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Geometry-based circulation of local thermal current in quantum
harmonic and Bose-Hubbard systems
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A geometry-based mechanism for generating steady-state internal circulation of local thermal currents is
demonstrated by harmonically coupled quantum oscillators formulated by the Redfield quantum master equa-
tion (RQME) and the Bose-Hubbard model (BHM) of phonons formulated by the Lindblad quantum master
equation (LQME) using the simple multipath geometry of a triangle. Driven by two reservoirs at different
temperatures, both systems can exhibit an atypical local thermal current flowing against the total current.
However, the total thermal current behaves normally. While the RQME of harmonically coupled quantum
oscillators allows an analytical solution, the LQME of the interacting BHM can be solved numerically. The
emergence of the geometry-based circulation in both systems demonstrates the ubiquity and robustness of the
mechanism. In the high-temperature limit, the results agree with the classical results, confirming the generality of
the geometric-based circulation across the quantum and classical boundary. The geometry-based circulation also
emerges from a quantum Langevin equation calculation. Possible experimental implications and applications are
briefly discussed.
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I. INTRODUCTION

Geometry plays a crucial role in transport phenomena [1].
For example, the ring geometry provides a natural shape for
persistent current induced by magnetic flux [2–4]. Interest-
ingly, circulation of electrons in the form of current vortices
[5–8] or chiral current [9] may emerge without an external
magnetic field. A metallic ring embedded with two quantum
dots and connected to external electrodes shows circulating
currents [10]. Reference [11] shows the quantum interfer-
ence of tunneling electrons in two quantum dots individually
coupled to two reservoirs at different temperatures, resulting
in a circulating electric current with magnetic polarization.
Moreover, geometry-based circulations of electrons [12] and
photons [13] have been predicted in quantum dot or photonic
structures, showing that geometric effects transcends spin-
statistics. Topological properties, such as defects in 1D Bose
fields, may also be investigated in a ring geometry [14].

Meanwhile, thermal transport in classical and quantum
systems has been intensively studied [15–19]. Interesting phe-
nomena, including heat rectification in spin systems [20],
heat flux from the nontrivial Berry-phase in an anharmonic
molecular junction subjected to cyclic modulations [21],
a local thermal current from cold to hot in a multipath
electronic system [11], have been studied. Reference [22]
shows that classical harmonic systems described by classi-
cal Langevin equations in multipath geometries support local
atypical thermal current flowing from cold to hot in the steady
state. The atypical local current also leads to a geometry-
based circulation within the system. Here we investigate the
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quantum version of Ref. [22] and its generalizations to estab-
lish the ubiquity of the geometry-based circulation in thermal
transport, showing the geometric mechanism transcends the
quantum and classical boundary. One important advantage of
the geometric mechanism for inducing circulation is the lack
of a direct means for stirring thermal currents, in contrast
to the electrons or photons that may be manipulated by a
magnetic field [23] or artificial gauge field [24,25].

The two examples in this work for demonstrating the
geometry-based circulation in quantum thermal transport are
formulated by the quantum master equation (QME) that de-
scribes the time evolution of the reduced density matrix of
a system coupled to external reservoirs. Depending on the
approximations in the derivations that will be presented later,
we analyze the Redfield quantum master equation (RQME)
[26,27] of harmonically coupled quantum oscillators and the
Lindblad quantum master equation (LQME) [27,28] of the
Bose-Hubbard model (BHM) of phonons. Here the phonons
refer to the energy quanta of the underlying oscillators, not
the phonons in crystals. Challenges arise when solving the
QMEs due to the rapid growth of the Fock space with the
particle number. Exact numerical simulations are not prac-
tical as the system size increases. For harmonic oscillators
or noninteracting BHM, we implement the third quantization
method of bosons [29,30]. This method allows an analyti-
cal evaluation of the nonequilibrium steady-state correlations,
from which the local and total thermal currents can be ob-
tained. To explore interaction effects, we perform numerical
calculations of the interacting BHM with a truncated Fock
space, similar to those of photonic transport [13]. We mention
that quantum thermal transport may also be studied by us-
ing nonequilibrium Green’s function [31], quantum Langevin
equation (QLE) [32,33], quantum stochastic Schrödinger
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equation [34], quantum master equations [35], and many oth-
ers [36]. We will use the QLE to verify the geometry-based
circulation as well.

From the different QMEs of different models, we will
establish the geometry-based circulation of steady-state ther-
mal currents in the quantum regime. Similar to the classical
harmonic systems [22], the circulation of the quantum ther-
mal current is a consequence of the competition among the
local thermal currents carried along different paths. When
the local current along a path overshoots, the local current
along another path may flow in the opposite direction to
compensate. Furthermore, the system should have wave na-
ture, so the wave functions spread over the whole system and
explore the underlying geometry. For the classical harmonic
systems, the mechanical vibrational modes carry the energy
while for the quantum systems studied here, the wave func-
tions of the phonons transport the energy. Moreover, the
geometry-based circulation in quantum systems is shown to
be robust against interactions, just like the circulation in clas-
sical systems is robust against nonlinear potentials [22].

The rest of the paper is organized as follows. In Sec. II,
we describe the two systems with their Hamiltonians, the
quantum master equations for their time evolution, the defini-
tions of the local and total thermal currents, and the methods
for obtaining the steady-state results. In Sec. III, we present
the local and total thermal currents of both systems in the
steady state, establishing the geometry-based circulation of
thermal currents in quantum transport. The patterns and the
phase diagrams will be presented. A calculation using the
QLE approach also supports the geometry-induced circu-
lation. Section IV discusses experimental implications and
possible applications. We conclude our study in Sec. V. Some
details of the RQME and connections between the LQME and
the RQME are summarized in the Appendix.

II. MODELS AND METHODS

A. Quantum harmonic oscillators with RQME

To investigate local quantum thermal transport in a mul-
tipath geometry, we consider a simplified system of three
quantum oscillators with equal mass m harmonically cou-
pled to each other and to a substrate, as shown in Fig. 1(a).
Following Ref. [30], the Hamiltonian in the mass weighted
coordinates can be written as

H = 1

2

3∑
j=1

(
p2

j + ω2
0q2

j

) + k3

2m
(q1 − q3)2

+ k

2m

2∑
j=1

(q j − q j+1)2

= 1

2
(p.p + q.Qq).

Throughout the paper, h̄ = kB = 1. Here q j and p j , j =
1, 2, 3, denote the displacement and momentum operators of
the jth oscillator, ω0 is the frequency from the uniform onsite
potential associated with the substrate. The harmonic coupling
constants are k between the m1 − m2 link and the m2 − m3

link and k3 between the m1 − m3 link. The p and q are column

FIG. 1. Schematic illustrations of the systems for studying
geometry-based circulation in quantum thermal transport. (a) Har-
monically coupled quantum oscillators driven by two reservoirs with
temperatures TL and TR, respectively. The harmonic coupling con-
stants between m2-m1 and m2-m3 are set to k while that between
m1-m3 is set to k3. All masses are coupled to the substrate with
harmonic coupling constant k0. (b) Bose-Hubbard model of phonons
with tunneling coefficients t along the 1-2 and 2-3 links and t3

along the 1-3 link. The system is connected via the system-reservoir
couplings γL and γR to two reservoirs with temperatures TL and TR

and average numbers NL and NR, respectively.

vectors and

Q = ω2
013 + ω2

c

⎛
⎝1 + k3

k −1 − k3
k−1 2 −1

− k3
k −1 1 + k3

k

⎞
⎠, (1)

with ωc = √
k/m. In principle, the masses, onsite frequencies,

and harmonic coupling constants are all tunable, giving rise to
rich physics.

To study thermal transport, the quantum system is con-
nected to two thermal reservoirs maintained at temperatures
TL,R, respectively. Without loss of generality, we assume TL >

TR. The time evolution of the reduced density matrix of the
system under the influence of the reservoirs may be described
by the RQME [30]:

dρ(T )

dT = i[ρ(T ),H ] + Dρ(T ). (2)

Here D is the Redfield dissipator given by

DL,Rρ(T ) =
∫ ∞

0
dτ�L,R(τ )[XL,R(−τ )ρ(T ), XL,R] + H.c.

(3)

[A, B] represents the commutator of operators A and B. For
the quantum oscillator system, the coupling operators are
[30] XL,R = √

εL,Rq1,3, respectively. Here εL and εR are the
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system-reservoir coupling constants. Reference [30] presents
a general form of the spectral function of the thermal reser-
voir. Here we focus on the reservoirs with an ohmic spectral
function, which is the Fourier transform of �L,R(τ ), defined as

�L,R(ω) = sign(ω)|ω|
exp (ω/TL,R) − 1

. (4)

The Redfield form of the master equation is derived us-
ing the Born and Markov approximations. Under the Born
approximation [27,28], it is assumed that the reservoirs are
large compared to the system such that the reservoir is not
affected significantly by the reservoir-system interaction, and
the interaction between the system and the reservoirs is as-
sumed to be weak. With the Born approximation, the reduced
density matrix of the system and the density matrix of the
reservoirs is written as a product state. Under the Markov
approximation, it is assumed that the timescale of the sys-
tem dynamics is larger than the reservoir correlation time,
allowing the master equation to be written as a time local
equation.

In the long-time limit, the system is expected to reach
a steady state. The third quantization formalism provides a
method for solving the RQME with a quadratic Hamilto-
nian like Eq. (1) subject to linear system-reservoir coupling
operators [30]. For the harmonically coupled quantum os-
cillators, we extract the nonequilibrium steady-state (NESS)
momentum-coordinate correlations from the RQME with the
details summarized in Appendix A. The local thermal current
from the ith oscillator to its adjacent jth oscillator is derived
from the continuity equation [37], given by

〈Ji j〉 = K

mj
tr(p jqiρ), (5)

where K denotes the harmonic coupling constant between the
two sites. For a harmonic system in the NESS, 〈J12〉 = 〈J23〉
with ρ = ρNESS, so there is no energy accumulation in oscil-
lator 2 that is not coupled to a reservoir. The total steady-state
thermal current through the system is given by

〈JT 〉 = 〈J13〉 + 〈J12〉. (6)

B. Bose-Hubbard model with LQME

A quantum oscillator can be expressed in terms of the
creation and annihilation operators of energy quanta [38].
It can be shown that under the rotating wave approxima-
tion neglecting number nonconserving terms, a system of
harmonically coupled quantum oscillators may be approxi-
mated by the noninteracting BHM of phonons [35,39]. The
approximation may be justified when the onsite frequency
dominates the hopping coefficients. From here on, we investi-
gate quantum thermal transport through a BHM in a multipath
geometry illustrated in Fig. 1(b). Our goal is not to estab-
lish a rigorous connection to the coupled quantum oscillators
but instead to demonstrate the robustness of the geometry-
based circulation of local thermal current in open quantum
systems.

The three-site BHM has the following Hamiltonian:

HBH

3∑
j=1

�0c†
j c j − t (c†

1c2 + c†
2c1 + c†

2c3 + c†
3c2)

− t3(c†
1c3 + c†

3c1) + U

2

3∑
j=1

n j (n j − 1). (7)

Here a uniform onsite potential �0, possibly from the system-
substrate coupling, has been included, c†

j and c j are the
creation and annihilation operators at the jth site. t is the tun-
neling coefficients between site 1-site 2 and site 2-site 3, and
t3 is the tunneling coefficient between site 1-site 3. We will
focus on the regime with �0 � t, t3. U is the onsite coupling
constant and n j is the number density operator on site j. We
will begin with the noninteracting case with U = 0 and con-
sider the interacting case afterwards. The LQME [40] will be
implemented to study the local thermal currents in the BHM
driven by two thermal reservoirs. One may derive the LQME
from the Kraus operator formalism [40] and utilize it as a
phenomenological equation [28,41–43]. However, one may
derive a limited class of the LQMEs [27,28,44] by imposing
either the secular approximation or the weak internal-coupling
approximation on the RQME. The derivation and approxima-
tion of the LQME limit the parameter space where it can be
used appropriately. Here we use the LQME as a phenomeno-
logical equation that allows us to explore a broad region in the
parameter space. More discussions on the limitations of the
LQME have been summarized in Ref. [45]. For the sake of
completeness, we briefly mention the LQMEs obtained from
the RQME in Appendix B.

The LQME we work with has the form:

∂ρ(T )/∂T = i[ρ,HBH] + γLNL
(
c†

1ρc1 − 1
2 {c1c†

1, ρ})
+ γL(NL + 1)

(
c1ρc†

1 − 1
2 {c†

1c1, ρ})
+ γRNR

(
c†

3ρc3 − 1
2 {c3c†

3, ρ})
+ γR(NR + 1)

(
c3ρc†

3 − 1
2 {c†

3c3, ρ}). (8)

Here {A, B} represents the anti-commutator of operators A
and B. γL and γR are the system-reservoir couplings for the
left and right reservoirs that are assumed to maintain fixed
phonon numbers NL and NR with NL,R = 1/[exp(�0/TL,R) −
1], respectively. The reservoirs emit phonons at the rate γ jNj

into the system while they absorb at the rate γ j (Nj + 1)
with j = L, R, as shown in Eq. (8). These exchange rates of
phonons follow the assumption of Bose statistics and lead the
system to thermal equilibrium if only connected to a single
reservoir.

There have been concerns about the thermodynamic
consistency of the local (position basis) LQME [46–49].
However, those issues have been addressed by choosing the
correct thermodynamic definitions of the currents related to
the work and heat [50,51], respectively. We will focus on the
thermal current associated with heat throughout the paper.
Explicitly, there are multiple ways of defining the thermal
current in quantum systems [35,37,51]. Reference [35] shows
two different formulas of the thermal current of a linear
chain. In the first expression, the QME in the steady-state
enforces tr(H ∂ρ

∂T ) = 0. The commutator in Eq. (8) does not
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contribute, and the contributions from the two reservoirs sum
to zero in the steady state, making them equal and opposite to
each other. Without loss of generality, either the contribution
from the left or right reservoir may be picked as the ther-
mal current. However, this expression of the thermal current
comprises of not only the heat but also the work exchanged
at the system-reservoir interface. The subtlety is explained
in Ref. [51], which shows that only the diagonal terms of
the Hamiltonian contribute to the heat as they are the ones
that enter the entropy production. Instead, the nondiagonal
terms of the Hamiltonian contribute to the work done on the
system.

To focus on the heat transferred through the system, we
choose the second expression [35,37] and derive a formula of
the thermal current associated with heat in thermodynamics.
For a linear chain described by the BHM, the local thermal
current operator associated with heat through a link between
the ith and (i + 1)th sites can be evaluated by the Heisenberg
equation of motion. Explicitly, one defines the Hamiltonian of
the partial chain up to the link as HL. Then, Ji,i+1 = dHL/dt =
i[HL, H], where HL contains the Hamiltonian from the left end
to the left site of the link. By generalizing the definition, the
thermal current operator from site i to its adjacent site j is
given by

Ji j = − ιti j (�0 − U )(c†
i c j − c†

j ci )

− ιUti j (c
†
i c jc

†
j c j − c†

j c jc
†
j ci ). (9)

Here ti j takes the value t or t3 for J12 or J13, respec-
tively. The local thermal current is obtained from 〈Ji j〉 =
tr(ρJi j ). Using the above definition, we make sure that the
total thermal current does not violate the second law of
thermodynamics, as it always flows from hot to cold. Nev-
ertheless, atypical local thermal currents will be shown to
be able to flow against the total thermal current in quantum
systems.

For the noninteracting case with U = 0, we implement the
third quantization method for the LQME [29,52] to obtain
the steady-state currents with a similar procedure described
in Ref. [13]. The third quantization method is limited to
systems with quadratic Hamiltonians. When U is finite, the
nonlinear terms no longer permit us to utilize the third quan-
tization framework. Therefore, we numerically simulate the
LQME of the interacting BHM in a truncated basis. We follow
Ref. [53] to construct the truncated basis states for the system.
To numerically integrate Eq. (8), we use the fourth-order
Runge-Kutta method [54], which yields the evolution of the
reduced density matrix. After checking the system reaches a
steady state in the long-time limit, the expectation values of
the local current operators are evaluated. The local thermal
currents of the interacting BHM in the NESS should obey∑

i〈Ji2 + J2i〉 = 0 to ensure no energy accumulation on site 2
that is not coupled to a reservoir. The dimension of the density
matrix of a bosonic system increases rapidly with the number
of bosons, so numerical simulations of bosons are usually
performed by restricting the maximal number of bosons per
site. In our simulations, we have checked the results with the
number of phonon per site up to 4 and only see quantitative
differences.

FIG. 2. Quantum thermal conductance from the total current
through the three-site harmonic oscillators shown in Fig. 1(a) with
equal mass m and k = k3 = mω2

0 as a function of Tavg/ω0 for different
values of the system-reservoir coupling and fixed �T/Tavg = 0.02.
The black line shows the quantum of thermal conductance and the
dashed lines show the corresponding values of the classical thermal
conductance.

III. RESULTS AND DISCUSSIONS

A. Quantum oscillators with RQME

We first present the results of quantum thermal transport
through harmonically coupled quantum oscillators described
by the Redfield master equation. Before showing the results of
the setup shown in Fig. 1(a), we have verified that our results
for a linear chain of quantum oscillators are consistent with
the results of Ref. [30]. In the following, we choose TL − TR =
�T � Tavg, where Tavg = (TL + TR)/2 is the average temper-
ature of the reservoirs and assume symmetric couplings to the
reservoirs, εL,R = ε. The parameter space of the system with
equal mass m in a triangular geometry consists of the internal
parameters k/k3 and external parameters TL/ω0, TR/ω0, and
ε/ω0.

The third quantization method of the RQME [30] gives
the steady-state expectation values. The thermal conductance
〈JT 〉/�T as a function of Tavg for selected values of the
system-reservoir coupling ε is shown in Fig. 2 with k =
k3 = mω2

0. In the low temperature regime when ω0 � Tavg,
the conductance increases monotonically as Tavg increases.
The quantum of thermal conductance [16] in the low-
temperature limit is given by πkB

2Tavg/6h̄ and shown by
the black curve in Fig. 2. As one can see, the quantum of
thermal conductance becomes an upper bound for the nu-
merical values as Tavg → 0. When Tavg increases, the thermal
conductance starts to saturate and becomes constant. At high
temperatures, the system shown in Fig. 1(a) approaches a
classical mechanical system, and the spectrum of the reser-
voirs is expected to approach the white noise [22], where
the random drive has the form 〈ηc(t )ηc(t ′)〉 = 2kBT γcδ(t −
t ′). Here ηc(t ), c = L or R, is the random force from the
reservoir and γc is the friction coefficient. Classical thermal
transport of Fig. 1(a) with white-noise reservoirs has been
studied by us in Ref. [22]. The RQME results approach
the corresponding classical values in the high-temperature
limit, which are shown as the dashed lines in Fig. 2. The
agreement between the RQME and the classical Langevin
results in the high temperature limit ω0 � Tavg has been
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FIG. 3. Total and local steady-state thermal currents of the three-
site quantum oscillators described by the RQME as a function of
k/k3 for ε/ω0 = 0.1. Here TL/ω0 = 1.01 and TR/ω0 = 0.99. ω0 is
the onsite frequency. The solid grey line marks the zero of the y axis.

shown in a linear chain of quantum harmonic oscillators
[30], and here we confirm the agreement in a multipath
geometry.

We caution that the RQME is derived as a second-order
perturbation [30], which is reliable when the system-reservoir
coupling is weak. Within the weak coupling regime, we found
the thermal conductance increases with ε/ω0, as shown in
Fig. 2. The thermal conductance of a classical harmonic chain
has been shown to change nonmonotonically with the system-
reservoir coupling if the coupling is varied by several orders
of magnitude [55]. However, the weak-coupling assumption
of the RQME limits our ability to explore quantum thermal
transport in the regime where ε/ω0 > 1.

The total thermal current does not reveal exciting physics.
Nevertheless, we unambiguously demonstrate the existence of
atypical local thermal current in the quantum system shown in
Fig. 1(a) by presenting the local thermal currents in Fig. 3 with
uniform mass m, TL/ω0 = 1.01, TR/ω0 = 0.99, k3 = mω2

0,
and ε/ω0 = 0.1. As one can see on Fig. 3, the local thermal
current along the 1–3 link flows from hot to cold according
to the direction of the reservoirs when k < k3, but the local
thermal current along the 1–2 link flows from cold to hot as
indicated by the negative value. In the steady state, we have
verified that 〈J12〉 = 〈J23〉. The combination of negative 〈J12〉
and 〈J23〉 with positive 〈J13〉 gives rise to a counterclockwise
(CCW) internal circulation if viewed from above. At k = k3,
the local thermal currents in all the links are the same and
flow from hot to cold. When all local thermal currents flow in
the same direction, we call it a unidirectional (UD) flow. The
local currents are continuous functions of the system-reservoir
coupling, harmonic coupling constants, and masses of the
oscillators. In Fig. 3, we consider a simplified case where
all the oscillators have the same mass, k12 = k23 = k, and
symmetric system-reservoir couplings (εL = εR = ε). For this
special case, 〈J12〉 ≈ 〈J13〉 when k ≈ k3, as shown in Fig. 3.
For systems with different masses, different coupling coeffi-
cients on the longer path (k12 �= k13), or asymmetric couplings
to the reservoirs, the local currents will differ. When k > k3,
the local thermal currents on the 1–2 and 2–3 links flow from
hot to cold, but the local thermal current on the 1–3 link flows

FIG. 4. (Top) Patterns of the local thermal currents. Form left
to right: counterclockwise (CCW), uni-directional (UD), and clock-
wise (CW). (Bottom) Phase diagram showing where each pattern
survives as a function of k/k3 and ε/ω0 for the three-site quantum
harmonic oscillators described by the RQME. Here TL/ω0 = 1.01
and TR/ω0 = 0.99, and the masses are the same with

√
k3/m = ω0.

The blue triangles, black circles, and pink inverted triangles repre-
sent the CCW circulation, unidirectional flow, and CW circulation,
respectively.

from cold to hot as indicated by the negative value. In this
case, the local thermal currents give rise to a clockwise (CW)
circulation. For k � k3, the local thermal currents become
unidirectional again. The three patterns (CCW, UD, and CW)
are illustrated in the top panel of Fig. 4. We confirm that
although a local thermal current may flow from cold to hot
in the steady state, the total steady-state thermal current is
always from hot to cold, consistent with the second law of
thermodynamics. We emphasize that all the results are the
steady-state values according to the RQME, not transient
behavior. Together with the demonstration in classical sys-
tems [22], the geometry-based circulation of thermal current
emerges in both quantum and classical regimes.

Figure 4 shows the phase diagram of local-flow patterns on
the k/k3 and ε/ω0 plane. There are three regimes exhibiting
the CCW circulation, unidirectional flow, and CW circulation,
respectively. If ε/ω0 is small, then both types of circulation are
observable. The circulation has the property that the atypical
local current is along the link with the smaller value of the
harmonic coupling constant. For example, k/k3 > 1 implies
the atypical current is along the link with k3, which is the
1–3 link, giving rise to CW circulation. For the simplified
case shown in Fig. 4, the local currents flow unidirectionally
when k/k3 ≈ 1. However, as ε/ω0 is increased, the regimes
of both circulations shrink. Beyond a threshold value of
ε/ω0, only the UD flow can survive. The circulation of local
currents is due to an overshoot along one path, which is
compensated for by another path. When the system-reservoir
coupling is strong, the high damping rate causes a suppression
of the local currents, making the systems closer to equilib-
rium. Therefore, both circulations are suppressed in the large
ε regime.
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FIG. 5. Total and local steady-state thermal currents of the non-
interacting BHM described by the LQME as a function of t/t3 for
t3/�0 = 0.1 and γ /�0 = 0.1 with TL/�0 = 1.01, TR/�0 = 0.99. �0

is the onsite frequency. The solid grey line marks the zero of the y
axis.

B. Bose-Hubbard model with LQME

Here we present the local steady-state thermal currents
from the LQME of the BHM of phonons illustrated in
Fig. 1(b). We begin with the noninteracting BHM of Eq. (7)
with U = 0. Within the LQME (8), the local thermal currents
can be evaluated once the reduced density matrix is obtained.
For the noninteracting BHM, we employ the third quantiza-
tion formalism to obtain the steady-state correlations from
the LQME and then extract the information of the thermal
currents associated with heat in thermodynamics. To stay in
the regime where the rotating wave approximation applies,
We take t3/�0 = 0.1 and vary t/�0 from 0.01 to 0.2 in the
following discussion. The system is coupled to two thermal
reservoirs maintained at TL/�0 = 1.01 and TR/�0 = 0.99,
with symmetric system-reservoir coupling constants γL =
γR = γ .

Figure 5 shows the total and local currents as a function
of t/t3 for γ /�0 = 0.1. As we vary t/t3, the local currents
follow a similar trend observed in the case of the harmonically
coupled quantum oscillators described by the RQME shown
in Fig. 3. The negative values of the local thermal currents
indicate the emergence of a geometry-based circulation. For
t/t3 < 1 (t/t3 > 1), a CCW (CW) circulation is present in the
steady state. Around t/t3 = 1, all the local currents flow in
the same direction. Although the total thermal current remains
positive and is consistent with the second law of thermody-
namics, the local circulation would have been overlooked if
only the total thermal current is reported. We also notice that
the total current exhibits a dip when the circulation patterns
changes from CW to CCW or vice versa, a phenomenon
already found in thermal transport of classical harmonic sys-
tems [22]. Moreover, the observation that J12 ≈ J13 when
t = t3 in Fig. 5 is a special case because of the same onsite
potential, t12 = t23 = t , and symmetric couplings to the reser-
voirs. The local currents will change quantitatively as those
parameters are changed.

After identifying the three patterns (CW, CCW, and UD) of
the local thermal currents, we present the phase diagram of the
noninteracting BHM described by the LQME in a multipath

FIG. 6. Phase diagram of the noninteracting BHM described
by the LQME, showing the CCW circulation (blue triangles), CW
circulation (pink inverted triangles), and UD flow (black dots) on
the plane of t/t3 and γ /�0. Here TL/�0 = 1.01, TR/�0 = 0.99, and
t3/�0 = 0.1.

geometry as a function of t/t3 and γ /�0 in Fig. 6. Both the
CCW and CW circulations survive in the regime with small
γ /�0. As γ /�0 increase, the regions of both circulations
decrease, similar to the RQME results of Sec. III A. Again,
the strong system-reservoir coupling with strong damping
brings the system closer to equilibrium, thereby suppresses
both types of circulations in the large γ regime. Moreover, we
note that the CCW circulation regime disappears more rapidly
compared to the CW circulation regime as γ /�0 increases.
We remark that there is a UD regime above the CW regime
in Fig. 4 as K12/K13 increases, but the CW regime in Fig. 6
extends indefinitely as t/t3 increases. The difference is likely
due to the secular approximation in the Bose-Hubbard model
that drops multiparticle processes in the dynamics. We also
note that the phase diagram of the BHM is similar to that of
fermions [12], which offers another hint of the dominance of
single-particle processes.

So far, the geometry-based circulation has been demon-
strated in quadratic or noninteracting quantum systems. In
the following, we use the BHM in the LQME as a con-
crete example to show that the geometric mechanism is
robust against nonlinear interactions. In the weakly interact-
ing regime, U/�0 is the smallest energy scale, satisfying
U < min(t, t3), where min(t, t3) denotes the smaller one of
t and t3. In the presence of nonlinear interactions, the thermal
steady-state current depends on the four-operator correlations
in addition to the usual two-operator correlations, as shown
in Eq. (9). The four-operator correlations implicitly depend
on the number density of the phonons, making it a nonlinear
problem that is sensitive to the system configuration.

The local and total steady-state thermal currents of the
BHM described by the LQME with interaction strength
U/�0 = 0.01 and 0.05 are shown in Fig. 7. The maximal
phonon number per site is limited to 4. We notice that the tran-
sient time before the system reaches the steady state increases
substantially with U/�0, so we stay in the weakly interacting
regime. To ensure U/�0 remains the smallest energy scale in
the problem, we use the standardized tunneling coefficients
in Fig. 7. Explicitly, we choose the tunneling coefficients so
that min(t, t3)/�0 = 0.1 to ensure min(t, t3) > U . We have
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FIG. 7. Total and local steady-state thermal currents of the in-
teracting BHM described by the LQME for (a) U/�0 = 0.01 and
(b) U/�0 = 0.05 as a function of t/t3 with standardized tun-
neling coefficients satisfying min(t, t3)/�0 = 0.1. Here TL/�0 =
1.01, TR/�0 = 0.99, and γ /�0 = 0.1. The grey horizontal line
marks the zero of the vertical axis.

verified that the net current of the site not connected to the
reservoirs is zero, so there is no accumulation of energy in
the system in the steady state. Moreover, the signs of the
local currents 〈J12〉 and 〈J23〉 agree, allowing a consistent
identification of the patterns of local currents. We note that
when U/�0 �= 0, the degeneracy of 〈J12〉 and 〈J13〉 at t/t3 = 1
is lifted when compared to the noninteracting case. As far as
we can check, the lifting of the degeneracy is a gradual process
as the interaction increases.

Importantly, Fig. 7 shows that both circulation patterns sur-
vive in the interacting BHM with a multipath geometry. From
Figs. 6 and 7, one can see that the weakly interacting systems
behave qualitatively the same as the noninteracting system.
However, Fig. 6 is from the noninteracting system with the full
Fock space, while Fig. 7 is from the interacting BHM with a
cap on the maximal phonon number per site (set to 4 in Fig. 7).
By solving the LQME of an effective BHM of photons,
Ref. [13] shows quantitative dependence of the geometry-
based circulation regimes on the maximal particle number per
site. Here we have checked that the variation of the circulation
regimes with the maximal particle number is gradual without
qualitative changes in phononic transport as well. The BHM
in the LQME thus offers an explicit example confirming that
the geometry-based circulation is not unique to noninteract-
ing or quadratic systems. Moreover, we have verified that
the geometry-based circulation survives in the presence of
asymmetric system-reservoir couplings (γL �= γR). We men-
tion that a suppression of the geometry-based circulation by
nonlinear interactions has been demonstrated in electronic
[12] and photonic [13] transport. Importantly, the demonstra-
tions of the geometry-based circulation in fermionic systems
[12] and bosonic systems presented here and in Ref. [13] show
the mechanism also transcends the spin statistics. Moreover,

the BHM results show that circulations of local thermal cur-
rent survive nonlinear onsite interactions while Ref. [22] has
shown that circulations of local thermal currents survive in
classical harmonic systems in the presence of nonlinear onsite
potentials.

C. Quantum Langevin equation

Here we show that the geometry-based circulation of lo-
cal quantum thermal currents is not limited to the Redfield
and Lindblad master equations, both of which implement
Markovian approximations. We follow Ref. [33] and use the
quantum Langevin equation (QLE) to formulate local quan-
tum thermal transport of the setup shown in Fig. 1(a) with
the Hamiltonian given by Eq. (1). The quantum noise oper-
ators ηL,R(t ) are introduced to formulate the reservoirs with
the following correlation for the left reservoir (and a similar
expression for the right reservoir):

1

2
〈η̃L(ω)η̃L(ω′)T + η̃L(ω′)η̃L(ω)T 〉

= δ(ω + ω′)
h̄

2π
�̃L(ω) coth

(
h̄ω

2kBTL

)
. (10)

Here η̃L(ω) is the Fourier transform of ηL(t ) and �̃L =
Im(�+

L ) is the spectral function of the left reservoir. The
steady-state local quantum thermal currents can be inferred
from Eq. (5), which is equivalent to Eq. (4.4) of Ref. [33]
in terms of the correlations of XW , the collection of the dis-
placement operators of the quantum harmonic oscillators in
the system. Explicitly, let C = 〈XW Ẋ T

W 〉. Then,

C = i

π

∫ ∞

−∞
dω

[
G+

W �LG−
W

h̄ω

2
coth

(
h̄ω

2kBTL

)

+ G+
W �RG−

W

h̄ω

2
coth

(
h̄ω

2kBTR

)]
. (11)

The advanced (retarded) Green’s function is given by G±
W =

[−ω2MW + �W − �±
L − �±

R ]−1, where MW is the mass ma-
trix, �W is the coefficient matrix of the potential, and �±

L,R
are the advanced (retarded) self energies from the left and
right reservoirs. By considering Ohm reservoirs similar to
those discussed in Eq. (4), one can construct the Green’s
functions, self-energies, and spectral functions to evaluate
the steady-state local thermal currents 〈J12〉 and 〈J13〉 from
the elements of C multiplied by the corresponding mass
and harmonic coupling constant. Furthermore, the system-
reservoir coupling may be approximated in the Ohm form
by introducing iξLωδL,1 and iξRωδR,3 as the self-energies.
Here we consider symmetric system-reservoir couplings, so
ξL = ξR = ξ .

Figure 8 shows the local quantum thermal currents 〈J12〉
and 〈J13〉 as functions of k/k3. We assume all masses are
equal, k12 = k23 = k, k13 = k3, and do not include the onsite
coupling for simplicity. For a fixed value of ξ , one can see
that both local thermal currents change signs as k/k3 varies.
Importantly, the figure looks just like Figs. 3 and 5, thereby
establishing the ubiquity of the geometry-based circulation
of local quantum thermal currents. We remark again that the
region where the local currents change sign depends on the
masses and system-reservoir coupling. For the parameters
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FIG. 8. Steady-state local quantum thermal currents 〈J12〉 (in-
verted triangles) and 〈J13〉 (triangles) from the quantum Langevin
equation (11). Here all masses are equal to m, ξ = 0.1

√
m/k3, J0

is the current in the absence of k12 = k23 = k, TL = 1.1h̄
√

k3/m/kB,
and TR = h̄

√
k3/m/kB.

used here, the region is near k/k3 ≈ 1, but it will shift with
the parameters. Moreover, 〈J12〉 ≈ 〈J13〉 when k/k3 ≈ 1 for
the simplified parameters used here, but the local currents
vary as the masses, harmonic coupling constants, or system-
reservoir couplings change. We remark that Ref. [22] already
theoretically demonstrates the circulation of local thermal
current in classical Langevin equations, and our QLE results
here complement the classical results. Finally, the mechanism
behind the geometry-induced circulation is a competition of
the local currents along different paths and the wave functions
of the carriers that explore the underlying geometry. There-
fore, different formalisms, exemplified by quantum master
equations and quantum Langevin equation, predict similar
results.

IV. EXPERIMENTAL IMPLICATIONS
AND POSSIBLE APPLICATIONS

Since the geometry-induced circulation is a generic phe-
nomenon, the systems shown in Fig. 1 for studying geometric
effects in quantum thermal transport may be realizable in
quantum dots [56], optomechanical systems [57,58], and
atomic or molecular systems [59–61] with suitable arrange-
ments of multipath geometries and proper thermal reservoirs.
In accordance with the theoretical parameters, the geometry-
based circulations may survive in experiments performed at
liquid helium temperature with the frequencies of the system
of interest in the terahertz range. The setups may need the
reservoirs to be connected to a specified part of the system,
which may be achieved by focused laser that pumps or dissi-
pates energy in a selected region. There have been tremendous
progresses in manipulating atoms with light. For example,
Ref. [58] studies phonon transport in two SiN nanomechan-
ical resonators coupled to a cavity field, Refs. [61,62] trap
ultracold atoms at the interference of coherent light beam,
Refs. [63,64] assemble single molecules from atoms through
optical tweezers, Ref. [65] demonstrates coherent transport of
a neutral atom, and many others. Those techniques may allow

further studies of geometric effects in quantum transport. For
nanomechanical or molecular systems, the thermal currents
may be measured through thermoreflectance [66] or scanning-
probe techniques [60,67–69]. The systems shown in Fig. 1
may be modified to function as a quantum thermal transistor
by adding a reservoir to the second oscillator, as proposed in
Refs. [70–72].

There has been a proposal of thermal memory elements
by recording information via temperature, but those devices
usually require a nonlinear element [73,74]. For example, the
bistable states of a nonlinear one-dimensional chain made
of two Frenkel-Kontorova segments may be utilized as a
phononic memory [73]. Here, we propose a different type
of thermal memory element, which stores data by record-
ing the types of local-flow patterns via the geometric effect.
The geometry-based thermal memory does not necessarily
requires nonlinearity or additional manipulation of local tem-
perature. In the geometry-based design, any two flow patterns
(CCW, UD, and CW) can act as a bistable state for recording
the binary digits 0 and 1. As shown previously, the flow
patterns can be tuned by a variety of internal and external
parameters. The bistability of the geometry-based system may
also find applications in thermal switching or thermal routing
in quantum systems because the magnitude and direction of
the local thermal currents are highly controllable. A crucial
step towards the realization of those applications is the con-
trol of the internal and external parameters, which may be
achieved electromagnetically [75] via lasers or mechanically
[76,77] via stress or strain. Reading out the information or sta-
tus of the system is another challenge and may be performed
by introducing additional or adjacent thermoelectric elements
to siphon out some phonons and convert the information to
electric signals for performing the measurement [74,78–80].

V. CONCLUSION

By analyzing concrete examples of transport in harmon-
ically coupled quantum oscillators described by the RQME
and the BHM of phonons described by the LQME with
multipath geometries, we have demonstrated the geometry-
based circulation of local thermal currents in the steady state
with a local thermal current flowing against the total cur-
rent. The geometry-based mechanism is insensitive to the
details of the Hamiltonian and the modeling of the reservoir
and system-reservoir coupling. Moreover, the geometry-based
circulation of the local steady-state thermal current is ro-
bust against nonlinear interactions. Furthermore, the result
of the quantum Langevin equation also demonstrates the
geometry-based circulation.

The ubiquity of the geometry-based circulation of local
thermal currents in quantum and classical systems shows that
the phenomenon transcends the classical and quantum bound-
ary. Nevertheless, the total thermal current always flows from
hot to cold, respecting the second law of thermodynamics
and failing to reflect the local atypical behavior. Importantly,
the steady-state patterns of local thermal currents are tunable
by internal parameters of the system and external system-
reservoir or system-substrate couplings. Geometric effects
thus offer more alternatives to manipulate thermal transport
in quantum systems.
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APPENDIX A: THIRD QUANTIZATION
FORMALISM FOR THE RQME

The third quantization method formulates a Fock space for
the quantum operators of an open quantum system by using
left- and right-multiplication maps in the operator space. We
follow Ref. [30], which applies the formalism to solve the
RQME and derives the Lyapunov equation for the nonequilib-
rium steady-state (NESS) coordinate-momentum correlation
matrix. To begin, we diagonalize the matrix Q in Eq. (1):

Q = U�U†. (A1)

Here the columns of U are the right eigenvectors of Q, and
� is a diagonal matrix whose entries are the correspond-
ing eigenvalues of Q. We also define λ j = √

� j, j . For the
quantum-oscillator system, we can transform the momentum
and coordinate vectors to the normal basis:

p′ = p.U q′ = q.U . (A2)

Hereon, the prime ′ indicates the vectors and operators in
the normal basis. According to Ref. [30], we need to solve the
following continuous Lyapunov equation:

X T Z + ZX = Y . (A3)

The solution yields the matrix Z, whose elements are equiv-
alent to the NESS correlation functions Za,b

i j = 〈aib j〉, with
a, b ∈ {p, q}. X T and Y in Eq. (A3) are defined as

X T =
(

Mq′ p′
im

�
2

−13
2 0

)
(A4)

and

Y = 1

2

(
Mq′q′

r + (Mq′q′
r )T 0

0 0

)
. (A5)

Here Mαβ are the matrices encoding the influence of the
reservoirs, whose subscripts im and r refer to the imaginary

and real parts, respectively. Following, Ref. [30], the matrices
are

Mq′q′ = 1

2
X ′

L ⊗ X ′
Ldiag

{[
1 + exp

(
λ j

TL

)]
�L(λ j )

}

+ 1

2
X ′

R ⊗ X ′
Rdiag

{[
1 + exp

(
λ j

TR

)]
�R(λ j )

}
, (A6)

Mq′ p′ = i

2
X ′

L ⊗ X ′
Ldiag

[(
exp(λ j/TL ) − 1

λ j

)
�L(λ j )

]

+ i

2
X ′

R ⊗ X ′
Rdiag

[(
exp(λ j/TR) − 1

λ j

)
�R(λ j )

]
.

(A7)

The steady-state local thermal currents and occupation num-
bers can then be calculated from the NESS correlation
functions.

APPENDIX B: SOME LQMES FROM RQME

In the secular approximation (equivalent to the rotat-
ing wave approximation in this case), the interaction-picture
equivalent of Eq. (2) is written in the energy eigenbasis of the
system Hamiltonian. The difference of the eigen-frequencies
(ω′ − ω′′) are called the Bohr frequencies. The RQME has all
the time-dependent terms in the form of ei(ω′−ω′′ )t . The secular
approximation averages over the fast oscillating terms. For the
RQME in the energy eigenbasis of the system Hamiltonian,
the approximation essentially removes the terms whose asso-
ciated frequencies are different (ω′ �= ω′′) [27,81], resulting in
a global LQME. However, the approximation is not satisfied
if some energy eigenvalues or the Bohr frequencies are nearly
degenerate, so the global LQME only works for systems with
well separated eigenvalues, (ω′ − ω′′) > γ , where γ is the
system-reservoir coupling constant.

However, performing the weak internal coupling approx-
imation [44,46] on the RQME leads to a local LQME. Let
ti j denote the tunneling coefficient between oscillators i and
j. Reference [46] imposes the equivalent of γ > ti j and uses
a perturbative expansion with respect to ti j to obtain a local
LQME. References [35,44] require the equivalent of �0 > ti j

such that the time dependence of XL,R(−τ ) in Eq. (3) can be
approximated by the “local Hamiltonian” from the �0-term
instead of the full noninteracting BHM.
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