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A microscopic theory of molecular motion in classical monatomic liquids, proposed by Glass and Rice
[Phys. Rev. 176, 239 (1968)], is revisited and extended to incorporate the dynamic friction in the Brownian
description of the atomic diffusion in a mean-time-dependent harmonic force field. A modified, non-Markovian
Langevin equation is utilized to derive an equation of motion for the velocity autocorrelation function with
time-dependent friction coefficient. Numerical solution of the equation gives an excellent account of the velocity
autocorrelation function in Lennard-Jones liquids, liquid alkali, and transition metals over a broad range of
density and temperature. Derivation of the equation of motion leads to a self-consistent expression for the
time dependence of friction coefficient. Our results demonstrate that the nature of time dependence of the
friction coefficient changes dramatically with the liquid density. At low and moderate densities, the dynamic
friction decays exponentially whereas it increases exponentially at high liquid densities. Our findings provide an
opportunity for a different outlook of the Brownian description of atomic dynamics in liquids.
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I. INTRODUCTION

Theories for the description of the atomic motion in liquids
are invariably linked directly or indirectly to the Brownian
motion. The earliest theories of Brownian motion are credited
to Einstein (1905) [1] and Smoluchowski (1906) [2], who
established a connection between equilibrium fluctuations and
viscous friction to obtain the diffusion coefficient of a large
Brownian particle in a fluid. However, it was Langevin’s
classical theory [3] that provided a mathematically coherent
framework encompassing the effect of thermal fluctuations
on macroscopic dynamics. A detailed statistical-mechanical
treatment of Brownian motion and the Langevin theory can
be found in a nice pedagogic review by Chandrasekar [4].
The essential concepts of the Langevin approach, though quite
well known, are necessary to be highlighted here in the con-
text of the problem to be addressed in the present work. In the
Langevin equation of motion for a massive Brownian particle,
the force acting on it is split into two parts: the first being the
systematic viscous drag due to the molecular friction and, the
second rapidly fluctuating force due to collisions of the atoms
of the fluids with the particle. It is assumed that the fluctuating
force is completely random (white) and, it is not correlated
to the instantaneous velocity of the particle. Both of these
assumptions do not necessarily remain valid for the Brownian
particles with the mass same as that of the surrounding fluid
atoms because the timescale for the motion of the Brown-
ian particle becomes similar to the characteristic timescales
(∼10–13–10–12 s) of atomic dynamics in the fluid. In such
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cases, nonrandom time-dependent intermolecular forces do
exist in the fluids [5,6]. Moreover, the viscous drag relies on an
empirical friction constant which is usually obtained using the
Stokes law suggesting overdamped motion at long times. In
reality, friction is generally a time-dependent quantity owing
to its origin from conservative intermolecular forces in the
fluid, and understanding its origin still remains one of the open
challenges of the physics of fluids [7].

Kirkwood’s generalized Brownian theory for liquids and
solution was the first systematic approach that gave an explicit
relationship between the friction constant and the intermolec-
ular forces [8]. Mori [9] and Kubo [10] derived a generalized
Langevin equation by taking into account the nonrandomness
in the force acting on the Brownian particle and the retarded
effect of the frictional forces in terms of a time-dependent
friction coefficient. As atomic motion in liquids closely con-
formed to the vibratory motion interspersed with diffusive
motion revealed by the slow neutron-scattering experiments,
several phenomenological models were proposed by consid-
ering the Brownian motion of the atoms in a nonrandom force
field. Most notable among these models are the simple har-
monic well (SHW) model [11], the itinerant oscillator model
[12,13], a stochastic model [14], and hindered-translator
model [15]. These models are based on an underlying assump-
tion of solidlike behavior of the liquids at very short timescale
and it also assume static nonrandom force field. A disordered
solidlike picture of a liquid was also the basis of Zwanzig’s
idea of describing the atomic motion as oscillations about a
local minimum on the potential-energy surface and character-
izing the self-diffusion process as infrequent jumps between
different local minima [16]. This approach, which differs con-
ceptually from the kinetic theory, has been reformulated in
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many different ways. The most famous of these, the instanta-
neous normal modes (INM) approach [17–19], has been found
to be very useful for analyzing the short-time dynamics of
liquid and has also been extended to study the self-diffusion.
Despite its ability to provide quantitatively accurate results for
self-diffusion coefficients in a variety of liquids, it has been
often criticized due to some inherent ambiguities related to
the self-diffusion process in the configuration space [20,21].
To circumvent such issues in the description of the short-time
dynamics as well as self-diffusion in liquids, hybrid theories
and models [22–25] have been formulated by combining the
kinetic theory and the INM approach. Most of these models
and theories, involving assumption of quasiphonon excitation,
are too complex in formulation and provide an elusive physi-
cal picture of microscopic motion in liquids.

A more realistic description of the molecular motion in
liquids has been given by the microscopic theory proposed
by Glass and Rice (GR) [26]. It is devoid of the assumption
of the quasiphonon excitation and limitations of the kinetic
theory. It addresses the nonrandom time-dependent forces in
the liquid by considering a Brownian particle diffusing in a
mean time-dependent force field and introducing an additional
systematic force term to the Langevin equation (see Sec. II).
The idea is based on the work of Rice and co-workers [27],
where two forces are identified as (i) a rapidly fluctuating
force arising from the molecular motion in the soft long-range
part of the intermolecular potential, and (ii) the short-range
strongly repulsive forces during core collisions leading to the
“backscattering” of the molecules. The core collisions are
assumed to be dynamically uncorrelated. While the assump-
tion about the rapidly fluctuating forces is retained in the GR
theory, it considers the strongly repulsive core collisions to
be dynamically correlated and its effects are represented by a
time-dependent average force field. Decay of this mean force
is associated with the molecular relaxation time. The modified
Langevin equation has been utilized to derive an equation
of motion in terms of the velocity autocorrelation function
(VAF). It involves two rate parameters related to two different
characteristic timescales. One corresponds to the molecular
relaxation rate, α, which corresponds to the time for which an
atom remains in the same local environment (nearest-neighbor
cage). The associated time is different from the Maxwell
relaxation time (τ ) and similar to Frenkel’s interpretation as
the average time for which the molecule remains attached
to the same equilibrium position [28]. It is equivalent to the
time for which a local relaxation event involving large-scale
rearrangement of cage atoms lasts, and it is on the order
of the Debye vibration period τ0 ≈ 0.1 ps [29]. It has also
been interpreted as an attempt time to undergo relaxation
events over some typical length scale [30]. Although τ ≈ τ0 at
high temperatures, τ ≈ 103 s at the glass transition [29]. The
other timescale is related to the friction constant, β, which
represents the damping of the oscillatory motion of the atoms
inside the nearest-neighbor cage on account of backscattering
from the wall of the cage. To obtain an analytical solution
of the equation of motion, i.e., VAF, GR assumed α and β

to be equal. It stems from a physical point of view that the
decay of the mean force results from the loss of correlation
among the surrounding atoms of the first coordination shell
due to diffusion. This assumption is quite reasonable for a

monatomic, homogeneous liquid at low density where the
relaxation times for all the atoms are same. The GR model
gives VAF for liquid argon that agrees well with the computer
simulation result [31] up to the backscattering region. But, the
subsequent oscillations are absent. It primarily implies that
the assumption of α being equal to β misses some important
physics of atomic dynamics. This point has been emphasized
in the studies of the atomic dynamics in liquid metals and
alloys where a generalized GR solution is provided subject
to the more realistic condition α �= β [32]. The reported VAF
results indicate that the generalized GR solution also fails to
give a good quantitative account of the backscattering region
and the subsequent oscillations.

In the present study, we revisit the GR theory to find
any shortcomings in its formulation which, if addressed ad-
equately, would provide better quantitative results and hence,
a better description of the molecular motion in liquids. Appar-
ently, the first shortcoming is the assumption of the friction
coefficient (β) to be independent of time. It is questionable
when the mass of a Brownian particle is similar to the sur-
rounding particles. It also misses capturing the possible effects
of the dynamic correlations on molecular friction. In fact, GR
themselves suggested the possible extension of their approach
to include the dynamical friction for the case where the period
of oscillation of the long-range, rapidly fluctuating soft forces
is not sufficiently short [26]. We show that the incorporation
of time-dependent friction in GR theory leads to an equation
of motion in terms of VAF with its solution encompassing
three possible physical scenarios for the time dependence
of molecular friction. The remaining paper is organized as
follows. The essential concepts of the GR theory, which is
necessary for the present work, are summarized in Sec. II.
Section III deals with the derivation of the modified equa-
tion of motion in terms of VAF incorporating time-dependent
friction. The results of VAFs for the LJ systems, liquid alkali
metals, and transition metals are presented in Sec. IV and
are further discussed in detail in Sec. V. Major highlights of
the present work are summarized as conclusions in Sec. VI.
Details of molecular-dynamics simulations performed for the
liquid transition metals are given in the Appendix.

II. GLASS AND RICE FORMULATION OF MODIFIED
LANGEVIN EQUATION

The modified Langevin equation obtained by GR [26] is

m
d�v
dt

= −mβ�v(t ) + �F ( �R, t ) + �A(t ), (1)

where �v is the instantaneous velocity of the Brownian particle
of mass m. The first term on the right-hand side of Eq. (1)
is the systematic force term due to viscous drag where β is
the friction coefficient. The second term is another system-
atic force term representing the time-dependent average force
field due to the effects of the dynamically correlated, strongly
repulsive core collisions. �A(t ) is the stochastic force that is
assumed to result from rapid fluctuations in the soft part of
the intermolecular potential field. While a detailed theoretical
formulation of �F ( �R, t ) is given by GR [26], a brief summary
of important points about this nonrandom force is in order
here.
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First of all, the mean force, �F ( �R, t ), is defined in terms
of an ensemble-averaged, two-particle conditional distribution
function, P( �R′, t | �R, t ), giving the conditional probability den-
sity that a particle is at the point �R′ at time t , ( �R′

, t ), given
that a different particle which was at (0, 0) has moved to
( �R, t ). In the absence of external forces and assuming pairwise
decomposable interactions in liquids, �F ( �R, t ) has been given
to be

�F ( �R, t ) = −
∫

d �R′ �∇V ( �R′ − �R)P( �R′, t | �R, t ), (2)

where V ( �R′ − �R) is the two-particle potential energy.
To solve Eq. (2), one needs to obtain the direct solution

of the Bogoliubov-Born-Green-Kirkwood-Yvon hierarchy,
which itself is an ordeal. GR circumvented this problem by
employing an alternative approach of relaxation methods for
the representation of particle motion in liquid. This approach
does not specify the details of dynamical forces which act
on a subsystem of particles. However, it is assumed that the
forces present in the liquid tend to drive the system towards its
equilibrium configuration. So, without considering the exact
nature of the propagation and destruction of correlations in
the liquid, GR proposed a simple relaxation approximation
for P( �R′, t | �R, t ) as

d

dt
P( �R′, t | �R, t ) = α[ρg( �R′ − �R) − P( �R′, t | �R, t )], (3)

where α is a parameter corresponding to the molecular re-
laxation rate. An approximate expression for P( �R′, t | �R, t )
obtained by solving Eq. (3) is

P( �R′, t | �R, t ) = e−αtρg( �R′
) + (1 − e−αt )ρg( �R′ − �R). (4)

Substituting Eq. (4) in Eq. (2) leads to

�F ( �R, t ) = e−αt
∫

d �R′ρg( �R′
) �∇V [ �R′

(t ) − �R(t )]. (5)

As the forces being considered are short ranged, �∇V will
be nonzero only for small �R′

(t ) − �R(t ). Also, �R(t ) is small rel-
ative to the intermolecular spacing at the diffusion timescale.
For small �R(t ), Eq. (5) has been expanded to yield [26]

�F ( �R, t ) = − �R(t )e−αt 〈∇2V (R)〉
3

+ O(R2), (6)

where

〈∇2V (R)〉 = 4πρ

∫ ∞

0
dRR2g(R)

(
∂2V

∂R2
+ 2

R

∂V

∂R

)
. (7)

It should be noted that Eq. (6) differs slightly from that
given by GR Eq. (22) in Ref. [26] where the factor (1/3) does
not appear. Also, in the equation given by GR, ρ appears as a
multiplication factor in the first term of Eq. (6), which makes
the equation dimensionally incorrect. So, considering it as a
possible typographical mistake, we have removed it.

Using the relation [33]

ω2
0 = 〈∇2V (R)〉

3m
, (8)

Eq. (6) can be written as

�F ( �R, t ) = −mω2
0

�R(t )e−αt + O(R2). (9)

Equation (9) describes a spherically symmetric, harmonic
force field that decays exponentially with time. For the case
of α = 0, it turns out to be static-harmonic force field, i.e.,
the SHW model [11]. In the present work, we use Eq. (9) to
derive the equation of motion in terms of VAF as described in
the following section.

III. VELOCITY AUTOCORRELATION FUNCTION
AND EQUATION OF MOTION

The normalized velocity autocorrelation is defined as [26]

ψ (t ) = 〈�v(0) · �v(t )〉
〈v2(0)〉 . (10)

It is subjected to the following boundary conditions:

lim
t→0

ψ (t ) = 1, (11a)

lim
t→0

dψ

dt
= 0, (11b)

lim
t→0

d2ψ

dt2
= −〈∇2V 〉

3m
= −ω2

0, (11c)

where ω0 is the liquid-characteristic frequency associated with
the harmonic potential well. To obtain the equation of motion
in terms of VAF, multiply Eq. (1) by �v(0)/v2(0) and take the
ensemble average to get

dψ

dt
= −βψ + 〈�v(0) · �F ( �R, t )〉

m〈v2(0)〉 . (12)

Substituting Eq. (9) for �F ( �R, t ), we get [34]

dψ

dt
= −βψ − ω2

0e−αt
∫ t

0
dt ′ψ (t ′). (13)

GR considers the friction coefficient to be a meaningful
concept only for times which are longer than the period of
the rapidly fluctuating forces. Hence, β is taken to be a time-
independent parameter. In this case, Eq. (12) fails for the times
t → 0. This failure has been assumed to be restricted to only a
small-time interval near t = 0 and Eq. (12) remains valid over
a large interval of time. We believe that such reasoning for β

to be independent of time is inadequate for a situation where
a particle moves in a mean time-dependent force field and
the strong, short-ranged repulsive collisions are considered to
be dynamically correlated. In fact, we show in the following
derivation how the assumption of time-independent β leads to
an equation of motion that is inconsistent with the condition
in Eq. (11c).

Differentiating Eq. (13) with respect to time and further
simplification, one can arrive at the equation given by

d2ψ

dt2
+ (α + β )

dψ

dt
+ (

ω2
0e−αt + αβ

)
ψ = 0. (14)

Equation (14) represents the equation of motion in terms
of VAF derived by GR. While GR assumes ω0 to be just a
parameter and replaces it by ω, we retain it for better physical
perspective.

For the limit t → 0, Eq. (14) yields

lim
t→0

d2ψ

dt2
= −(

ω2
0 + αβ

)
. (15)
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Thus, Eq. (14) does not satisfy the condition in Eq. (11c).
As α is a nonzero parameter, the only possible way Eq. (14)
can comply with this condition is to consider β = 0 at t = 0. It
is clearly not the case in GR formalism where β is assumed to
be constant over the entire time interval of interest. We show
in the following derivation how considering time-dependent
friction coefficient β(t ) resolves this inconsistency. It also
allows us to get a self-consistent expression giving the time
dependence of β.

Consider β to be a time-dependent variable in Eq. (12).
Differentiation of this equation with respect to time and fur-
ther simplification gives

d2ψ

dt2
+(α + β(t ))

dψ

dt
+

(
ω2

0e−αt + dβ(t )

dt
+ αβ(t )

)
ψ = 0.

(16)

Employing the conditions in Eq. (11) for the limit t → 0,
Eq. (16) leads to

lim
t→0

d2ψ

dt2
= lim

t→0

(
ω2

0e−αt + dβ(t )

dt
+ αβ(t )

)
. (17)

It implies that Eq. (16) would satisfy Eq. (11c) if

dβ(t )

dt
+ αβ(t ) = 0. (18)

Solving Eq. (18) and considering β = β0 at t = 0, we get

β(t ) = β0e−αt . (19)

Explanation for the choice of β = β0 at the initial time
t = 0 is necessary here. It should be noted that β0 is the initial
value of the friction coefficient at a time that corresponds to
the onset of molecular friction. It has been shown in a recent
study of onset of molecular friction in liquids [7] that, on
all scales, friction emerges as a phenomenon that is nonlocal
in time. It implies that the magnitude of friction cannot be
inferred from the instantaneous behavior of molecular tra-
jectories. The same study also demonstrates that friction in
liquids emerges abruptly at a characteristic frequency (being
ω0 in the present study) for which viscous liquid appears as
nondissipative, elastic solid. Beyond the characteristic fre-
quency the friction decays exponentially fast to zero. In this
context, the following equation derived for the SHW model
[11] would give physically adequate estimate of β0:

β0 =
(

mD

kBT

)
ω2

0. (20)

Now, using Eq. (19) in Eq. (16), we obtain the equation of
motion in terms VAF as

d2ψ

dt2
+ (α + β0e−αt )

dψ

dt
+ ω2

0e−αt ψ = 0. (21)

Equations (19) and (21) are the main features of the present
work. Equation (19) gives time-dependent friction coefficient
and indicates connection between the short-time dynamics
and the onset of the hydrodynamic regime. Equation (21) is a
more general equation of motion for the Brownian description
of atomic motion in liquids.

It is evident that the knowledge of the parameters ω0, β0,

and α is essential for obtaining solution of Eq. (21). Although

the physical meaning of these parameters has already been
mentioned at relevant places in this section, some important
remarks are necessary to highlight the physical connotations
of these parameters in the context of time-dependent friction.
In the usual time-independent friction case, ω0 is consid-
ered to be the Einstein frequency that can be derived using
Eq. (11c). When the friction is dynamic, ω0 refers to the
liquid-characteristic frequency which is different from the
Einstein frequency. β0 is the friction coefficient in the hy-
drodynamic limit, and it can be obtained using the Einstein
relation, β0 = kBT

mD , if the diffusion coefficient (D) is known.
However, the SHW model [Eq. (20)] provides better initial
estimate of β0. In the dynamic friction case, β0 corresponds to
onset friction and it is expected to be different from that ob-
tained using any of the ways suggested above. The molecular
relaxation rate, α, can be estimated utilizing the relation αβ =
〈∇2V 〉

3m = ω2
0 [35]. As ω0, β0, and α, obtained using above

relations, do not correspond to the dynamic friction situation,
we will consider them as fitting parameters. Nevertheless,
the values of these parameters, given by the above relations,
serve as physically meaningful initial guess for each. It should
be noted that the molecular relaxation rate, α, governs the
mean-time dependent force field [Eq. (9)] experienced by
the Brownian particle as well as the time dependence of the
friction force [Eq. (19)]. The two systematic force parts in the
Langevin equation [Eq. (1)] are no longer independent, and
the interplay of the two plays an important role in the prop-
agation and destruction of dynamical correlations in liquids.
As the molecular relaxation rate depends on temperature and
density of the liquid, the values of α would provide useful
insight of the dynamical correlations and the diffusion process
in the liquids.

For the simplest case of α = 0, Eq. (21) turns out to be

d2ψ

dt2
+ β0

dψ

dt
+ ω2

0ψ = 0. (22)

Equation (22) is the equation of motion for a Brownian
particle diffusing in a static harmonic well (SHW model)
and has a well-established analytical solution giving the VAF
[26]. It corresponds to Markovian diffusion process where the
friction coefficient is independent of time. For α �= 0, it is
not possible to obtain a trivial analytical solution of Eq. (21).
However, it can be solved numerically to obtain VAF. In the
present work, we have used a general numerical differential
equation solver, NDSolve, a built-in language function in
Wolfram Mathematica. The solutions for the GR model are
also obtained using NDSolve. Numerical solution of Eq. (21)
leads to two possibilities for the time dependence of the fric-
tion coefficient corresponding to values of α �= 0 [Eq. (19)].
For α > 0, the friction coefficient would decay exponentially
whereas it would increase exponentially for α < 0. In the
following section, we demonstrate in detail how α > 0 gives
a better description of VAF in low-density fluids, whereas
α < 0 is inevitable to obtain consistent results of VAF for
high-density liquids.

IV. RESULTS

Present theoretical framework for the Brownian descrip-
tion of the atomic motion in fluids encompasses Markovian
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FIG. 1. VAF for LJ systems at T = 1.5 and different densities (a) 0.20, (b) 0.40, and (c) 0.84. Inset in (c) demonstrates that the results for
α>0 are way off the MD results. MD results (Ref. [36]) (d) Residue plot showing comparison of the quality of results obtained using different
models for ρ = 0.84. (e) Residue plot depicting the deviations of the results of present model from MD results at different densities.

and non-Markovian Langevin equations involving time-
independent and time-dependent friction, respectively. To
expound the physical significance of different physical sce-
narios emerging on numerical solution of Eq. (21) and to
demonstrate a broader scope of its applicability, we present

results of VAF for various systems at different densities and
temperatures: (i) Lennard-Jones (LJ) fluids, (ii) liquid alkali
metals (Li, Na, K), and (iii) liquid transition metals (Cu,
Ni, Fe). As mentioned in the previous section, the input pa-
rameters ω0, β0, and α have been considered to be fitting
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TABLE I. Parameters for LJ system (T = 1.5). All dimension-
less quantities should be multiplied by an appropriate combination
of MD units (σ , ε, and the particle mass, m). Conversion to argon
values can be more appropriately done using ε

kB
= 155.876 K and

σ = 3.40 Å.

(ω0)fit (β0)fit α

ρ (1012 s–1) (1012 s–1) (1012 s–1)

0.2 0.55 ± 0.03 3.69 ± 0.14 2.03 ± 0.03
0.4 7.76 ± 0.03 28.9 ± 0.27 3.69 ± 0.02
0.84 11.71 ± 0.04 14.79 ± 0.09 −1.17 ± 0.06

parameters so as to obtain VAF that is in the best agreement
with the molecular-dynamics (MD) results. However, we do
obtain the initial estimates for ω0 and β0 using Eqs. (8) and
(20), respectively, for all the studied liquids except the LJ
systems. We denote these parameters as (ω0) f it and (β0) f it .
For LJ systems initial estimates for these parameters were
obtained using the Einstein relation β0 = kBT

mD .
Our choice of LJ fluids has been motivated by the availabil-

ity of MD results for these systems, reported by Bembenek
and Szamel [36], at various fluid densities at a constant
temperature (T = 1.5 in reduced unit). We employ present
formulation to obtain VAFs that best fit the MD results as
shown in Fig. 1. The parameters ω0, β0, and α along with its
optimized values are listed in Table I. VAFs obtained using the
GR and SHW models have also been depicted to emphasize
the implication of static friction used in these models vis-à-vis
the use of dynamic friction in the present model for the Brow-
nian description of single-particle dynamics in liquids. It can
be observed that the present model with dynamic friction gives
VAFs that are in the closest agreement with the MD results at
the LJ fluid densities. This can be further validated from the
residue plot (� = MD − model) in Fig. 1(d). However, a
closer look at the residue plots for the present model results
at different densities [Fig. 1(e)] reveals that the agreement
between the MD simulation and the present model results
becomes poorer at lower densities. Prima facie, this may seem
to be due to the use of shifted LJ potential for MD in Ref. [36],
whose results are used here for comparison. As reported in
Ref. [36], the potential minimum V (rm) value is 0.9448 at
rm = 1.1228σ with rcut = 2.5σ . V (rm) is 5% smaller than its
usual value (1.0) for the standard LJ potential and rm remains
almost unchanged compared to 21/6σ ∼ 1.1225σ . Toxvaerd
and Dyre [37] have shown that a significant shifting of LJ
potential due to setting up rcut from 2.5σ to 1.5σ has a very
little effect on the dynamics of the system. Thus, the apparent
lack of disagreement of the present model results with the MD
data at lower densities could not be attributed to the use of the
shifted LJ potential. The explanation for the disagreement lies
in the assumption used in deriving Eq. (9), where the force
�F ( �R, t ) is considered to be short ranged and nonzero only for
�R(t ) smaller than the average intermolecular spacing at the
diffusion timescale. While this assumption is valid at higher
densities and short times, it may not hold at lower densities
and long times.

Our results provide very important insight of the change
in the nature of the dynamic friction with the change in liq-
uid density. For LJ liquids with densities 0.2 and 0.4, where

FIG. 2. VAF for liquid lithium above melting point. (a) 725 K,
(b) 574 K, and (c) 470 K. MD results [41].

the VAFs decays monotonically (and likely exponentially)
[Figs. 1(a) and 1(b)], values of the parameter α along with
Eq. (19) clearly indicate that the dynamic friction decreases
exponentially. Also, the decrease in friction becomes faster
with increase in liquid density. At the density 0.84, the VAF
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FIG. 3. VAF for liquid Na. (a) 900 K and (b) 380 K MD results (Ref. [42]).

is similar to that of a typical high-density liquid exhibiting a
negative backscattering region [Fig. 1(c)]. For this case, we
have found that the present model gives VAFs in agreement
with the MD data only if α < 0. The inset in Fig. 1(c) demon-
strates that the VAFs obtained using the present model are way
off from the MD results for α > 0. Negative α implies that
the dynamic friction increases exponentially with time. The
change in the nature of dynamic friction with the change in
the liquid density is a significant finding insofar as it helps to
unravel the change in velocity correlations and short-time dy-
namics. Deferring an elaborate discussion to the next section,
we further consolidate present findings by investigating the
VAFs in real high-density liquids such as liquid alkali metals
and transition metals. In order to get the initial estimates
of the parameters ω0 and β0, for obtaining VAFs using the
present model, it is necessary to know 〈∇2V 〉 [Eq. (7)]. To
this end, we obtain the derivatives of the effective pair poten-
tials in pseudopotential formalism [38] using evanescent-core
pseudopotential [39] and Ichimaru-Utsumi screening function
[40]. Figures 2, 3, and 4 show VAFs for liquid Li, Na, and K at
different temperatures, respectively. The initial estimates for
the parameters ω0, β0, and its optimum values (ω0)fit, (β0) f it ,
giving VAFs in good agreement with the MD results [41–43],
are listed in Table II.

For the liquid transition metals Cu, Ni, and Fe, we have
performed classical MD simulations at various temperatures.
Necessary details of MD simulations are described in the Ap-
pendix. VAFs for Cu, Ni, and Fe at different temperatures are
presented in Figs. 5, 6, and 7, respectively. In this case, 〈∇2V 〉
has been derived using the effective pair potentials obtained
using the Wills-Harrison formulation [44] for the transition
metals, employing the Ashcroft pseudopotential [45] and
Ichimaru-Utsumi screening function [40]. The parameters for
all the studied transition metals are given in Table III. The key
observations from the results of VAFs for the studied alkali
and transition metals are as follows: (1) Present model with
dynamic friction, in general, gives an excellent account of
the decay of velocity correlations in all the systems at all
temperatures under investigation. However, at temperatures
near or below the melting point, the oscillatory tail following

the backscattering region is a little overestimated, whereas at
temperatures near the boiling point it is underestimated. This
can be clearly understood from the VAFs for liquid Na at 900
K, which is relatively closer to the boiling point (1155 K)
[Fig. 3(a)] and 380 K [Fig. 3(b)], which is closer to its melting
point (370 K). For liquid Ni, it can be observed from Fig. 6
that the deviations in the oscillatory tail become relatively
pronounced near and below its melting point (Tm = 1728 K).
Similar observation can be made for liquid Fe from Fig. 7.
(2) For all the studied liquid metals, values of the parameter
α < 0 (Tables II and III) as observed in case of LJ system. (3)
The Einstein frequency, ω0, is nearly equal to (ω0)fit, whereas
the values of the friction coefficient β0 are significantly less
than (β0)fit. (Tables II and III).

V. DISCUSSION

Our results for the model LJ systems, liquid alkali, and
transition metals suggest that the present model [Eq. (21)],

FIG. 4. VAF for liquid potassium at 450 K. MD results (Ref. [43]).
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TABLE II. Parameters for liquid alkali metals. 〈∇2V 〉 has been derived using Eq. (7). The derivation of effective pair potentials and the
pair-correlation function is discussed in the text.

〈∇2V 〉 ω0 β0 (ω0)fit (β0)fit α

System T (K) (102 J m–2) (1012 s–1) (1012 s–1) (1012 s–1) (1012 s–1) (1012 s–1)

Li 470 0.7726 47.27 27.4 42.0 30.5 −6.0
574 0.7452 46.42 61.92 49.0 42.0 −2.5
725 0.7351 46.75 44.75 49.0 42.0 −2.5

Na 380 0.2049 13.38 7.67 16.5 11.0 −3.2
900 0.3646 17.84 25.60 18.9 23.8 −2.5

K 450 0.2054 10.27 6.73 9.8 6.4 −3.9

based on the Langevin equation [Eq. (1)] with time-dependent
friction coefficient [Eq. (19)] and mean time-dependent force
[Eq. (9)] gives a very good account of the short-time,
single-particle dynamics in fluids. The effect of the mean
time-dependent force on the velocity correlations and the
molecular friction is reflected in the VAF. It is evident from the

results for the LJ systems that the nature of dynamic friction
changes with the density of the fluid. At lower and moder-
ate densities, the friction coefficient decreases exponentially
and the VAF exhibits monotonic exponential decay. At these
densities, the dynamical correlations are mainly governed by
the binary collisions between the atoms where the average

FIG. 5. VAF for liquid Cu. (a) 1873 K, (b) 1773 K, (c) 1573 K, and (d) 1423 K. MD results (present work). Details of MD simulations are
given in the Appendix.
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FIG. 6. VAF for liquid Ni. (a) 1923 K, (b) 1810 K, (c) 1735 K, and (d) 1500 K. MD results (present work). Details of MD simulations are
given in the Appendix.

time during which two atoms interact (mean collision time)
is much shorter than the average time between successive
collisions (mean free time) [25]. These two timescales be-
come comparable in high-density liquids where the effect
of many-body correlations on the single-particle motion be-
comes significant and the binary collision picture fails to
describe the short-time dynamics except for hard-sphere liq-
uids [36]. Values of the parameters (ω0)fit and (β0)fit for the LJ
systems (Table I) give convincing testimony to these findings.
These values will make more sense if we note that ω0 is
interpreted as an effective frequency of atomic interactions
(collisions) [46], and β0, the friction coefficient, is associated
with the duration of interaction between the atoms during the
collisions. In accordance with the above arguments, (ω0)fit is
significantly smaller than (β0)fit for the LJ fluids of density 0.2
and 0.4, whereas (ω0)fit ∼ (β0)fit for ρ = 0.84.

The effect of dynamically correlated interactions of atoms
on the single-particle diffusion in high-density liquids mani-
fests as two distinct features in the VAF. First is the negative
region, also known as backscattering region, due to the caging

of the diffusing atom by its nearest-neighbor atoms. The
other is the long-time tail embodying the density waves ex-
cited by the initial push given to the medium by the moving
atom [47]. The oscillatory or nonoscillatory long-time tail of
VAF has been shown to be strongly connected to the soft-
ness or hardness of the repulsive core of the pair potential
[48–51]. The pronounced oscillatory tail observed in the
VAFs of liquid metals can be attributed to the existence of
short-wavelength longitudinal modes of propagating collec-
tive excitations which are weakly damped due to the soft
repulsive core [47]. Such short-wavelength density waves
are strongly damped in the fluids with LJ-type hard repul-
sive core (like argon) and give rise to the smoothly varying,
nonoscillatory (exhibiting t–3/2 dependence) tail of VAF. Un-
like high-density LJ liquid, the results of GR model for
the liquid metals (Figs. 2–7) exhibit the most pronounced
backscattering region and, in most cases, an unusually long
and large amplitude oscillatory tail. This could be primarily
due to the absence of the dynamic friction in the GR model.
On the other hand, the presence of exponentially increasing
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FIG. 7. VAF for liquid Fe. (a) 2023 K, (b) 1923 K, (c) 1873 K, and (d) 1833 K. MD results (present work). Details of MD simulations are
given in the Appendix.

TABLE III. Parameters of liquid transition metals. 〈∇2V 〉 has been derived using Eq. (7). The derivation of effective pair potentials and
the pair-correlation function are discussed in the text.

〈∇2V 〉 ω0 β0 (ω0)fit (β0)fit α

System T (K) (102 J m–2) (1012 s–1) (1012 s–1) (1012 s–1) (1012 s–1) (1012 s–1)

Cu 1423 2.2756 26.8117 12.9671 25.0 15.0 −6.7
1573 2.2762 26.8152 15.0213 27.5 19.0 −4.5
1773 2.2757 26.8123 20.8056 25.0 18.0 −6.5
1873 2.2787 26.7710 22.2103 25.0 19.0 −6.5

Ni 1500 3.2057 21.9920 11.5358 34.0 21.5 −8.7
1735 3.1137 21.5839 14.6925 34.0 24.0 −6.7
1810 3.0794 21.4368 18.7751 34.0 25.0 −6.7
1923 3.0223 21.1881 18.8385 34.0 25.0 −6.7

Fe 1833 3.2529 34.1950 15.7441 34.0 23.0 −6.7
1873 3.2320 34.0850 15.8361 34.0 24.0 −6.9
1923 3.2182 34.0122 16.2939 34.0 24.0 −7.9
2023 3.1823 33.8219 19.1028 34.0 24.0 −8.9
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dynamic friction in the present model leads to significant
damping of the oscillations in the VAF that is consistent with
the MD results.

Our results for the LJ liquid (ρ = 0.84) and the liquid
metals demonstrate that the present model would give a nearly
complete account of the VAF, including the negative region
and the long-time tail if the parameter α < 0. This, accord-
ing to Eq. (19), implies that the dynamic friction increases
exponentially with time. It is significantly different from the
usually reported time dependence of the dynamic friction
where the friction coefficient shows sudden increase from
zero at t = 0 to a maximum value and subsequent expo-
nential decay to a constant hydrodynamic value [51,52]. For
high-density liquids with continuous interactions, presently
observed time dependence of the friction coefficient with slow
increase from a nonzero value near t → 0 to a gradual rapid
increase is qualitatively more logical. The time dependence of
the dynamic friction, observed in the present case, is signif-
icant for atomic dynamics in the short-time, high-frequency
elastic limit. In a recent study of the origin of the molecular
friction in the liquids, Straube et al. [7] have reported that
the friction in liquids emerges abruptly at a characteristic
frequency, beyond which viscous liquids appear as nondissi-
pative elastic solids. From the high-frequency limit where the
dynamic friction abruptly sets in, it increases exponentially
till it slowly saturates to its hydrodynamic limit near ω0. It
has been shown that the molecular friction depends on the
complex interplay of fast and slow processes on very disparate
timescales and; the driving mechanism behind the onset of
the friction is not in the structural relaxation (often associated
to cage relaxation). At very short times and high frequencies,
irrespective of whether or not caging of atoms occurs, the fast,
yet irreversible momentum transfer to the neighboring atoms
drives the onset of the friction [7]. Thus, it is evident that the
parameter, α, corresponding to the molecular relaxation rate,
governs the dynamic friction and the velocity correlations
in liquids. While the physical scenarios for the short-time
dynamics and the velocity correlations for the cases of α � 0
are clear, the negative values of α for the high-density liquids
seems to be counterintuitive. However, the fact that α < 0
is inevitable to get consistent results of VAF in high-density
liquids makes a strong case for the interpretation of an un-
derlying physical scenario. Due to nonavailability of a trivial
analytical solution of Eq. (21), it is difficult to draw any
direct inferences about the implications of α on the short-time
dynamics and relaxation mechanism. Nevertheless, the theo-
retical approaches, based on the instantaneous normal modes,
guide us to seek a plausible explanation for α < 0 as remi-
niscent of the existence of the imaginary eigenmodes in the
short-time vibrational spectrum of liquids. A study of molec-
ular origin of friction in liquids emphasizes that the short-time
components of the friction arise from the microscopically
well-defined INMs of the liquid [52]. According to a recent
theoretical approach [53], an exact solution of the generalized
Langevin equation for a normalized autocorrelation function
[C(t )] of a classical many-body system can be expressed as an
infinite sum of exponential (real and/or complex) functions as
C(t ) = ∑∞

j=1 I j exp(z jt ), where I j and z j are mode amplitudes
and frequencies, respectively, in an inherent eigenmode repre-
sentation. These eigenmodes can be associated with relaxation

channels in the system. As remarked by Bellissima et al.
[53], if I j and z j are complex quantities, the corresponding
modes and its complex conjugate are both present in the series
and, taken together, they represent an exponentially damped
oscillation. On the other hand, real I j and z j define a purely
exponential decay. In the context of these observations, our
results of VAFs for high-density liquids hint at the likelihood
of the negative α to be among the arguments of the complex
exponential functions corresponding to the imaginary eigen-
modes. In an instantaneous normal-mode analysis of liquid Na
[54], the exponent functions derived from the INM density of
states are found to fit well with a binomial frequency for the
imaginary-frequency lobe and a three-term polynomial for the
real-frequency mode. Also, the imaginary-frequency modes
in the high-frequency end are found to be localized modes.
Noting that the present formulation considers Brownian mo-
tion of an atom in a mean time-dependent harmonic force
field [Eq. (9)], we further extend our argument (although at
the risk of oversimplification) that negative α is associated
with the existence of imaginary INMs (unstable modes) in
Zwanzig’s model [16] dividing the liquid configuration space
into “cells”—-each associated with a local minimum on the
potential-energy surface. The liquid’s configuration oscillates
harmonically in one of these cells for a definite period of time
and, on gaining enough kinetic energy cross a saddle point on
the potential-energy surface to make a transition to another
cell with different local minimum [19]. The transitions over
the saddles on the potential-energy surface are characterized
as the imaginary (unstable) eigenmodes in the density of states
of INMs [17]. For α < 0, Eq. (9) indicates increase in the
mean time-dependent harmonic force with time. In a constant
density condition, it implies that the liquid explores deeper
local minimum with time. It can be considered analogous to
the saddle-point transitions on the potential-energy surface
and hence, the imaginary INMs. On a cursory note, it can
be observed that the value of α for liquid metals, in general,
increases at lower temperatures and it might signify lower
potential energy minima being explored by the liquids. To
end this section, we would like to point out that the GR
theory, not explicitly considering “quasiphonon” excitations,
does acknowledge the possible utility of Zwanzig’s picture for
the adequate representation of the molecular motion in liquids
[26].

VI. CONCLUSIONS

We have revisited the GR microscopic theory of molecular
motion in classical monatomic liquids, where an equation
of motion for the VAF is derived by assuming a Brownian
particle diffusing in a mean time-dependent harmonic force
field. The original GR theory has been extended using a
non-Markovian Langevin equation incorporating the dynamic
friction. We have demonstrated that the inclusion of dynamic
friction not only overcomes the limitations of the GR theory
but, also provides self-consistent information about the time
dependence of the friction coefficient. It has been shown that
the dynamic friction decays exponentially at low and mod-
erate liquid densities whereas it exhibits exponential growth
in high-density liquids like liquid metals. Amidst the grow-
ing interest and efforts to understand the molecular origin
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of the dynamic friction and its implications on microscopic
transport properties [7,55,56], our findings about the dynamic
friction in liquids provides a different outlook to the Brown-
ian description of atomic dynamics in liquids. The modified
equation of motion for the VAF [Eq. (21)], that includes the
dynamic friction, gives excellent account of the velocity corre-
lations in a broad range of liquid densities where the physical
scenario changes from binary collision-dominated short-time
dynamics to the one with significant many-body cooperative
effects. The results for high-density liquids, especially the ob-
served negative molecular relaxation rates (α), intuitively hint
at the existence of imaginary eigenmodes (unstable modes)
in the density of states of the INMs in accordance with
Zwanzig’s disordered-solidlike picture of short-time dynam-
ics. However, an elaborate quantitative analysis and physical
interpretation of this aspect is constrained due to nonavailabil-
ity of a tangible analytical solution of Eq. (21). This is the
primary issue that yet remains to be addressed to acquire in-
depth understanding of the time dependence of the dynamical
friction and its implications on the dynamical correlations at
short times in liquids.
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APPENDIX: MOLECULAR-DYNAMICS
SIMULATION DETAILS

Classical molecular simulations on Cu, Fe, and Ni have
been performed using the LAMMPS code [57] employing
Finnis-Sinclair–type many-body potential for Cu [58] and
embedded-atom model potentials for Ni [59] and Fe [60]. All
the investigated metals were subjected to the same simulation
protocol described here. Total 4000 atoms were taken in a
cubic simulation box subject to the periodic boundary con-
ditions. The equations of motion were solved using Verlet’s
algorithm in the velocity form with a time step of 2 fs in the
constant pressure, constant temperature (NPT) ensemble. An
equilibrated liquid configuration for the metal at 2000 K was
obtained by melting it and homogenizing it for 0.6 ns. The
liquid metal at 2000 K was subsequently quenched to 300 K
at a rate of 0.1 K/ps under zero-pressure condition in the NPT
ensemble. The liquid configurations at intermediate temper-
atures of interest were recorded during the quench run and,
further equilibrated thoroughly to extract the structural and
dynamical information. Separate production runs at different
temperatures were performed to record atomic trajectories to
obtain the pair-correlation function and the velocity autocor-
relation function.
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