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Effects of structural inhomogeneity on equilibration processes in Langevin dynamics

Omid Mozafar *

Applied Mathematics Department, The University of Western Ontario, London, Ontario, Canada N6A 5B7

Colin Denniston †

Physics and Astronomy Department, The University of Western Ontario, London, Ontario, Canada N6A 3K7

(Received 17 March 2022; accepted 16 May 2022; published 8 June 2022)

In recent decades, computer experiments have led to an accurate and fundamental understanding of atomic and
molecular mechanisms in fluids, such as different kinds of relaxation processes toward steady physical states. In
this paper, we investigate how exactly the configuration of initial states in a molecular-dynamics simulation can
affect the rates of decay toward equilibrium for the widely known Langevin canonical ensemble. For this purpose,
we derive an original expression relating the system relaxation time τsys and the radial distribution function
g(r) in the near-zero and high-density limit. We found that, for an initial state which is slightly marginally
inhomogeneous in the number density of atoms, the system relaxation time τsys is much longer than that for
the homogeneous case and an increasing function of the Langevin coupling constant, γ . We also found, during
structural equilibration, g(r) at large distances approaches 1 from above for the inhomogeneous case and from
below for the macroscopically homogeneous one.
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I. INTRODUCTION

One of the fundamental physical processes in the world
is the relaxation process of many-body systems from any
perturbation. Generally speaking, once a system relaxes, it
becomes temporally invariant and hence one would define
reliable and measurable quantities indicating the systems’
properties. The word relaxation was originally utilized by
the Scottish physicist, James C. Maxwell, in 1867 to de-
scribe molecular processes [1]. Since then, many researchers
have put significant effort into generalizing and explaining
the basic concepts behind relaxation processes to be appli-
cable to a wider range of phenomena [2–9]. In particular, in
1946, the Russian physicist, Yacov Frenkel, shed some light
on the relaxation processes in liquids [10], leading to locating
the Frenkel Line in supercritical fluids [11–15].

Over the past few decades, the invention of novel methods
of conducting computer-based experiments with the advance-
ment of algorithms and/or computers has opened a new
chapter in the study of different kinds of relaxation pro-
cesses [16–18]. However, computer experiments sometimes
produce nonphysical results due to imperfect algorithms or
models, especially those related to thermostats [19–22]. In
this work, by studying the temporal evolution of the radial
distribution function in molecular-dynamics (MD) simula-
tions [23–26] we show possible impacts of initial structural
inhomogeneity on the relaxation processes in Langevin dy-
namics.

Measurement of the radial distribution function (RDF) in
MD simulations (with a constant number of atoms) has a long
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history [27–31]. Early efforts suffered greatly from the inher-
ently small system sizes accessible to molecular dynamics.
This spawned numerous works on accounting for all kinds of
finite-size effects when measuring the RDF [32–36]. Recent
advances in computer technology now allow for the study
of larger and larger systems, i.e., N � 1. An unappreciated
effect of this is the much longer relaxation times needed
for long-wavelength structural degrees of freedom. We study
these kinds of effects in this paper.

This paper is organized as follows: Sec. II reviews some of
the physical concepts; Sec. III derives an original expression
connecting the RDF and τsys; Sec. IV provides details on the
computer simulations and system features; Sec. V presents
and discusses the results obtained from our MD simulations;
Sec. VI summarizes the paper along with some conclusions
and suggestions.

II. BACKGROUND

The radial distribution function is the normalized local
density distribution within the system when one looks radially
outwards from any particle. It can also be thought of as a
measure of the probability of finding one particle of any shape
and orientation located at a distance of r from the center
of mass (c.m.) of a specified reference particle. The RDF is
of great significance in condensed matter physics as it can
directly be related to the static structure factor, S(k), and
hence determined experimentally from radiation scattering
experiments, such as those using x rays and neutrons [37].
For an infinite isotropic and homogeneous system, the relation
between the RDF and S(k) is given by [38–40]

S(k) = 1 + 4πρ

∫ ∞

0
r2[g(r) − 1]

sin kr

kr
dr, (1)
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where ρ is the system averaged number density of atoms.
Physically, S(k) describes the system density response at
wavelength 2π/k to a weak enough, external perturba-
tion [41]. Note that S(k) is always nonnegative in equilibrium.

The RDF is also used to link microscopic structural details
to macroscopic properties under the Kirkwood-Buff (KB) so-
lution theory [42]. In the canonical ensemble, for example,
the potential of mean force (w) between any pair of particles
in the fluid is related to the RDF via [43]

wN (r) = −kBT ln gN (r), (2)

where the subscript N is added to highlight that the total
number of particles is constant and T is the equilibrium
temperature. The w is conveniently written as a sum of two
terms if the total potential energy is approximated by a sum of
identical, independent pair potential energies, u(r):

wN (r) = u(r) + δFN (r), (3)

where δFN (r) includes the effects of the solvent and is the
canonical-ensemble average change of FN , the Helmholtz free
energy, of the fluid introduced by bringing two atoms from
infinity to a (finite) distance r. If the process is done adia-
batically, δFN (r) can be considered as the work done on the
solvent, that is the remaining N − 2 atoms, during the process.
Generally speaking, δFN is nonzero at finite number densities.
Using finite-size corrections [44–49], it can be shown for
N � 1 and r greater than the correlation length ξ at any
density, or all r at ρ → 0+,

δFN (r) = kBT χ∞
T

N
, (4)

where χ∞
T = S(0) is the reduced isothermal compressibility

of an open system [in the thermodynamic limit (TL), that
is N, L → ∞, while ρ is constant], which shares the same
equilibrium state [47].

There is a great number of research articles in the literature
attempting to determine short- or long-range behaviors of the
RDF in order to understand a wider range of phenomena,
such as the wetting phenomenon [50,51]. It has rigorously
been shown for a system in equilibrium with an interparticle
potential which either decays faster than a power law or is
truncated at a finite cutoff radius, the RDF for r > rc, where
0 < rc < ξ is the cutoff radius or the (effective) range of the
pair potential energy, u(r), is given by (in the TL) [52–55]

g(r) = 1 +
(

Rξ cos βξ r

2πr

)
e−r/ξ , (5)

where Rξ is the residue of the Fourier transform of [g(r) −
1] corresponding to the pole(s) with the smallest positive
imaginary part and βξ is some (real) constant. Equation (5)
shows r[g(r) − 1] in equilibrium decays asymptotically to
zero exponentially, either monotonically (with βξ = 0) or si-
nusoidally (with βξ �= 0) [56–58].

In the canonical ensemble, the average entropy 〈SN 〉 of
an atomic fluid at a temperature T with N indistinguishable
atoms, described by the canonical space and momentum co-
ordinates (r1, p1), . . . , (rN , pN ), can be calculated from the

generalized Gibbs-Shannon formula [59,60]:

〈SN 〉 = − kB

N!

∫
dr1dp1 . . . drN dpNPN ln [h3NPN ], (6)

where PN is the (unnormalized) phase-space probability den-
sity, kB is the Boltzmann’s constant, h is the Planck’s constant,
and N! accounts for indistinguishability of particles. If HN , the
total Hamiltonian, separates into additive terms for the poten-
tial and kinetic energy, the phase-space probability density can
be factorized as

PN = gN (r1, . . . , rN )
N∏

i=1

f1(pi ), (7)

where f1(pi ) is the one-particle momentum probability
density:

f1(pi ) = ρ(2πmkBT )−3/2e−|pi|2/2mkBT . (8)

Equation (7) serves as a definition for the N-particle posi-
tional distribution function, gN (r1, . . . , rN ); physically, it is
a measure of the joint probability of finding the particle 1 at
position r1, . . . , and particle N at position rN . Utilizing the
generalized Kirkwood superposition approximation, one can
factorize gN (r1, . . . , rN ) as [61,62]

gN (r1, . . . , rN ) = gN (r1, r2) × · · · × gN (rN−1, rN )

× δgN (r1, r2, r3) × · · · × δgN (r1, . . . , rN ),
(9)

where, for example,

δgN (r1, r2, r3) ≡ gN (r1, r2, r3)

gN (r1, r2)gN (r1, r2)gN (r2, r3)
.

By substituting Eq. (7) into Eq. (6) and using Eqs. (8) and (9),
an entropy expansion is obtained, which is well approximated
by [63–68]

〈SN 〉 = 〈
Sid

N

〉 + S(2)
N (10)

for high (near the freezing point) and near-zero densities,
where the first term on the right-hand side (RHS) is the
ideal-gas mean entropy and the second term is the two-body
(excess) entropy.

For a homogeneous and isotropic fluid, one can express the
two-body (excess) entropy in terms of the RDF [69] and w [by
using Eq. (2)]:

S(2)
N = Nρ

2T

∫
dr gN (r)wN (r) − NkB

2
. (11)

Substituting wN (r) in Eq. (11) with the expression in Eq. (3),
the following expression is obtained:

S(2)
N = 〈UN 〉

T
+ δS(2)

N − NkB

2
, (12)

where 〈UN 〉 is the system’s total potential energy, NkB/2 is the
entropy contribution of the canonical ensemble, and

δS(2)
N = Nρ

2T

∫
dr gN (r)δFN (r), (13)

which is the solvent entropy contribution and referred to as
the residual two-body (excess) entropy. For low densities, one
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can show for N � 1

lim
ρ → 0+

δS(2)
N = NkBχ∞

T

2
(14)

by direct substitution of Eq. (4) into Eq. (13). Utilizing
Eqs. (12) and (14), the near-zero density limit of Eq. (10) can
be written for N � 1 as

lim
ρ → 0+

〈SN 〉 = 〈
Sid

N

〉 + 〈UN 〉
T

+ NkB

2

(
χ∞

T − 1
)
. (15)

In the ideal-gas limit, 〈UN 〉 = 0 and χ∞
T = 1.

III. THEORY

A closed system is in thermodynamic equilibrium, pro-
vided that its Helmholtz free energy is globally mini-
mized [70,71]. The Helmholtz free energy for a system in
contact with a heat bath is mathematically defined as [72,73]

FN := 〈EN 〉 − T 〈SN 〉, (16)

where 〈EN 〉 = 〈Eid
N 〉 + 〈UN 〉 is the sum of the kinetic and

potential energy and −T 〈SN 〉 is the mean heat exchanged
between the system and its environment. Replacing 〈EN 〉 and
T 〈SN 〉 with their equivalent expressions in Eq. (16) and using
Eq. (12), the following expression for a closed NV T system
at high (near-freezing) or near-zero densities is obtained:

FN = F id
N (T ) + T

[
NkB

2
− δS(2)

N

]
, (17)

where F id
N (T ) is the ideal-gas Helmholtz free energy.

The system relaxation time, denoted τsys, is defined as
the inverse rate of approach to (thermodynamic) equilibrium.
Based on Eq. (17), the Helmholtz free energy equilibrates
once the temperature T and residual two-body excess entropy
reach equilibrium. Thus, for such systems,

τsys = max(τT , τδS ), (18)

where τT and τδS are the relaxation times for the temperature
T and residual two-body excess entropy, respectively. In sta-
tistical mechanics, the (kinetic) temperature T can be defined
via the equipartition theorem [74] as the mean kinetic energy
per atom (T := 2〈Eid

N 〉/3NkB). It is, therefore, a local quantity
which should, in general, equilibrate faster than the residual
two-body entropy, whose equilibration depends on the equili-
bration of all the particles’ positions within the system (at least
for local and particlewise thermostating). Thus we typically
always have τδS > τT and

τsys = τδS. (19)

In nonequilibrium thermodynamics [75], the definition of
entropy, i.e., Eq. (6), is also used for systems near equilibrium.
However, this assumption may not be valid for systems in
which the local equilibration hypothesis is never satisfied,
such as in glasses [76,77]. For nonglassy (atomic) systems
in contact with a local thermostat, such as the Langevin or
dissipative particle dynamics (DPD) thermostat, one would
expect the temperature T is equilibrated before local equili-
bration is reached (for systems with local thermostats, in local
equilibrium, temperature is in global equilibrium, whereas
structure is in local equilibrium). Hence, for such systems,

Eq. (13) is generalized for t > τT , ensuring the systems have
most likely reached local equilibrium, as

δS(2)
N (t ) = Nρ

2T

∫
dr gN (r, t )δFN (r, t ), (20)

with

gN (r, t ) = e−wN (r,t )/kBT = e−u(r)/kBT e−δFN (r,t )/kBT , (21)

where the second line comes from generalizing Eq. (3). Equa-
tion (20) implies that τδS is equal to τδF , the relaxation time for
δFN (r, t ). Thus, for nonglassy atomic systems at near-freezing
or zero densities, τsys = τδF [refer to Eq. (19)].

In generic physical systems, it may not be always feasible
to model the relaxation processes of dynamical quantities with
an exponentially decaying function, especially when those
systems undergo at least one phase transition. Nonetheless,
one would expect that most of the effects of phase transitions
on relaxation processes disappear once local equilibrium is
reached. If δFN (r, t ) in Eq. (21) is substituted with (the expo-
nential ergodicity hypothesis [78])

δFN (r, t ) = δFN (r) + δF ′
N (r)e−t/τδF (22)

(for t > τT ), where the second term on the RHS indicates the
extra (positive or negative) adiabatic work needed in nonequi-
librium conditions to bring the two particles from infinity to a
distance r, the instantaneous RDF for a nonglassy system (at
any density) is written as follows:

lim
t > τT

gN (r, t ) = gN (r)eαN (r)e−t/τδF

= gN (r){1 + αN (r)e−t/τδF + O(e−2t/τδF )},
(23)

where

αN (r) := −δF ′
N (r)

kBT

is a signed dimensionless physical quantity including
nonequilibrium (structural) information. In the above Taylor
series, the higher-order terms are neglected as they decay
much faster than the first two terms in the brackets. This paper
is only concerned with situations in which N � 1. Hereafter,
we drop the subscript N from all the quantities to stress finite-
size effects are negligible for N � 1.

In computer simulations, if the initial structure is more
expanded compared to the final structure, one would expect
δF ′ to be, on average, positive (equivalent to α < 0). This
is because the initial number density distribution is more
uniform than it should be. Consequently, less spots are, on
average, available to bring two atoms from infinity to a dis-
tance r without disrupting the structural stability. Hence one
needs some extra positive work to make space for them. On
the other hand, if the initial structure is more compacted than
the final structure, one would expect δF ′ to be, on average,
negative (equivalent to α > 0). This is because there will be
more marginal space initially available (in the simulation box)
than in the final state, which makes moving two atoms from
infinity to a finite distance without changing the position of
other atoms more likely, leading to on average less total (adia-
batic) work or δF ′ < 0 [refer to Eq. (22); δF (r, t ) < δF (r) ⇒
δF ′ < 0].
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Equation (23) can be further simplified to (at any density)

lim
t > τT

lim
r > ξ

g(r, t ) = 1 + α e−t/τδF (24)

since, for r > ξ , the RDF g(r) ≈ 1 and α(r) is expected to
be (effectively) r independent, provided the structural effects
of the system-thermostat coupling are small enough in order
not to significantly perturb the system’s natural dynamics. At
near-zero densities, ξ ≈ rc and τδF ≈ τsys. Substituting these
values for near-zero densities in Eq. (24) gives

lim
t > τT

lim
r > rc

g(r, t ) = 1 + α e−t/τsys . (25)

The sign of α determines how the RDF (during equilibration)
decays to one in time. Equation (25) is of particular signifi-
cance since it can be used to study (possible) effects of initial
structural inhomogeneity on α and the time for the system
relaxation process τsys in the Langevin model. In principle,
Eq. (25) can also be used at high densities (near the freez-
ing point) for r > ξ ( �= rc). In practice, τsys decreases with
increasing number density ρ at a constant temperature [79].
Hence it is more difficult to observe the (long-range) evolution
of the RDF in time at high densities compared to near-zero
ones. We mainly focus on dilute systems in this paper.

IV. METHODOLOGY AND SIMULATION DETAILS

This article deals primarily with how the initial structure
can affect the system relaxation time in the Langevin model.
For this purpose, we performed many molecular-dynamics
(MD) simulations utilizing the LAMMPS software package [80]
and computed the time-averaged RDF, g(r), after the system’s
temperature T is relaxed for three different well-known and
well-used initial structures. The pair potential energy u(r) is a
truncated and shifted 6-12 Lennard-Jones (LJ) potential:

u(r) =
{

VLJ (r) − VLJ (rc), for 0 < r � rc,

0, for r > rc,
(26)

where rc = 2.5σ is the cutoff radius, and

VLJ (r) = 4ε
[(σ

r

)12
−

(σ

r

)6]
,

with σ and ε being the effective atomic radius and the dis-
persion energy (depth of the potential well), respectively. The
6-12-LJ equation approximates well the interactions in the
noble massive gases (e.g., Ar and Kr), whose interactions are
dominated by van der Waals forces. Note that the constant
term VLJ (rc) in the above equation is added to avoid any
discontinuity at r = rc in the potential, leading to an impulsive
contribution to the (thermodynamic) pressure [81].

In a computer experiment, it is often convenient to express
physical quantities in units other than the SI units. For ex-
ample, expressing these quantities in LJ reduced units allows
one to benefit from the corresponding-states principle [82].
For the LJ reduced units, kB = m = σ = ε = 1. Also, using
LJ reduced units reduces the floating-point –round-off error
(caused by the limited precision of computational processors)
as parameters are of order one [81]. We note that all the
physical quantities quoted below are in LJ units.

A pure monatomic fluid at number density ρ0 = 3.95 ×
10−2 = ρAr

cr /8 << 1 (ρAr
cr is the critical density of argon) was

simulated in the Langevin canonical ensemble with zero total
linear momentum and with periodic boundaries to remove
surface effects. In Refs. [83,84], it is shown that, in MD
experiments with zero total linear momentum and periodic
boundaries, the infinitesimal Galilean boost is conserved,
which ensures each atom remains an inertia reference frame.
In the Langevin model, the equation of motion for the ith
particle relative to the system center-of-mass reference frame
(RCM = 0) is given by [85]

r̈i(t ) = Fi + gi(t ) (i = 1, 2, . . . , N ), (27)

where Fi is the net conservative force on the ith particle and
gi(t ) is a fictitious force, which modifies the dynamics of the
system to account for the presence of the Langevin thermostat.
gi(t ) is responsible for the variations leading to the system
thermalization and is given by [85]

gi(t )dt = −γ ṙi(t )dt +
√

2γ T dWi(t ), (28)

where γ > 0 is the Langevin coupling constant and dWi is a
vector of independent Wiener processes satisfying

〈dWi j (t )dWkl (t
′)〉 = δikδ jlδ(t − t ′)dt, 〈dWi j (t )〉 = 0,

( j, l = x, y, z) and (i, k = 1, . . . , N ),
(29)

where δ(t − t ′) is the Dirac delta distribution, δik/ jl is the
Kronecker delta function, and 〈. . . 〉 indicates an average over
an ensemble of simultaneous, independent, and similar exper-
iments.

In our computer experiments, the equations of motion (27)
are integrated numerically utilizing the GJF-2GJ algorithm,
which is quite accurate, especially for the kinetic sampling of
the phase space [86]. It has also been proven that the GJF-
2GJ algorithm is capable of providing exact thermodynamic
responses for constant and harmonic potentials for any time
step size δt within the Verlet stability criteria. In the GJF-2GJ
algorithm, the atom’s velocities are computed at middle points
of time steps. The ith atom’s half-step velocity relative to the
system’s c.m. (Rc.m. = 0) is then given by [87]

vi

(
t + δt

2

)
= ri(t + δt ) − ri(t )√

bδt
(i = 1, 2, . . . , N ), (30)

where ri is the on-site atomic position, δt is the time step size,
and

b =
(

1 + γ δt

2

)−1

(31)

to preserve semisymplecticity. In computer experiments, the
resulting equilibrium distributions are different from the true
theoretical distributions as a result of discretization or trun-
cation errors [88,89]. To avoid losing physical information
due to such systematic errors, the time step should be much
smaller than the inverse of the fastest vibrational frequency in
the system. In this paper, we chose δt = 0.0007. Note that,
in numerical calculations with computers, the roundoff error
∝1/δt [90].

We first created N1 ∼ 105 LJ particles at temperature T =
0 in the form of a face-centered cubic crystal, consisting
of 433 cells with lattice constant a = (4/ρ0)1/3 = 4.66 and
locating at the center of a simulation box with a volume of
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FIG. 1. 2D illustration of the initial structures. (a) Marginally
inhomogeneous structure (fcc crystal). (b) Uniform structure (fcc
crystal). (c) Uniform structure (amorphous solid).

V = (45a)3. This structure is slightly marginally inhomoge-
neous in the number density of atoms [see Fig. 1(a)] due to
the empty gap around the system’s edges. Then, we created
N2 ∼ 105 LJ particles under the same conditions, except this
structure now fills the entire simulation box. Such a structure
is macroscopically homogeneous in the number density of

particles [see Fig. 1(b)]. Both of these initial structures are
commonly used in MD simulations. The second for the rea-
son that macroscopically homogeneous densities are expected
to be desirable initial conditions and the first as a common
approximation to the second without having to worry about
lattice commensurability effects at the periodic boundaries.
For Fig. 1(b), LAMMPS is careful to put only one particle
at the boundaries to avoid any unwanted atom overlap (using
the box style of the create_atoms command in LAMMPS).

Unless otherwise stated, for each case, the phase-space
trajectories were first run for te = t = 175 to equilibrate the
system’s temperature at a supercritical temperature T = 3.936
for a few multiples of a basic Langevin thermal coupling
constant of γ = γ0 = 5/7. As will be confirmed in the next
section, te = 175 (�τT ) is more than enough time to equili-
brate the system’s temperature for all the γ values used. The
trajectories were then run for a duration of tpro = t = 525
so as to calculate the (time-averaged) RDF, g(r), up to a max-
imum distance of rm = 10rc = 25. Finally, to ensure that the
results are not limited to only those systems with crystalline
initial structures, we also performed a number of extra MD
simulations with amorphous initial structures (randomly dis-
tributed particles), which occupied the entire simulation box
[see Fig. 1(c)]. This is the only distinction between the second
and third batches of simulations. It should also be noted that
this kind of initial structure is typically (energetically) un-
stable because randomly generated particles are often highly
overlapped. Therefore, we had to perform a local preenergy
minimization using the conjugate-gradient (CG) algorithm for
t � 2.1 for this initial state.

Measurement of the time-averaged RDF

In an MD experiment, the time-averaged RDF is measured
as follows. First, a random atom is selected. Next, the algo-
rithm computes δn(r, t ). Then, the algorithm increases the
distance from r to r + δr and does exactly the same mea-
surements [91]. This procedure continues until r reaches its
maximum, that is, rm = 10 × rc = 25. The algorithm repeats
the whole process for another randomly chosen atom and so
on. In the end, the algorithm determines the instantaneous
RDF, defined as

g(r, t ) := 1

4πNρ0r2

N∑
i=1

δni(r, t )

δr
, (32)

where the summation is over particles and δni(r, t ) is the
number of particles within the spherical shell of thickness
δr = 25/256 centered at the ith atom between time t and
t + δt . The time-averaged RDF is computed by averaging
g(r, t ) over time:

g(r) = δt

tpro

tpro/δt∑
j=1

g(r, te + jδt ), (33)

with te = 175 and tpro = 525 being the equilibration and pro-
duction time, respectively. In the previous section, we derived
an (approximate) expression for g(r, t ) for r > rc and t > τT .
By substituting Eq. (24) into Eq. (33), one finds that, if the
system is not well equilibrated, the time-averaged RDF under-
goes a shift. For high (near the freezing point) and near-zero
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densities,

lim
te > τT

lim
r > ξ

[g(r) − 1] = A e−te/τsys, (34)

where ξ ≈ rc at low densities, and

A = − δF ′

kBT

τsys

tpro
(1 − e−tpro/τsys ) ∝ −δF ′.

In Langevin dynamics, Eq. (34) may be generalized as fol-
lows to incorporate effects of the system-thermostat coupling
(weak coupling):

lim
te > τT (γ )

lim
r > ξ

[g(r) − 1] = A(γ )e−te/τsys (γ ). (35)

In this paper, we study Eq. (35) for some (common) values of
γ (∼1) to see how the RHS may respond to the three well-
used initial structures in a molecular-dynamics simulation.

V. RESULTS AND DISCUSSION

A. Temperature relaxation time

In Fig. 2(a), we plotted the evolution of instantaneous tem-
perature T for the homogeneous crystalline structure shown in
Fig. 1(b) for some multiples of a Langevin coupling constant,
γ0 = 5/7 = 1/2000δt , to demonstrate the system is in thermal
equilibrium for all t � 175. This figure shows the stronger the
temperature coupling between the system and the Langevin
thermostat, the faster the system reaches thermal equilibrium.
As expected, for an exponentially ergodic system, the time
evolution of quantities, such as temperature T , can be ap-
proximated and well fitted by an exponential curve [22]. The
relaxation time for quantity X , denoted by τX , is then the
(characteristic) time constant of the fitted exponential func-
tion. We have computed the temperature relaxation time for
some γ values and plotted them versus (γ )−1 in the inset. As
is expected, the temperature relaxation time τT varies linearly
with the inverse of the thermostat coupling constant γ as
τT ≈ (γ )−1/2. In Langevin dynamics, by using Ito’s Lemma
Chain Rule [92], we obtain the following expression for the
system’s kinetic temperature T during equilibration [85]:

〈T (t )〉 = (Ti − Tf )e−t/τT + Tf , (36)

where τT = 1/2γ is the temperature relaxation time and Tf

(Ti) is the final (initial) equilibrium temperature. For this
paper, Ti = 0 and Tf = 3.936 = 3 × T Ar

cr (T Ar
cr is the critical

temperature of argon).
In Fig. 2(b), similar to the homogeneous structure, we plot-

ted the temporal evolution of temperature during the system’s
temperature equilibration for the same γ values, but now for
the inhomogeneous structure shown in Fig. 1(a). Then, we
have calculated the temperature relaxation time for each γ

and plotted them versus 1/γ in the inset. As expected, the
temperature relaxation time varies with the Langevin coupling
constant γ as τT ≈ 1/2γ , which is in excellent agreement
with Eq. (36). The simulations with the amorphous initial
structure [see Fig. 1(c)] also show the same outcomes (not
displayed here). From the above figures, it is clear that te =
175 � τT and the temperature relaxation time is independent
of the initial structure in Langevin dynamics.

FIG. 2. Temporal evolution of the instantaneous (kinetic) tem-
perature T during the equilibration phase for both kinds of initial
structures and some multiples of γ0 = 5/7. As can be observed, the
higher the value of the Langevin coupling constant γ , the faster
the system reaches thermal equilibrium. Both insets depict that the
(kinetic) temperature relaxation time, τT , varies linearly with 1/γ . To
be precise, τT ≈ 1/2γ . (Note that all the values are in the LJ units.)
(a) Uniform initial structure. (b) Marginally inhomogeneous initial
structure.

B. Examining Eq. (35)

For dilute systems and r > rc we expect [g(r) − 1] to be
infinitesimally small if the system is fully equilibrated. To
make any deviation from the equilibrium more easily visible,
in this section, we plot r[g(r) − 1], instead of [g(r) − 1] (i.e.,
we scale it by r). For Fig. 3(a), we plotted r[g(r) − 1] for the
case of the uniform structure of Fig. 1(b), the equilibration
time te = 175 � τT , and some multiples of γ = γ0 ≈ 0.7.
This figure demonstrates that the RDF is independent of
γ for te = 175. Thus te � τsys for γ = γ0, 2γ0, 4γ0 [based
on Eq. (35)]. At a very high value of γ = 70γ0 (= 50), we
found that the RDF is slightly out of equilibrium (not shown),
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FIG. 3. r[g(r) − 1] for both kinds of initial structures, te = 175,
and some multiples of γ0 = 5/7. These figures reveal that, although
for the uniform initial structure r[g(r) − 1] is independent of γ

at thermal equilibrium, it is, indeed, highly γ dependent for the
marginally inhomogeneous initial structure. (Note that the insets are
a zoomed-in version of the figures and all the values are in the LJ
units.) (a) Uniform initial structure. (b) Marginally inhomogeneous
initial structure.

which means the system relaxation time τsys has increased for
γ = 70γ0 such that te is not much longer than τsys anymore.
Afterwards, we repeated the simulations for the case of the
randomly dispersed structure of Fig. 1(c). As is expected, we
found exactly the same behavior for r[g(r) − 1] (not shown
here). This would suggest that the system relaxation times of
initial structures which are, on average, uniformly distributed
throughout the simulation box are of the same order and
only weakly dependent on the Langevin coupling constant
(increasing behavior).

In Fig. 3(b), we plotted r[g(r) − 1] for the initial struc-
ture of Fig. 1(a) and the equilibration time te = 175 (�τT ;
the system is assumed to have already reached local thermal

equilibrium) and some multiples of γ0 = 5/7. As is expected
from Eq. (35), lim r > rc r[g(r) − 1] is γ dependent in local
equilibrium. In particular, lim r > rc r[g(r) − 1] varies linearly
with a γ -dependent slope for weak thermal couplings and
nonlinearly for strong thermal couplings. Such deviation from
zero is because (structural) entropy is not maximal and τT <<

te < τsys. By comparing these two figures, we can conclude
(hom: homogeneous; inhom: inhomogeneous)

τ inhom
sys � τ hom

sys . (37)

Therefore, an initial small marginal inhomogeneity in the
Langevin model significantly increases the time required to
equilibrate the system’s structure. Further, increasing the
Langevin constant (which reduces the thermal equilibration
time) makes the equilibration significantly worse. The in-
homogeneity in the marginal inhomogeneous initial state is
primarily of a long-wavelength nature and the Langevin ther-
mostat suppresses or slows down the evolution of the periodic
and long-wavelength density fluctuations needed to equili-
brate these modes.

In Fig. 4(a), we plotted r[g(r) − 1] for the inhomogeneous
structure for γ = 2γ0 = 10/7 and several multiples of te =
175. This figure clearly reveals that the slope decreases with
increasing the duration of the equilibration phase, i.e., te.
Hence the nonzero slope is basically because the amount of
the equilibration time is not enough to equilibrate the system’s
structure. Next, in Fig. 4(b), we plotted the evolution of the
slope with the equilibration time for γ = γ0, 2γ0. We found
that the slope varies with te in an exponential manner in local
equilibrium, as exactly predicted in Eq. (35). In Fig. 4(b),

Slope =
∫ rm=25

rc=2.5 [g(r) − 1]dr

rm − rc
= A(γ )e−te/τsys (γ ), (38)

where A(γ ) was found to be positive. The numerical results
obtained from Fig. 4(b) for τsys(γ ), i.e., τsys(γ0) = (0.013)−1

and τsys(2γ0) = (0.006)−1 ≈ 2 × τsys(γ0), suggest an increas-
ing behavior for the system relaxation time with increasing
the Langevin constant γ . This is in contrast to the (kinetic)
temperature relaxation time τT , which we saw decrease with
increasing γ [τsys(γ ) ∝ γ vs τT (γ ) ∝ 1/γ ]. This increasing
behavior was, indeed, predictable due to the structural disrup-
tive effect caused by the Langevin thermostat.

In Fig. 5, we plotted the RDF for γ = γ0 at instant t =
2.8 = 4τT (γ0) for both homogeneous [see Fig. 1(b)] and in-
homogeneous [see Fig. 1(a)] initial structures. As is seen, in
the marginally inhomogeneous case, unlike the uniform one,
g(r) approaches one in time from above over the system’s
relaxation. To be specific, based on Eq. (35), for the inho-
mogeneous structure (i.e., the compacted structure), A > 0,
and for the homogeneous case (the more expanded structure),
A < 0. This sign change was, indeed, predictable since A ∝
−δF ′, the extra (positive or negative) adiabatic work to move
two atoms during the structural equilibration from infinity to
a distance r. In the Theory section, we showed that the sign of
δF ′ depends on the initial structure and in the inhomogeneous
case, unlike the uniform one, it is negative (δF ′

inhom < 0). This
sign change can be considered as the second effect of initial
structural inhomogeneity on the system structural relaxation.
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FIG. 4. (a) Plot of r[g(r) − 1] versus r for γ = 2γ0 = 10/7 and
some multiples of te = 175. As seen, the long-range slope decreases
continuously with increase of the equilibration time. (Note that
the inset is a zoomed-in version of the figure and all the values
are in the LJ units.) (b) The slope of lim r > rc r[g(r) − 1] vs the
equilibration time te for γ = γ0 = 5/7 and 2γ0 = 10/7. The dotted
and dashed lines are the exponential fits to the data from our MD
simulations. The time constant of each exponential fit is the system
relaxation time [based on Eq. (35)]. (a) Nonuniform initial structure.
(b) Nonuniform initial structure.

[g(r, t ) graphs evolve in the directions shown in Fig. 5 before
the system reaches equilibrium.]

Finally, to confirm that the low-density results are also
applicable to higher densities, we have plotted r[g(r) − 1] in
Fig. 6 at density ρ = 16 × ρ0 for homogeneous [Fig. 1(b)]
and inhomogeneous [Fig. 1(a)] initial structures, γ =
γ0, 2γ0, 4γ0, te = 7 � 10τT , and tpro = 4.9 � 7τT . As ex-
pected, the homogeneous graphs, unlike the inhomogeneous
ones, are all fully equilibrated for the same values of te and
tpro. Hence one would conclude, assuming exponential ergod-
icity, τ inhom

sys > τ hom
sys (and ↑ τsys ∼ ↑ γ ) also holds at higher

FIG. 5. How and in which direction the RDF evolves over time
for two different initial structures at instant t = 2.8. The RDF
graph for the inhomogeneous case, unlike the homogeneous one,
approaches one from above, which is the consequence of initial
structural inhomogeneity. (Note that all the values are in the LJ units.)

densities. An interesting point about this figure is that limr>ξ A
for γ = 4γ0 = 2.86 (similar to the case of γ = 70γ0 = 50 at
ρ = ρ0) is r dependent for r > ξ ; this is because this system is
now in the Brownian dynamics regime, that is, strong thermal
couplings. These observations imply that, at higher densities,
the minimum γ value required for Brownian dynamics is
smaller than that for low densities. Figure 6 demonstrates the
validity of our theory and its predictions at high densities.

FIG. 6. r[g(r) − 1] at density ρ = 16 × ρ0 = 0.632 for both
kinds of initial structures, te = 7, tpro = 4.9, and some multiples of
γ0 = 5/7. This figure demonstrates the RDF in all the homogeneous
cases is fully equilibrated regardless of the value of γ . However, for
the marginally inhomogeneous cases, r[g(r) − 1] is γ dependent,
indicating the RDF has not been well equilibrated. (Note that the
inset is a zoomed-in version of the figure and all the values are in the
LJ units.)
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VI. CONCLUSION

In this paper, we found that the system relaxation time
is not always independent of the initial state in molecular-
dynamics simulations. In particular, in Langevin dynamics,
for a marginally inhomogeneous initial structure compared
to macroscopically homogeneous initial structures, the rate
at which the structure equilibrates is much lower. This
is probably because imposing marginal inhomogeneity in
a system under periodic boundary conditions introduces
long-wavelength inhomogeneous modes whose fluctuations
are suppressed by the Langevin thermostat thereby slow-
ing equilibration. While these results might seem intuitive,
we have placed them on a solid analytical foundation in
this paper. In addition, we found initial structural inhomo-
geneity makes the RDF approach 1 (in time) from above
at large distances. These effects of initial structural inho-
mogeneity in the Langevin NV T ensemble should be taken
into account while investigating the structural evolution of
systems at near-zero and high densities in (MD) simula-
tions. As DPD and Langevin thermostats are similar [93],
we would expect almost the same behaviors for the DPD
thermostat.

This paper showed that the structural relaxation time,
unlike the temperature relaxation time τT , is an increasing
function of the Langevin constant, γ , in Langevin dynamics.
In (MD) simulations, to ensure the equilibration time te is
enough for the system to equilibrate at low or high densities,
one should plot r[g(r) − 1] for r > ξ [ξ denotes the (effec-
tive) correlation length]. Any state- or thermostat-dependent
(non)linear behavior in r[g(r) − 1] indicates the system has
not equilibrated properly and hence some nonequilibrium val-
ues might have leaked into the equilibrium time averaging
of dynamical quantities, which leads to unreliable averaged
equilibrium values.

The data that support the findings of this study are available
within the article in the figures.
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