b) onto the lowest mode (the hill)
which accounts for 70% of the total variance. In contrast, as
Table I details, Fig. 3(b) has a striking deficit of ψ1,2 whereas
Fig. 3(e) has a considerable deficit of the hill mode, ψ1,1,
but an abundance of ψ1,2 and ψ3,1. Is this a typical sampling
variability of a pure IID process? Not quite so because the
authors went through several hundred samples in search of the
visually striking slices of Figs. 3(c) and 3(f). In the absence
of any a priori information, when faced with such data, one
would be compelled to test the data further for a presence of
a signal. We advocate an exploratory and heuristic application
of the modal spectrum in such circumstances, particularly
because the results are distribution invariant and the modes
are associated with signal forms.

As an example of such association, given the improbably
large hill in Fig. 3(b), is there a hint of a monotone (e.g.,
linear) trend associated with the time series of rank in Fig. 3(a)
but not at all in Fig. 3(d)? Indeed, least squares fits to the two
series yield a positive slope for Fig. 3(a) and a negative one
for Fig. 3(d), but with huge 95% confidence intervals for both,
consistent with the sampling variability.

A more thorough examination of dark current noise was
carried out with data taken from a 128 × 128 patch in the
center of the CMOS sensor, thus (N = 128, n = 128). The
full modal expansion for this δC has then (127)2 components
and we verified that the distribution of expansion coeffi-
cients was consistent with IID noise. Specifically, as N → ∞,
the distribution of each of the modal coefficients, scaled by
their respective eigenvalues, tends to N (0, 1): a zero mean,
unit variance, normal pdf. One would miss this, were one
to scale the modal coefficients by the m−1 eigenvalues of
the continuous Wiener process, e.g., as in [20]. Having the
spectrum (13) opens up a variety of tests for departure from
pure IID noise including, e.g., the Kolmogorov-Smirnov and
Anderson-Darling tests [22]. The spectrum may also serve the
needs of instrument calibration and monitoring [23,24] such
as, say, occasionally pointing a spaceborne radiation detector
at a local source of noise and testing for an IID response.
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Note that a simple average, δC, of Eq. (2) can also be
used as a quick additional test on a plausible presence of
the signal. How close is it to zero (the ensemble average
for the IID process)? For Figs. 3(b) and 3(e), the calcula-
tion yields, in units of standard deviation, −0.69 and 1.63,
respectively, neither large enough to suspect a signal-based
trend.

We next consider an application where some a priori in-
formation about a signal is available and signal extraction
is parametric. The goodness of the signal extraction is then
judged by asking: Is the residual (data with signal removed)
compatible with IID noise, within the bounds of sampling
variability? The data come from an astrophysical context:
modeling arrivals of gamma-ray photons at the BATSE instru-
ment [21], as shown in Fig. 4(a). The a priori information here
is that the signal is piecewise constant and the breakpoints are
known and confirmed in [21] by Bayesian statistical analysis.
In other words, the extent of the constant intervals is given,
and the question is: How many rates are needed? Recall that
ranking is indifferent to an overall constant offset and, there-
fore, our question boils down to: One or two rate constants
(parameters) to fit?

To that end, consider the traces shown in Figs. 4(b) and
4(c). In Fig. 4(b), a single parameter (d = 1) measuring the
excess rate of the middle segment compared to the first seg-
ment in Fig. 4(a) is subtracted, with the middle residual shown
in red. In Fig. 4(c), parameters for two excess rates (d = 2)
are determined, as in [21] with both residual segments now
shown in red. Figure 4(d) presents the deviation cumulative
distribution δC for the raw data in Fig. 4(a) as a color map,
that is, a top view on the surface plot, with the z-axis values
color coded as prescribed by the color bar in Fig. 4(e) and
the same for all three middle panels. The dipolar pattern in
Fig. 4(d) is pronounced, signifying a large departure from IID
noise and associated with the “down-up-down” pattern in raw
data [or, more formally, the plot of s2 in the inset of Fig. 4(h)].
The eigenfunction, closest to the δC(r, t ) pattern in Fig. 4(d) is
ψ2,1, with the peak and valley in rank slices. In contrast, δC in
Fig. 4(e), corresponding to the Fig. 4(b) trace, shows no such
pattern and neither does Fig. 4(f), for the data in Fig. 4(c).
So which one to prefer: the two-parameter fit (d = 2) or the
one-parameter fit (d = 1)? Is it the δC(r, t ) in Fig. 4(e) or
Fig. 4(f)?

To that end, consider the rms values for the three δCs,
placed on the IID distribution shown in Fig. 4(g). This curve
quantifies the likelihood that a given trace arose from an IID
process. Although δCrms = 0.0208 of the raw data (point a
on the curve) is exceedingly unlikely as documented in inset
table of Fig. 4(h), points b and c are less obvious. Which is
“better”: d = 1 (point b) or d = 2 (point c) fit? In both cases,
the residual data are white, confirmed by δ correlation in time
and flat (FFT) spectrum. The d = 2 residual results in a rather
small δCrms, exceeded by 98% of the IID noise cases, whereas
the residual variance of d = 1 fit δCrms residual variance is
exceeded by only 9.1% of IID realizations as documented in
the inset table of Fig. 4(h). These results hint that the fit of
Fig. 4(c) might not be necessary because the fit of Fig. 4(b)
is already in the “vicinity” of IID noise, i.e., within normal
sampling variability. By Occam’s razor, one favors the simpler
option.

To explore further, we compare the modal spectrum of
the data to that of Eq. (13) for IID noise and the results
are shown in gray bars of Fig. 4(h) for all three cases. Note
that the ordinate gives modal amplitudes, normalized by their
respective standard deviations. As noted above, for IID noise,
these scaled amplitudes are normally distributed N (0, 1) RVs.
It is apparent that the tall bar of the raw data (d = 0 on the x
axis), associated with the dipolar pattern (second mode), ψ2,1

is of overwhelming statistical significance, >12σ . In contrast,
the ψ2,1 projection for the one-parameter fit data of Fig. 4(b)
is already well within the sampling variability of IID noise,
≈ σ , and it is suppressed in the two-parameter fit by another
order of magnitude. Insofar as the d = 1 option is already
within the range for both modes, d = 2 is not required. Note
that the sinusoidal signal forms s1(t ) and s2(t ), shown in the
insets of Fig. 4(h), in the (practically most important) weak
signal limit and for large n, correspond exactly to the time
series that excite modes ψ1,1 and ψ2,1, respectively. Unlike
the strong dipolar pattern of ψ2,1 in Fig. 4(d), which distorts
rank-time symmetry, ψ1,2 should not be much affected by the
excess rate, but remain within IID bounds and indeed, the ψ1,2

projection is 1.95σ for the raw data (d = 0) and 0.44σ for
(d = 1).

For the data in Fig. 4(a) we have limited ourselves to a
small number of modes. However, if one seeks to explore
the full spectrum of modes, a value N ∼ 104 may become
prohibitive and so we developed 1D alternatives, described in
Appendix B.

Depending on the context, further testing may be warranted
and the method supplies ample means to do so. The metric
δC exactly cancels the large antisymmetric (“hill-valley”) ψ2,1

contribution in Fig. 4(d). This suggests a weighted mean ver-
sion of Eq. (2) as follows:

1

(N − 1)2

N−1∑
j=1

N−1∑
k=1

sgn( j − (N + 1)/2) δC j,k, (15)

which responds to contributions from ψ2m,1 including ψ2,1,
and annuls those from ψ2m−1,1, e.g., ψ1,1. When applied to
Figs. 4(a)–4(c), this alternate form, which is sensitive to sym-
metric signals in time, yields results similar to Fig. 4(h), with
similar conclusions.

To summarize the evolution of our views on δC-based crite-
ria, in [3] we annulled a quantity similar to δC as the criterion
for signal extraction of a trend, while symmetry-based δC
criteria such as odd, even, and other 2D symmetry group-
based metrics were used in [4] for detection (as opposed to
extraction) of arbitrary signals. Here, on the other hand, our
emphasis is to complement and test any method of signal
extraction (including our own developed in [5]) by using the
universal spectrum of Eq. (13) for testing the residual.

V. CONCLUDING REMARKS

In contrast to our earlier work on detection and extraction
of unknown signals in arbitrary noise [3–5], here we examined
those properties of data ranking that can be used in parallel
with any other method of fitting data, extracting signals, or for
instrument calibration purposes. To that end, we characterized
an IID process and its sampling variability in the rank-time
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space by finding the distribution-invariant spectrum (12) and
by employing it to evaluate residuals (data with signal re-
moved). The relevant question is whether further extraction or
fitting is warranted. This has been illustrated on dark current
and gamma-ray arrival data of Figs. 3 and 4.

A skeptic might argue that rank-based distribution invari-
ance does not add much to existing methods: after all, the
very notion of white noise is distribution invariant. But, as
we point out in Fig. 1, not all white noise is created equal
and our method distinguishes the variants of white noise,
thus reaching beyond the traditional spectral analysis. Further-
more, our distribution-invariant eigenvalue spectrum extends
well beyond rank, applying to pinned walks with nearly any
imaginable steps and derived in two distinct settings: discrete
integer steps and order statistics [5]. Also, unlike the white
spectrum, ours is convergent. In fact, the 2D spectrum fur-
nishes a tool to address goodness of fit well beyond any simple
scalar metrics. It allows for a priori information about signals
to be incorporated in a heuristic and exploratory manner, e.g.,
as in the parametric fits of Fig. 4, which drew on only a small
sample of that spectrum.

Another practical question that is often raised in appli-
cations, e.g., hydrology [25,26], is whether the given data
are only wide-sense stationary (WSS) or strictly stationary.
As Figs. 1(d) and 1(h) demonstrate, ranking can deliver the
answer, detecting time-dependent kurtosis in manifestly wide-
sense stationary data (and stationary skewness as well). This
type of rank-induced entanglement of moments is due to the
global nature of rank and holds promise for many practical
applications.

Rank-based signal-noise decomposition is well suited for
instrument calibration and monitoring as well as for weak
signal extraction. Even when a weak and white chaotic signal
such as in Fig. 1(c) is embedded in strong IID noise, rank
still senses the subtle white chaos-induced perturbation well
beyond the sensitivity of the common delay plot. Of the three
departures from an IID process in Fig. 1, surprisingly, it is
the “strong white noise” for which the nonindependence is
detected with the smallest number of required time series n.

To conclude, we think that linking such disparate fields
as ranking in data analysis and random walks in science will
prove to be fruitful because both have such a broad range of
applications. Who would have guessed that a random walk
with independent increments picture (e.g., a freely jointed
chain model in polymer physics) would have anything to
contribute to characterizing the (purest noise) IID process in
rank time as in Figs. 3 and 4? It is hoped that the community
of statistical physicists, well versed with random walks, will
find this link of interest.
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APPENDIX A: RANKING PATTERNS VERSUS
DEPARTURES FROM STRICT WHITE NOISE

Towards interpreting Figs. 1(e)–1(h) we ask: What does
it take to disturb the rank uniformity of Fig. 1(e)? To that
end, consider ranking the shortest possible time series of just
two successive continuous RVs, (x, y), for time slots 1 and 2,
respectively. In each trial the lesser of the two is assigned rank
1, the higher rank 2. After accumulating trials, we build a 2D
histogram whose entries are the probability estimates vs time
and rank [27]. As the number of trials n → ∞, the probability
for time slot 1 and rank 2 approaches

P(X > Y ) =
∫ ∞

x=−∞
dx

∫ x

y=−∞
dy fX,Y (x, y), (A1)

where fX,Y (x, y) is the joint pdf and, without any loss of
generality, we take x, y ∈ R. For the case of IID white noise,
we have

fX,Y (x, y) = f (x) f (y)

with no subscript needed on the right as there is but a single
1D pdf. Then the expression reduces to∫ ∞

x=−∞
dx f (x)

∫ x

y=−∞
dy f (y)

=
∫ ∞

x=−∞
dx f (x) F (x) = 1

2
F (x)2

∣∣∣∞
−∞

= 1

2
(A2)

as the integrand is a perfect derivative.
We now loosen the IID constraint by keeping the in-

dependence (pdf factorization) but dropping the identical
distribution requirement, e.g., by introducing subtle nonsta-
tionarity in our short time series, as in Figs. 1(d) and 1(h)
where the kurtosis parabola is a random signal. In this case

fX,Y (x, y) = fX (x) fY (y)

and subscripts are needed on the right-hand side as the pdf
evolves from one time slot to the next. Substitution of this as
in Eq. (A2) leaves again a 1D integral∫ ∞

x=−∞
dx fX (x) FY (x),

but there is no longer an exact differential. Our pmf for the
nonstationary variables is thus no longer the uniform distribu-
tion [with value of 1/4 for the 2D pdf or value of 1/2 for the
1D version of Fig. 1(e)].

Strong but not strict (IID) white noise can be strictly sta-
tionary where x and y are uncorrelated but not independent as
in Figs. 1(b) and 1(f). Here too Eq. (A1) has an irreducible
double integral yielding generally nonuniform pmf. One thus
concludes that this pmf and, by extension, any N × N pmf,
such as the 32 × 32 rank-time matrix of Fig. 2, is guaranteed
of being uniformly populated only when the RVs are IID.

To address Figs. 1(c) and 1(g), we evaluate the departure of
the ranking distribution from uniformity for the logistic map
xk+1 = axk (1 − xk ), uncorrelated at the chosen a = 4 [28].
The 1D pdf for that logistic case is given by

p(x) = 2

π
√

1 − 4 (x − 1/2)2
(A3)
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FIG. 5. Ranking of the logistic map xk+1 = 4xk (1 − xk ) for N = 3 (ranks 1,2,3). (a) Three domains where each of the consecutive variables

{x1, x2, x3} is the smallest (rank 1). (b) The probability that x1 is rank 1:
∫ 5/8−√

5/8
0 p(x) dx = 2/5. Integrating from 3/4 to 1 gives a probability

of 1/3 for x2 to be rank 1, and the middle third yields 4/15 for the probability that x3 is the lowest rank. Note that the middle point x2 attains
the probability expected for all three time slots with an IID process. Hence, the departure from uniformity is an “end effect.” The three areas
in panel (b) show that a symmetrical scheme for rank would obtain were the first border moved back to 1/4, thereby yielding three equal
probabilities of 1/3.

and consequently the baseline value of σdata in Fig. 1(g) is

√∫ 1/2

−1/2

2y2 dy

π
√

1 − 4 y2
= 1

23/2
≈ 0.35.

Yet the ranking pattern is not uniform even for this white
chaos, as we now demonstrate for the case of N = 3.

Denote the RVs in time slots 1,2,3 as x1, x2, x3. The ar-
gument, presented in Fig. 5, relies on the logistic map and
Eq. (A3). In Fig. 5(a) we iterate the map xk+1 = 4 xk (1 − xk )
twice to record the relations among the xk and one sees that
x1 lies the lowest of the three in the range [0, 5/8 − √

5/8],
succeeded by a second range in which x3 is the lowest rank
and then to the right, the final interval where x2 falls the
lowest. The pdf (A3) for xk is plotted in Fig. 5(b), where we
then integrate over the three domains to find the probability
that each of the xk is rank 1, resulting in [2/5, 1/3, 4/15] for
the probabilities that x1, x2, x3 attain the lowest rank r = 1, as
recorded in the first column in Table II. The same reasoning
is used for the ranks r = 2 and r = 3, giving the second and
third columns of the probability matrix.

TABLE II. Entries in the first three columns constitute the 3 × 3
pmf pj,k , where j is the row index referring to slots labeled as x1,2,3,
and k the column index referring to rank slots r1,2,3. With this matrix
one can calculate all rank moments. The first two are the mean rank,
in the fourth column, and mean square rank in the fifth.

r = 1 r = 2 r = 3 〈r〉 〈r2〉
x1 2/5 2/5 1/5 9/5 19/5
x2 1/3 1/3 1/3 2 14/3
x3 4/15 4/15 7/15 11/5 83/15

This discrete 2D pmf is all one needs to compute any
desired rank moment. For example, the mean rank at time
index j is as follows:

〈r j〉 =
N∑

k=1

kp j,k, (A4)

where p j,k is the entry from Table II indicating the prob-
ability that index x j achieves rank k [29]. The second
moment follows in the same manner, simply replacing k by
k2 in Eq. (A4) with the result as given in Table II. From
σ =

√
E [X 2] − (E [X ])2, we can then compute, e.g., σrank for

the second slot as
√

14/3 − (2)2 = √
2/3, which is the stan-

dard deviation of [1,2,3], as similarly for the N = 32 result
stated in regard to Fig. 1(e).

Whenever the pmf is symmetric with respect to rotation
about its vertical midline, mean rank 〈r〉 is uniform, namely,
(N + 1)/2. Because this occurs for two of the three non-IID
cases in Fig. 1, rank variability σrank was chosen instead as it
is nonuniform in all three cases.

APPENDIX B: ONE-DIMENSIONAL APPROXIMATIONS

Here, our concern is with the finite discrete process of a
pinned random walk of N steps, for which the corresponding
discrete covariance function assumes the general form (9). It is
reminiscent of the result in the theory of continuous stochastic
processes, the so-called Brownian bridge of a Wiener (Brow-
nian particle) process. The bridge (pinned at both ends) for
W (Wiener process RV) is defined as Bt = Wt − tW1. It has a
continuous covariance function of the form [20,30]

K (t, s) = min(t, s) − t s. (B1)
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The principal components of an orthogonal function
expansion of the Karhunen-Loève type [8,31] are then eigen-
solution pairs

f (x) = sin(kπx), g(y) = 1

k2π2
sin(kπy), k = 1, 2, . . .

for the integral equation [20]

g(y) =
∫ 1

0
K (x, y) f (x) dx.

The Gaussian assumption, via an application of the central
limit theorem, underpins these results. In contrast, our discrete
results (11) and (13) require no such assumption as discussed
next [32].

Motivated by the notion of accumulated rank in δC, our 1D
random walks are defined by the steps chosen from a finite set
{zk} for k = 1, . . . , N by sampling without replacement. The
(time) slots are indistinguishable, meaning that at every slot
all ranks are equally likely to occur. Thus, all permutations of
the integers 1 to N occur with probability of 1/N!. When this
holds, the covariance matrix is of a universal form (9). For a
given rank vector r with elements rk we hence define a pinned
walk as

ρk =
{

0, k = 0∑k
j=1 (r j − (N + 1)/2), k = 1, . . . N,

(B2)

where the zeroth element is introduced to pin the walk at the
origin, ρ0 = 0. All walks contain the same elements: only
one rank per time slot, no replacement. Thus, subtracting the
mean of the integers 1 to N yields ρN = 0. For the elementary
example used in the Introduction, [0.94, 1.87, 0.60] converts
to 2,3,1, (N + 1)/2 = 2, ρ1 = 0, ρ2 = 1, ρ3 = 0, pinned as
expected.

Note that the ensemble (n → ∞) average of r j is (N +
1)/2—not because of the single trial average invoked above,
but because for an IID process, all ranks are equally likely at
all sites. Thus, ρk approaches zero pointwise, just as δC tends
everywhere to zero ∼n−1/2.

As the covariance matrix (9) holds for the pinned walk ρ,
the vectors in Eq. (11) form the eigenset and one can use the
expansion coefficients

cm =
N−1∑
k=1

ψm(xk ) ρk (B3)

to explore departures of a given dataset from an IID pro-
cess. The normalized set {cm/λm} is, for IID noise, a set of
N (0, σ ) RVs. Departures from this normality beyond sam-
pling variability may suggest the presence of a signal. For the
example of rank, σ = √

N (N + 1)/12. There is an associated
Plancherel- or Parseval-type identity of note:

N−1∑
m=1

( cm

λm

)2
= (N − 1) σ 2, (B4)

which places a bound on the maximal range for any cm.
Strictly speaking, Eq. (B4) shows that the distribution of {cm}
cannot be N (0, σ ) as the latter can have no finite bound.
However, that distribution is asymptotic with N and is entirely
adequate in practice, even for modest N .

This 1D scheme can be linked to the 2D formulation in
terms of δC via

ρ j = −(N − 1)
N−1∑
k=1

δC j,k . (B5)

Notation for the continuous version is simpler:

ρ(t ) =
∫

δC(t, r) dr.

In other words, this random walk based on rank is the
horizontal (rank) average of δC, that is an average over all
the pinned walk rank slices in, say, Fig. 3(b), which would
include the middle slice in Fig. 3(c). One can anticipate from
the surface plot that the resulting rank average will retain a
hill of intermediate height.

The random walk may also be based on the plotted entries
in Fig. 2(b). Recalling rank-time equivalence of IID noise,
Fig. 2(c) then suggests a parallel line of development, namely,
a pinned random walk based on time as a function of rank:

τk =
k∑

j=1

(t j − (N + 1)/2) = −(N − 1)
N−1∑
j=1

δC j,k . (B6)

The mean of δC is now alternately given by

δC = − 1

(N − 1)3

N−1∑
k=1

τk = − 1

(N − 1)3

N−1∑
j=1

ρ j . (B7)

So the net area under the curve of the pinned random walk ρ

is identical to that for the pinned random walk τ . However,
individual area distributions are wholly independent and the
two sets of projections may be assessed independently for
departures from IID noise.

This formulation addresses the most difficult case for
n = 1. For n > 1, we simply form

ρk = 1

n

n∑
j=1

ρ
( j)
k , (B8)

an average over the pinned random walk for each trial, and
then

ρ j = −(N − 1)
N−1∑
k=1

δC j,k (B9)

and similarly for τ . The identity (B4) no longer holds and the
sum fluctuates via

N−1∑
m=1

( cm

λm

)2
= σ 2

[
N − 1

n
±

√
2 (N − 1)

n

]
. (B10)

In addition, the c( j)
m from individual trials approach

lim
n→∞ std

({
c( j)

m

}) → σλm. (B11)

The pair of walks (ρ, τ ) does not amount to the information
content of δC as they each smear out content in one dimension
by averaging [33]. Yet, they each offer an N − 1 component
“fingerprint” with which to assess departure from IID noise.
While shy of the exhaustive (N − 1)2 matrix fingerprint of
δC, this condensed version may often suffice. Also, they are
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more quickly computed and require negligible storage. Note
that either of the last two expressions in Eq. (B7) offers an
O(N ) order algorithm to compute the mean value of δC.

Reliable detection of weak trends in a large data set is thereby
facilitated.
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