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Scattering signatures of invasion percolation
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Motivated by recent experiments, we investigate the scattering properties of percolation clusters generated
by numerical simulations on a three-dimensional cubic lattice. Individual clusters of given size are shown to
present a fractal structure up to a scale of order of their extent, even far away from the percolation threshold
pc. The influence of intercluster correlations on the structure factor of assemblies of clusters selected by an
invasion phenomenon is studied in detail. For invasion from bulk germs, we show that the scattering properties
are determined by three length scales, the correlation length ξ , the average distance between germs dg, and
the spatial scale probed by scattering, set by the inverse of the scattering wave vector Q. At small scales, we
find that the fractal structure of individual clusters is retained, the structure factor decaying as Q−d f . At large
scales, the structure factor tends to a limit, set by the smaller of ξ and dg, both below and above pc. We propose
approximate expressions reproducing the simulated structure factor for arbitrary ξ , dg, and Q, and illustrate how
they can be used to avoid to resort to costly numerical simulations. For invasion from surfaces, we find that, at
pc, the structure factor behaves as Q−d f at all Q, i.e., the fractal structure is retained at arbitrarily large scales.
Results away from pc are compared to the case of bulk germs. Our results can be applied to discuss light or
neutrons scattering experiments on percolating systems. This is illustrated in the context of evaporation from
porous materials.
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I. INTRODUCTION

Take a lattice. Pick up sites at random and group these sites
into clusters of connected sites (so-called Bernoulli clusters).
When the fraction p of chosen sites approaches a critical value
pc, the size of the largest cluster diverges. This phenomenon is
known as site percolation. Similarly, bond percolation occurs
when bonds, rather than sites, are considered. Percolation,
either site or bond, is ubiquitous in science. In mathematics,
it has been widely studied by mathematicians as an example
of conformal invariance and a realization of a Schramm-
Loewner evolution. In geology, it is used to describe the
transport of fluids (oil in particular) in porous rocks. In sta-
tistical physics, percolation provides the simplest model of
a phase transition. Examples of applications are numerous
and include some problems in magnetism, electrical transport
in disordered alloys or granular superconductors, gelation of
polymers, growth models, transport in complex networks, etc.
We refer the reader to Ref. [1] for references.

Percolation has spectacular consequences in terms of trans-
port properties. A classical example of bond percolation is
the random resistor network when the fraction of conduc-
tive bonds is increased. Below percolation, no continuous
path exists between two sides of the sample, and the sample
is insulating. At percolation and above, a connected cluster
spans the sample, and the sample conducts. However, this
conduction threshold is not the only feature of percolation. In
particular, at the percolation point, the percolating cluster has
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a fractal structure. The fractal dimension d f depends on the
lattice dimensionality, but not on its precise geometry. Smaller
(finite) clusters have the same fractal structure, but only up to
the scale of their extent.

It could thus be expected that light or neutrons scattering,
which probe the spatial correlations between chosen sites, can
detect percolation. However, a key point makes the problem
more subtle that could be assumed at a first glance. Radiation
scattering is sensitive to the spatial distribution of sites, but not
to the connectivity of clusters. Hence, when two neighboring
clusters merge into a larger one because one of the sites of
their common boundary becomes picked, the scattered field
barely changes. As a result, coherent light scattering (we
specialize to this case from now on) cannot be expected to
be as sensitive as transport to percolation.

In fact, if all clusters are considered (the so-called
Bernoulli problem), light scattering is totally unsensitive to
percolation! Indeed, since sites are picked at random, the
scattered field corresponds to that of a random distribution
of scatterers. Although, for a given cluster, the field is en-
hanced with respect to incoherent scattering due to intracluster
correlations, destructive interferences between clusters due
to intercluster correlations exactly compensate this enhance-
ment.

This insensitivity of static light scattering to percolation
has been previously pointed out in the context of the sol-gel
transition [2–4]. Due to this effect, probing the fractal clusters
generated by gelation requires either to use dynamical light
scattering, or to dilute the clusters so as suppress the inter-
cluster correlations [5]. In other percolation-related problems,
an alternative to dilution is the selection of clusters. If, among
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FIG. 1. Two examples of light scattering signatures of percolation. (a) Evaporation of hexane from Vycor: power-law dependence of the
scattered intensity I (q) with the transfer wave vector q at the precise pressure where evaporation begins (adapted from Ref. [16]). (b) Pressure
dependence of the scattered intensity I (P) at an angle of 45◦ during evaporation of helium from Vycor at different temperatures (adapted from
Ref. [17]). The peak amplitude decreases with increasing temperature.

all possible Bernoulli clusters, only a fraction is effectively
selected due to some physical process, then coherent effects
can be restored.

Evaporation of a fluid from disordered, 3D connected,
porous materials provides examples of such a cluster selec-
tion. These materials can often be represented as assemblies of
connected cylindrical pores of random radius R [6–8]. Start-
ing from a situation where all pores are filled with a liquid,
decreasing the fluid pressure will trigger evaporation. As con-
firmed by experiments in controlled geometries [9,10], a given
pore can empty by two different mechanisms [6,11–15]. The
first one consists in the displacement of a free liquid-vapor
interface through the pore, which occurs provided that (i) the
pressure P is smaller than a characteristic equilibrium pressure
Peq(R) decreasing with the pore radius R and (ii) at least one of
its neighbors is empty so as to provide a liquid-gas interface.
The second is the thermally activated nucleation (cavitation)
of a bubble within the pore surrounded by neighbors filled
with liquid. Cavitation occurs if the pressure becomes smaller
than the cavitation pressure Pcav(R) � Peq(R). Both mecha-
nisms give rise to a percolation process, the parameter p(P)
of percolation being the fraction of pores satisfying condi-
tion (i), i.e., such that Peq(R) � P. Indeed, grouping these
pores into clusters of connected sites, condition (ii) implies
that the pores which are effectively empty at pressure P are
all those belonging to clusters containing at least one pore
emptied by cavitation [P � Pcav(R)], or contacting the exter-
nal free surfaces of the sample (in contact with the vapor).
The two latter conditions respectively correspond to so-called
invasion percolation from bulk germs (the cavitated pores)
or from surface germs (the surface sites). In both cases,
the selection of clusters creates spatial correlations between
empty pores, which should be detectable through a scattering
experiment.

As illustrated by Fig. 1, two previous studies using Vycor,
a porous glass, as a prototypical disordered porous material,
confirm this expectation. In the first one, small angle light
scattering measurements [16] performed during evaporation
of hexane at room temperature revealed, at some well defined

pressure, a power-law dependence of the scattered intensity
with the transfer wave vector q, with an exponent ≈2.6, close
to d f = 2.523, the accepted fractal dimension for 3D per-
colation [18,19]. This finding has been interpreted as direct
evidence for evaporation being controlled by invasion perco-
lation from the sample surfaces. More recently, measurements
performed during evaporation of liquid helium from Vycor
at cryogenic temperatures have shown that the light scattered
at finite angle also peaks around a temperature dependent
pressure, the peak intensity decreasing with increasing tem-
perature [17]. Based on direct numerical simulations of the
evaporation process for the physical parameters of the prob-
lem [8], this behavior has been interpreted as a signature
of evaporation being controlled by invasion percolation from
cavitated bulk germs.

The strength of these interpretations is however limited by
the lack of a full theoretical description of the scattering signal
associated with percolation, depending on the cluster selection
process. Indeed, while the scaling theory of percolation gives
some information on the structure of individual clusters close
to the percolation threshold, it does not tell anything about
assemblies of clusters, where intercorrelation effects are po-
tentially important. The goal of this paper is to bridge this
gap by using numerical simulations to predict the scattering
signatures of percolation, depending on the selection process
at play.

Specifically, when only the largest cluster is considered,
the structure factor is expected to scale as q−d f at large q,
and ξ d f , where ξ is the correlation length for percolation, at
small q. The associated small angle scattering thus peaks at
pc. Does this still hold when many clusters are selected, as is
the case for invasion from surfaces, or from bulk germs? And
does the q−d f dependence at large q remain valid in the inva-
sion regime? Answering these questions is mandatory to be
able to probe the existence of percolation by using scattering
measurements.

On that aim, we performed numerical simulations of perco-
lation on a 3D cubic lattice. In these simulations, we generate
clusters at different values of p and compute the resulting
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structure factor when different selection rules of clusters are
applied.

When only clusters with the same number of sites are
selected, we essentially probe the structure factor of individ-
ual clusters. We thus determine the scattering properties of
individual Bernoulli clusters, and find that their fractal struc-
ture only weakly depends to the proximity to the percolation
threshold.

When the selection rule corresponds to invasion for bulk
germs, we identify two different regimes. First, a dilute
regime, corresponding to a density of germs small enough
for the clusters to be well separated. Second, a concentrated
regime corresponding to the opposite case. In the dilute limit,
we show that the structure factor is accurately described by
adding the structure factors for different cluster sizes weighted
by the proper cluster-size distribution. Because this distribu-
tion differs from the all-clusters distribution, the decay of the
structure factor at large wave vectors is only controlled by
d f , in contrast to a result previously obtained in the context
of gelation [20]. In the concentrated limit, the structure fac-
tor is depressed from the above behavior due to intercluster
correlations, and we give approximate expressions describing
this evolution, based on the three length scales characterizing
the scattering problem, namely the correlation length, the
distance between germs from which the clusters are selected,
and the spatial scale probed by the transfer wave vector. Such
expressions will be useful to experimentalists using scattering
to probe the percolation nature of physical problems.

Finally, we compute the scattering signal when the selec-
tion rule corresponds to invasion from surfaces, and compare
it to the case of invasion from bulk germs. This allows us to
discuss whether scattering experiments can discriminate these
two processes.

This paper is organized as follows. The simulation scheme
and the calculation of the structure factor are discussed in
Sec. II. Section III deals with the structure factors for dif-
ferent individual clusters: first, the largest one, and, second,
clusters of given size s. The case of percolation invasion
from bulk germs is discussed in Sec. IV. Sections IV A and
IV B describe the results below pc for the dilute and con-
centrated regime, respectively, while Sec. IV C discusses the
regime above pc. Section IV D gives expressions describing
the structure factor in the previous regimes, which we use in
Sec. IV E to discuss the main features of the scattering signal
for invasion from bulk germs. Section IV F illustrates how
these expressions can be used in practical cases, taking as an
exemple the problem of evaporation from a random porous
material. Finally, Sec. V presents our results for invasion
percolation from surfaces and compares them to the case of
invasion from bulk germs.

II. SIMULATION SCHEME

A. Generation of Bernoulli clusters

The simulations were performed at d = 3 dimensions for
a cubic lattice of linear size L = 1024. In a first step, we
generate Bernoulli clusters by picking sites at random with a
probability p, where p belongs to a set of 23 values distributed
in an interval of ±30% around pc (see Appendix A for the

list of p values). To this aim, we choose a random permu-
tation of the V = L3 sites, compute for each p the closest
integer k of pV and retain the k first sites of the permutation.
These sites are then grouped into maximally connected clus-
ters using the algorithm introduced by Hoshen and Kopelman
[21]. The identification of clusters depends on the choice of
boundary conditions (periodic or nonperiodic). For the case
of bulk germs, we use periodic boundary conditions. For sur-
face germs, periodic boundary conditions are used only along
the directions perpendicular to the incident wave vector (see
Sec. V for details).

Once the clusters are identified, we compute two quantities
pertaining to the full distribution of clusters, namely ξ , the
correlation length, and P(s), the distribution of s, the cluster
size. These quantities will be used in our analysis of the
structure factor of both single clusters and clusters assemblies.
P(s) is determined by counting the clusters in a small interval
around each s value. ξ , which measures the average extent of
nonpercolating clusters, is defined as usual [22]:

ξ 2 =
∑

clusters 2s2R2
g(s)∑

clusters s2
, (1)

where the sum bears over all Bernoulli clusters, excepting the
percolating one (when it exists, i.e., above pc), and Rg is the
cluster radius of gyration, given by

R2
g = 1

s

∑
i

|Xi − M|2, (2)

where Xi is the position of the ith site, M the center of mass
of the cluster and s its number of sites. When p increases from
pc to 1, ξ decreases from ∞ down to the mesh size.

Values of ξ (p) and plots of of ξ (p) and P(s, p) obtained
from our simulations are given in Appendix A. Below and
close to pc, the behavior of ξ (p) agrees with the known scal-
ing law ξ (p) ∝ |p/pc − 1|−ν , with ν = 0.879 [23]. Also in
agreement with literature, P(s, pc) at the percolation thresh-
old decays exponentially with size s as P(s, pc) ∝ s−τ , with
τ = 1 + d/d f = 2.189 [18].

B. Selection of Bernoulli clusters

In a second step, we select some of these clusters, accord-
ing to one of the following rules:

(1) largest cluster only
(2) clusters of fixed size s (within some interval)
(3) clusters containing bulk germs at a given fraction.
These bulk germs are chosen at random within the pV

picked sites. Their fraction is referred to the total number of
sites V , hence is smaller than p. In practice, fractions of 10−7

to 10−1 were used. This case corresponds to invasion from
bulk germs.

(4) clusters contacting one of the six surfaces of the cubic
sample. This case corresponds to invasion from the surfaces
(see Sec. V for details).

In the following, we will call potential the picked sites
of density p, and active the sites belonging to the selected
clusters, denoting by peff their density. The active sites are a
subset of the potential sites. In the problem of evaporation, the
active sites at a given pressure correspond to pores effectively
emptied at that pressure. In our simulations, peff is directly
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determined by counting the number of active sites for given
selection rules.

C. Structure factor of selected Bernoulli clusters

In a last step, we compute the total scattering signal for
the selected clusters. For a given scattering angle, this signal
is given by the structure factor at the corresponding transfer
wave vector q, i.e., by the modulus squared of the discrete
Fourier transform:

I (Q) = 1

V

∣∣∣∣∣
∑

R

n(R)eıπRQ

∣∣∣∣∣
2

= 1

V

∑
R,S

n(R)n(S)eıπQ(R−S), (3)

where the sum runs on all lattice sites R, Q = q/π , and the
site occupancy n(R) = 1 if the site is active, and 0 otherwise.

For periodic boundary conditions, the structure factor I (Q)
is given by the Fourier transform to the all-to-all pair corre-
lation function C1(R), defined as the probability that a site
separated by R from a site in state 1 is also in state 1, inde-
pendently of the cluster to which it belongs. It is important
to realize that, for assemblies of clusters, C1(R) differs from
the usual correlation function C(R), defined as the probability
that a site separated by R from a site in state 1 belongs to
the same cluster. Hence, while some properties of C(R) are
known from the scaling theory of percolation [22], this is
not the case for C1(R). The difference between these two
functions is dramatically illustrated by the case where, at the
percolation threshold, all Bernoulli clusters are considered.
In this situation, C(R) decays with R as R2(d f −d ) [22] with
d = 3 [24]. In contrast, since the sites are chosen at random
with probability p, C1(R) is constant and equal to p. This dif-
ference between C(R) and C1(R) explains why the structure
factor cannot generally be derived from the scaling theory of
percolation.

While the structure factor is defined for any vector of the
reciprocal space, we restrict its calculation to the reciprocal
lattice (Qx = 2i/L, with i an integer between 0 and L/2, and
similarly with integers j and k for Qy and Qz). This allows
us to use the fast Fourier transform algorithm FFTW [25] to
evaluate I (Q).

For a given realization, I (Q) strongly fluctuates as a func-
tion of Q due to the so-called speckle phenomenon. In an
actual structure factor measurement, these fluctuations are
washed out by using a detector covering many speckle spots
around a given scattering direction. In our simulations, we
obtain a similar averaging effect by averaging over different
angular orientations of Q. In the case of bulk germs, the
selection of clusters respects the rotational invariance, and we
average over all angular orientations at constant modulus Q
to keep only the modulus dependence (the case of surface
germs is more subtle and will be discussed in Sec. V). In prac-
tice, all entries with

√
i2 + j2 + k2 between Q.L/2 − 1/2 and

Q.L/2 + 1/2 are averaged together to give the scattering sig-
nal at I (Q). In a similar way, an isotropized C1(R) is obtained
by averaging over all R with a modulus between R − 1/2 and
R + 1/2. In the following, we will use the same symbol for
the scattering signal before or after averaging over angles.

Due to statistical noise, I (Q) and C1(R) depend on the
realization. However, because we consider self-averaging
quantities, and the lattice size is large, the fluctuations from

sample to sample are small. For L = 1024, averaging over 4
samples was found enough to obtain precise results.

In the simple Bernoulli percolation problem, all clusters are
selected, and the sites are randomly in state 0 or 1. A simple
analytical calculation then yields I (Q �= 0) = p(1 − p) and
C1(R �= 0) = p. In the case of clusters selection, the same
expressions, with p replaced by peff , would give the structure
factor and the correlation function i f the active sites were
noncorrelated. To measure the coherence induced by the se-
lection process, i.e., the excess (or loss) of scattering signal
due to the nonindependent positions of the active sites, we
will use the normalized quantities IN (Q) and C1N (R), obtained
by dividing the absolute structure factor I (Q) and correlation
function C1(R) by peff (1 − peff ) and peff .

When the density of selected clusters is small, we can
expect the intercorrelation terms to be negligible, and C1(R)
to be simply related to C(R). In Appendix B, we confirm this
expectation in the case of size selection by directly computing
C(R) for clusters of given size s, and comparing it to C1(R),
obtained by the inverse Fourier transform of I (Q) for an as-
sembly of clusters of size s. We find that C(R) and C1(R) only
differ through an additive constant. This shows that C(R) can
be computed from I (Q), at a much smaller numerical cost than
in the direct calculation [peffV log(V ) versus (peffV )2 steps].
In Sec. III B, this will allow us to generalize to a wider range
of s and p values an original result of our direct calculation
of C(R), which is that C(R) decays slower than exponential at
large R.

III. SINGLE CLUSTERS

In this section, we describe the p dependence of the struc-
ture factor of, first, the largest cluster, then of clusters of given
size s. Beyond confirming the well-known fractal structure of
percolation clusters [22], our results bring new information
concerning the quantitative Q dependence of the structure
factor, as well as the range of validity of the fractal structure
away from the percolation threshold pc.

A. Largest cluster

Figures 2(a) and 2(b), respectively, show IN (Q) for the
largest cluster, for various p below and above pc.

Below pc, the structure factor data collapse when the Q
scale is normalized by s−1/d f , where s(p) is the cluster size,
and IN (Q) is normalized by s. For large Qs1/d f values, IN (Q)
decreases as Q−d f , with d f � 2.53. This is in agreement with
the fractal structure of this cluster in a range of scales, with
a fractal dimension characteristic of the 3D percolation prob-
lem. At small Q’s, the fractal range is limited by the cluster
transverse extent s1/d f , so that IN (Q → 0)/s saturates around
1 for Qs1/d f ≈ 1. At larger Q’s, deviations from the Q−d f

behavior are observed for Q � 0.2, due to the breakdown of
fractality at the scale of the mesh size.

Below pc, IN (Q → 0) increases with p because s(p) in-
creases. In contrast, above pc, while s(p) keeps on increasing,
IN (Q → 0) decreases, This decrease follows from the pro-
gressive incorporation, above pc, of clusters of intermediate
size into the percolation cluster, which makes this cluster
more homogeneous at smaller and smaller sizes. As noted by
Stauffer and Aharony [22], one can expect the larger holes
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FIG. 2. Normalized structure factor IN (Q) of the largest cluster for a 10243 lattice: (a) below pc; (b) above pc. Labels give �p = (p −
pc )/pc. Below pc, the Q scale is normalized by s−1/d f , where s(p) is the size of the largest cluster. Above pc, the Q scale is normalized by 1/ξ ,
where ξ is the correlation length computed for the full cluster distribution, excluding the percolating cluster.

in the percolating cluster to be of order of the typical extent
of the other clusters. This typical extent is expected to be of
order the correlation length ξ . Accordingly, we normalize in
Fig. 2(b) the Q scale by 1/ξ , computed from our simulations,
and IN (Q) by ξ d f . The approximate collapse of data shows
that, above pc, the percolation cluster is homogeneous at
scales larger than ξ , and close to a fractal of dimension d f

at smaller scales, in agreement with Stauffer and Aharony’s
expectation.

B. Clusters of fixed size s

We now consider the case where only clusters of given
size s within some interval �s are selected. The resulting
structure factor at pc is represented in Fig. 3(a), normalizing
the axes as in Fig. 2(a). The different curves correspond to s

increasing from 10 to 10 000 by steps of 10, and a constant
relative interval �s

s = ±5%. In all cases, the average distance
between clusters is large compared to their spatial extent. We
then expect the structure factors of the different clusters to
add incoherently, and the average structure factor per cluster
to give the average structure factor for a cluster of given size
s. In Appendix B, we check this expectation by showing that,
within a constant, the all-to-all correlation function C1 for
the above selection coincides with gs(R), the average of the
correlation function C(R) over all clusters of size s within �s.

The good collapse of data observed in Fig. 3(a) is consis-
tent with the known property that, at percolation, all clusters
have a fractal structure with exponent d f , extending from
the mesh size up to their extent. Away from the percolation
point, scale invariance implies that clusters keep a fractal
structure, but with a fractal exponent dependent on p [22].
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FIG. 3. Normalized structure factor IN (Q) of individual clusters of size s. IN (Q) is computed by selecting all clusters of size of size s within
an interval ±5%. The axes are normalized as in Fig. 2(a); (a) Scaling behavior at percolation for s = 10, 100, 1000, and 10 000. The structure
factor of the largest cluster is also shown for similar sizes (250 corresponding to −30% below pc and 13 000 corresponding to −4% below
pc). The dashed curve is the theoretical structure factor if the correlation function decays exponentially with R [Eq. (4)]; (b) Comparison of
the structure factor for the same sizes s[s ≈ IN (Q → 0)] away from percolation. For each size, the structure factor is shown at pc and for the
smallest and largest values of p giving clusters of that size (�p = ± 30% for sizes 10 and 100, ±8% for size 1000, and (−4%, 2%) for size
10 000). In this range of p, the structure of clusters appears essentially controlled by their size, independently of the distance to the percolation
threshold.
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To the best of our knowledge, this dependence has not been
yet quantified. Our simulations of the structure factor of the
largest cluster (Fig. 2) suggest that it is weak in a range ± 30%
around pc. This conclusion is consistent with the comparison,
shown in Fig. 3(a), of the structure factor of clusters of given
size at pc to that of the largest cluster at p values chosen
to give similar sizes. The same comparison could suggest
a possible dependence with p of the Q dependence around
(s)−1/d f , but this dependence may also be an effect of the
small statistics (IN (Q) for the largest cluster is averaged over
four realizations only). To clarify this point, we compare in
Fig. 3(b), the average structure factors for the same cluster
sizes, below, at, and above pc. For each size, the structure
factor is shown at pc and for the smallest and largest values
of p giving clusters of that size. The near collapse of data
shows that the fractal structure of clusters barely depends to
the distance to the percolation threshold in the probed range
of p values. This range is however limited by the finite size
of our sample, as large size clusters are very unlikely too far
below pc. To extend the probed range of (p, s) couples of
values, we have used an invasion algorithm to generate large
clusters away from pc. The results, described in Appendix B,
confirm that the structure factor of individual clusters of a
given size is only weakly sensitive to p in a wide range
below pc.

To our knowledge, this remarkable feature has not yet been
previously reported in the litterature. In practice, we will use
this property in Appendix C to explain the Q dependence
of the scattering signal for invasion from bulk germs, using
a simple parametrization of the simulated Q dependence of
IN (Q).

Figure 3(a) also provides a quantitative description of the
Q dependence of the structure factor IN (Q, s). Noteworthy,
IN (Q, s) for percolation clusters differs from the expression
widely used for fractal colloids [26,27],

IN (q, s)/s = sin[(d f − 1) arctan(qλ)]

(d f − 1)qλ

1

[1 + (qλ)2](d f −1)/2
,

(4)
with λ = ( s

4π�(d f ) )1/d f ≈ 0.327s1/d f and �(x) the gamma
function.

As shown by the dashed line in Fig. 3(a), the crossover
from the low Q to the large Q behavior occurs in the lat-
ter case at significantly larger wave vectors. This difference
follows from the fact that Eq. (4) assumes the two-points cor-
relation function gs(r) to behave as gs(r) ∼ rd f −3 exp(−r/λ)
[28]. In contrast, our direct calculation in specific cases of
the two points correlation function of Bernoulli clusters (see
Appendix B) shows that the initial decay at small r’s of the
scaling function gs(r)r3−d f is slower than the above exponen-
tial. The near collapse of the different IN (Q, s) in Fig. 3(a)
allows to generalize this conclusion to a wider range of s and
p values than used in Appendix B.

IV. BULK GERMS

We now turn to the case where selected clusters are those
containing germs randomly chosen among the potential sites.
We will denote by xg the density of such germs, i.e., their
number divided by V , the total number of sites in the sim-

ulation volume. The scattering problem then involves three
length scales: ξ , the correlation length for all nonpercolating
clusters, which, below pc, measures the typical extent of clus-
ters, dg = (xg)−1/d , the characteristic distance between germs
at d dimensions, and 1/Q which measures the scale probed by
the radiation. The values of ξ and dg for our 3D simulations
are given in Appendix A (Fig. 15).

Figure 4 illustrates the influence of the germ fraction xg

for a 2D lattice, when the distance to percolation and the
germ fraction are varied. In Figs. 4(a) and 4(b), xg is a con-
stant, respectively equal to 10−6 and 10−5. As the percolation
threshold is gradually approached, the correlation length ξ

increases, and the selected clusters grow in size. As long
as ξ remains much smaller than dg, the clusters are mostly
well separated. In this dilute regime, we expect I (Q) to be
given by the addition of the structure factors of the individual
clusters, and to increase with the fraction of germs. In contrast,
when ξ becomes comparable to or larger than dg, we enter
a concentrated regime: the clusters are closer and some of
them merge, making their number smaller than the number
of germs. Simultaneously, the sample becomes more homo-
geneous at large scales. Figure 4(c) shows a similar evolution
when the germ fraction is increased at a constant distance
to percolation. Hence, in the concentrated regime, we expect
IN (Q) at small Q to decrease when increasing the fraction of
germs. In the following, we discuss these two regimes in the
3D case.

A. Dilute regime below pc

Figure 5(a) shows the computed structure factor for two
germs densities, 10−6 and 10−5, and different p values below
pc. For such densities, the average distance between germs is
larger than ξ , except very close to pc, and we fall in the dilute
regime. In this regime, we expect the normalized structure
factor to only depend on Q and ξ and the fractal structure of
individual clusters to be preserved. Accordingly, we normal-
ize the axes of Fig. 5(a) by 1/ξ and ξ d f , respectively. The
good collapse of data confirms our expectations. As in the
case of the largest cluster, the deviations at large values of Q.ξ

reflect the effect of the mesh size. Deviations at small angles
observed at pc for the two fractions, and slightly below pc

for the largest one reflect the breakdown of the dilute regime,
when dg becomes comparable to ξ .

Two important conclusions can be drawn from Fig. 5(a).
First, the measurements of the normalized structure factor at
small Q give access to ξ , once d f is determined. Second, d f

can be measured from the decay of the structure factor at large
Q values, at or slightly close to pc. This conclusion seems at
variance with a previous study of Martin and Ackerson [20],
who have shown that, at the percolation point, the structure
factor of a dilute assembly of clusters should decay with Q
with an exponent (τ − 3)d f = 3 − 2d f , different from −d f .
In fact, this discrepancy comes from the difference between
the cluster-size distribution P(s) in the context of gelation
studied by Martin and Ackerson, and the distribution N (s)
relevant in the context of invasion from bulk germs. In the
former case, where gelation clusters are separated apart by
dilution, P(s) is the size distribution function for Bernoulli
clusters at percolation, which decays as P(s) ∝ s−τ , with
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(a)

(b)

(c)

increasing pgerms fraction10-6

increasing pgerms fraction10-5

increasing fraction-0.69%below p c

FIG. 4. Evolution of the selected clusters when the density of germs, or the distance to the percolation threshold, varies. In these 2D
simulations for a 16 3842 lattice, regions of 32 × 32 pixels were averaged to yield 512 × 512 images. The grey level measures the number of
selected sites in each metapixel. Note that the smallest clusters cannot be resolved. Row (a): fixed fraction of germs 10−6 (corresponding to
about 250 germs), relative distance to pc increasing from −3.4% to −0.34%. Row (b): fixed fraction of germs 10−5 including germs of raw
(a), same values of p. Row (c): fixed distance to the percolation threshold (−0.69%), fraction of germs increasing from 10−6 to 10−2.

τ = 2.189 at d = 3. In the latter case, N (s) = s.P(s), as,
when picking a germ at random among all potential sites, the
probability of selecting a cluster of size s is proportional to
s. As detailed in Appendix C, the slower decay of P(s) com-
pared to N (s) implies that the structure factor is controlled,
in a similar way to ξ , by the largest clusters. This explains

why the Q−d f behavior is preserved by the average over
clusters.

Notwithstanding, the cluster-size distribution comes into
play when considering, rather than the normalized structure
factor, the physically measured quantity, the absolute struc-
ture factor. Indeed, I (Q) = peff (1 − peff )IN (Q), involves P(s)
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 0.1  1  10  100

I N
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Q
) 

/ ξ
d f

Q ξ

Δp=-0.297
Δp=-0.178
Δp=-0.089
Δp=-0.041
Δp=-0.020
Δp=-0.008

Δp=0
slope -df

eq 6

(a)

10-4

10-2

1

 0.1  1  10  100

I N
 (

Q
) 

/ d
gd f

Q dg

xg=10-1

xg=10-2

xg=10-3

xg=10-4

xg=10-5

xg=10-6

xg=10-7

slope -df
eq. 6 with xg=1e-6
eq. 6 with xg=1e-3

(b)

FIG. 5. Normalized structure factor IN (Q, p, xg) below the percolation threshold for invasion from bulk germs. (a) Demonstration of the
dilute regime for two germ fractions, xg = 10−6 (symbols) and 10−5 (lines), and relative distances to pc, �p = (p − pc )/pc, from −30% to 0.
The Q scale is normalized by 1/ξ , where ξ is the correlation length computed for the full cluster distribution, and IN (Q) by ξ d f . The continuous
black line is the prediction of Eq. (6). (b) Demonstration of the concentrated regime close to the percolation threshold (�p = −0.2%, ξ ≈ 300)
for xg increasing from 10−7 to 10−1. The Q scale is normalized by 1/dg, where dg is the characteristic distance between germs, and IN (Q) by

d
d f
g . The continuous and dotted black lines are the predictions of Eq. (6) for, respectively, xg = 10−6 and 10−3.
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FIG. 6. Scaling behavior of peff , the density of active sites, for
invasion from germs; a plot of peff/(xgd

d f
g ) against X = ξ (3−τ )d f /d

d f
g

(below pc) and X = ξ/dg (above pc) gives a good collapse of all data.
Close to pc (large X ), the constant asymptotic behavior corresponds
to a dense assembly of fractals blobs of density xg and average extent

dg, peff ≈ xgd
d f
g . Away from pc (small X ), the asymptotic power laws

correspond to peff ≈ xgξ
(3−τ )d f below pc (dilute clusters) and ξ (d f −3)

above pc (concentrated regime dominated by the percolating cluster
for ξ 
 dg). The lines correspond to Eqs. (7).

through peff . As shown by our simulations (Fig. 6) and ex-
plained in Appendix C, peff scales in the dilute regime as
ξ (3−τ )d f . This implies that the low Q absolute structure factor
diverges as ξ (4−τ )d f , hence depends on τ .

B. Concentrated regime below pc

We now discuss the behavior below pc for dg < ξ , i.e., in
the concentrated limit. In this regime, we might expect the
fractal structure of clusters to be limited by dg rather than ξ ,
hence the distribution of selected sites to consist in a dense
assembly of fractals blobs of density xg, average extent dg, and
fractal dimension d f . As shown by Fig. 6, the density peff of
selected sites agrees with this expectation, varying as peff ∝

xg d
d f
g . Accordingly, we plot in Fig. 5(b) the normalized struc-

ture factor, divided by d
d f
g , as a function of Qdg. This scaling

approximately collapses the curves obtained for increasing
germ fractions at a fixed distance to pc, confirming that, in the
concentrated regime, dg is the characteristic length of the scat-
tering problem. At scales larger than dg, the structure factor is
constant, and the sample homogeneous. At smaller scales, the
fractal structure is retained and the structure factor varies as
Q−d f . Overall, our simulations thus confirm that the spatial
distribution of selected sites follows the blob picture. In this
regime, intercluster correlations are found to slightly modify
the structure factor at small Q: Instead of IN (Q → 0) ∝ d

d f
g ,

we indeed find IN (Q → 0) ≈ 0.16 dd1
g with d1 = 2.8, approx-

imately 10% larger than d f .

C. Behavior above pc

Because the percolation transition is continuous, we expect
the above results to also apply right above pc. For a fixed germ
fraction, two changes occur as p further increases. First, pre-
existing disconnected clusters can connect into larger clusters,
and, second, new clusters can be selected or preexisting clus-
ters can abruptly grow in size by connection to another cluster
previouly unselected. Since the structure factor is unsensitive
to the fact that selected sites belong or not to the same cluster,
the first process barely affects peff and IN (Q → 0). A theo-
retical evaluation of the second process is not straightforward.
Figs. 7(b) and 6, respectively, show that, above pc, IN (Q → 0)
and peff behave similarly to right below pc as long as ξ > dg.

Namely, IN (Q → 0) ∝ dd1
g , and peff ∝ xg.d

d f
g ∼ d

d f −3
g .

In the opposite situation ξ 
 dg (i.e., far above pc),
Fig. 7(a) shows a behavior similar to that observed in the
dilute regime in Fig. 5(a), IN (Q) varying approximately as ξ d f

at low Qξ , and decreasing as Q−d f at large Q (<0.2). This
reflects the fact that, for small ξ , most selected sites belong
to the percolating cluster, for which such a dependence was
observed in Fig. 2(b). Consistently, Fig. 6 shows that peff

varies as ξ d f −3, the density of the percolating cluster. Inter-
correlations of the percolation cluster with the other clusters
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Δp=0
slope -df

eq 6, Δ p=0.089
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xg=10-6
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eq. 6 with xg=1e-3

(b)

FIG. 7. Normalized structure factor IN (Q, p, xg) of clusters above the percolation threshold, for different distances to pc and germ fractions.
Same axes as in Fig. 5: (a) for germ fractions xg = 10−6 (symbols) and 10−5 (lines), and �p ranging from 0 to 30% [the continuous black
line is the prediction of Eq. (6) for �p = 0.089 (ξ ≈ 6)]; (b) for germ fractions increasing from 10−6 to 10−1 and �p =0.8% (ξ ≈ 40) [the
continuous black line is the prediction of Eq. (6) for xg = 10−3].
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FIG. 8. Scaling behavior of the low-Q normalized structure factor, IN (Q → 0), for invasion from germs for all our data (7 germ fractions ×
23 distances from pc); (a) below pc; (b) above pc. Both figures show IN (Q → 0) in scaled coordinates based on the two characteristic lengths
ξ , dg. IN (Q → 0) is evaluated at Q = 1/512, the lowest nonzero Q of the FFT. The exponents d1 = 2.8 and d2 = 2.25 allow an approximate
collapse of all data. The lines correspond to Eq. (5).

only slightly modify the total structure factor: IN (Q → 0) is
found to vary as ξ d2 , with d2 = 2.25 < d f .

D. An unified description of scattering for selection
by bulk germs

Based on the above analyses, we gather all our simulations
results for the low Q limit of the normalized structure fac-
tor, IN (Q → 0), in the two plots of Fig. 8. In these log-log
plots, corresponding, respectively, to below and above pc, the
y axis is IN (Q → 0)/dd1

g . The x-axis is ξ d f /dd1
g below pc,

and ξ d2/dd1
g above. In these coordinates, the regimes ξ 
 dg

below and above pc correspond to straight lines of slope unity,
and the concentrated regime ξ � dg around pc to a constant.
In this representation, all points fall close to unique curves
within a typical factor 2. The largest deviations, observed for
xg = 10−7, could partly result from the limited sampling in
this case (100 germs only).

Within the factor 2 above, the behavior of IN (Q → 0) is
approximately parametrized by

IN (Q → 0, ξ , dg) = [
Sα

1 (ξ, dg) + Sα
2 (ξ, dg)

]1/α
, (5)

with S1, S2, and α given in Table I. S1 and S2 are deduced
from the asymptotic behaviors in the dilute and concentrated
regimes, respectively, except for S1 below pc which also
includes a correcting factor to approximately reproduce the
shallow maximum of IN (Q → 0, ξ , dg) for ξ ≈ 2dg observed
in Fig. 8(a). α is chosen to match the behavior in the crossover
region ξ � dg.

Away from Q → 0, the transition of IN (Q) from the con-
stant low Q limit to the fractal behavior observed at larger Q
is found to be reasonably well described for all our results by
the following simple interpolation:

IN (Q, ξ , dg) = [(IN (Q → 0, ξ , dg))−1 + (0.15 Q−d f )−1]−1.

(6)

The Q dependence predicted by this equation is shown by
continuous lines in Figs. 5 and 7.

By allowing to estimate the effect of intercluster correla-
tions for invasion from bulk germs, Eq. (6) is a central result
of our simulations. To obtain the absolute structure factor per
unit volume I (Q) = peff (1 − peff )IN (Q), which is the quantity
directly measured in a scattering experiment, Eq. (6) has to be
complemented by expression(s) for peff (p, xg). We will use
the following equations:

peff (ξ, dg) =
⎧⎨
⎩

xg d
d f
g

[
0.41β + (

0.68 ξ (3−τ )d f /d
d f
g

)β]1/β
p < pc,

xg d
d f
g [0.41γ + (0.55 (ξ/dg)d f −3)γ )]1/γ p > pc,

(7)

with β = −0.9 and γ = 3.
For ξ � dg or ξ 
 dg, these equations reduce to the lim-

iting behaviors found above: peff ≈ xgd
d f
g close to pc, peff ≈

xg ξ (3−τ )d f below pc in the dilute regime, and ξ (d f −3) above
pc in the concentrated regime. Values of β and γ are chosen
to reproduce the simulation results in the intermediate region
ξ ∼ dg (see the continuous lines in Fig. 6).

To summarize this section, Eqs. (5)–(7) properly describe
the normalized and absolute structure factors for invasion per-

colation from bulk germs. While the choice of values for the
parameters (d1, d2, α, β, γ ) is somewhat arbitrary, it reason-
ably reproduces, for the whole set of (p, xg) parameters used
in our simulations, the effects of the cluster-size distribution
and of the intercluster correlations. This agreement will be
again illustrated in Sec. IV E, which discusses the p depen-
dence of IN (Q) and I (Q), depending on the germ fraction
and the scattering wave vector Q. Moreover, we will show in
Sec. IV F that Eqs. (5)–(7) can be successfully used to predict
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TABLE I. Expressions for the functions S1 and S2 of Eq. (5).
d1 = 2.8 and d2 = 2.25.

S1 S2 α

p < pc 0.16 (1 + 4dg/ξ ) dd1
g 0.8 ξ d f −1

p > pc 0.16 dd1
g 0.5 ξ d2 −0.8

the scattering properties for values of (p, xg) different from
those simulated above.

E. Discussion of the scattering signal for invasion from bulk
germs at a fixed fraction

In this section, we discuss the p dependence, for the
different germ fractions, of the normalized and absolute struc-
ture factors obtained from our simulations for two values
of Q, Q = 2/L ≈ 0.002, the lowest nonzero Q value, and
Q = 20/L ≈ 0.02, 10 times larger. This dependence is shown
in Figs. 9(a) and 9(c), 9(b) and 9(d), respectively. While
these figures contain no new data with respect to the con-
tents of Figs. 6 and 9, the representation in function of p

is more adapted to a discussion of the effect of percola-
tion on scattering, and to a comparison to experiments. In
these figures, symbols correspond to the results of simula-
tions, while continuous lines correspond to the predictions
of Eqs. (5)–(7), using for the correlation length the following
expressions:

ξ =
{

1.25 (1 − p/pc)−0.876 p < pc,

0.681 (p/pc − 1)−0.929 p > pc,
(8)

which properly reproduce our simulations results for the four
configurations studied and ξ/L < 0.14 (see Appendix A).

Apart from a slope discontinuity at pc, and discrepancies
with simulations for fractions of 10−1 and 10−2, for which the
scattering is anyway small, the overall agreement is good. In
particular, Eqs. (6) and (7) well account for the evolution of
the peaks of IN (Q, p) and I (Q, p) both in height, position with
respect to pc, and dependence upon Q. In the following, we
discuss the salient points of these figures in the perspective of
the experimental detection of percolation through scattering
measurements.

First, a clear scattering peak at percolation is only observed
for a small enough germ fraction. If the germ fraction is too
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FIG. 9. Dependence of the normalized (a), (b) and absolute (c), (d) structure factors IN (Q, p, dg) and I (Q, p, dg) around the percolation
threshold for (a), (c) Q = 2/L ≈ 0.002, and (b), (d) Q = 20/L ≈ 0.02. Symbols correspond to the results of simulations for germ fractions
from 10−7 to 10−1. Continuous lines give the predictions of Eqs. (5)–(7) for the same fractions, plus a vanishingly small fraction [corresponding
to the limit dg = ∞ in Eq. (5)]. The horizontal bars in panels (a) and (c) correspond to the fractal limit of IN (Q), 0.15 Q−d f , the maximal degree
of coherence at wave vector Q. Panels (c) and (d) also show the absolute structure factor I (Q, p) for invasion from surfaces as filled diamonds.
The insert in panel (d) is a zoom on the peak region.
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large (�10−2), the distance between germs is so small that
the condition ξ ∼ dg corresponds to p well below pc. As
a consequence, the peak occurs well before the percolation
threshold and the maximal gain of coherence is modest.

Second, the peak of the normalized structure factor be-
comes sharper and higher as the distance between germs
increases, and the fractal correlations can correlatively de-
velop up to a larger scale. Looking in more detail, Figs. 9(a)
and 9(b) show that, for the considered Q’s, IN (Q, p) barely
depends on Q except close to pc. This behavior corresponds to
the plateau of Fig. 5(a) at Q.ξ < 1. In this regime, as long as
dg > ξ , corresponding to xg < ξ−3, IN (Q, p) ≈ ξ d f does not
depend on the germ fraction either. In contrast, close to pc,
ξ is large enough for the coherence to be limited by either
dg or 1/Q. IN (Q, p) then increases when the germ fraction
or Q decrease. In particular, for a low enough germ fraction
(such that both Q.ξ and Q.dg are larger than unity), IN (Q, p)
becomes limited by the fractal behavior Q−d f .

Third, Figs. 9(c) and 9(d) show that the absolute structure
factor I (Q, p) presents similar trends. In particular, it strongly
depends on Q only close to pc and for germ fractions smaller
than 10−5. It is for these conditions that the fractal signature
of percolation is the clearest. This is specially true for the
absolute structure factor, due to the fast increase of the peff

term when p increases up to pc.
The above results allow to discuss a practical question

which sets the ability to detect percolation through scattering
measurements. For a given Q (i.e., scattering angle), what is
the maximal absolute signal, and at which germ fraction does
it occur? The existence of an optimal fraction follows from
the competition between the opposite dependencies of peff

and IN (Q → 0, p) on the germ fraction. At small germ frac-
tions, such that ξ < dg, IN (Q → 0) is a constant of order ξ d f

and I (Q, p) thus increases with peff ∝ xg. At larger fractions,

corresponding to dg < ξ , IN (Q, dg) ∼ d
d f
g drops faster than

peff increases, and I (Q → 0) decreases. Combining peff ∝
d

d f −3
g and IN (Q → 0) ∝ dd1

g , we find that I (Q → 0) ∝
d

d f +d1−3
g , which decreases approximately as d

2d f −3
g ∼ x−2/3

g as
xg increases. Neglecting the difference between d1 and d f , the

maximal value of I (Q → 0, p, dg) is of order d
2d f −3
g , obtained

for dg � ξ , which increases with ξ . However, for the Q → 0
limit to hold, ξ should remain smaller than Q−1. For larger
values, IN (Q) ∼ Q−d f , and I (Q) ∝ peff which decreases when
dg ∼ ξ increases. Hence, our analysis predicts that the maxi-
mal absolute signal at a given Q is of order Q3−2d f � Q−2,
obtained for dg � 1/Q and a distance to pc such that ξ � dg,
corresponding to the situation where the selected clusters are
close to interconnect.

To directly check these conclusions, we have extracted
from our results, for each value of Q, the configuration (among
the selections of the largest cluster, all clusters, or bulk germs
at a fixed fraction) maximizing the absolute structure factor.
We report in Fig. 10 the corresponding value of I (Q) as a
function of Q, the symbols coding for the configuration max-
imizing the signal. Except for the lowest Q (where the largest
cluster gives the maximal structure factor) and the largest Q
(where the maximum is obtained by selecting all clusters),
the maximum of the absolute structure factor corresponds to
the case of invasion from bulk germs. The predicted Q3−2d f
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FIG. 10. Q dependence of the maximum value of the absolute
structure factor among all our results for different selections (bulk
germs, largest cluster, and all clusters) and for all p � pc. In the rare
instances where the maximum is reached for p < pc, its value differs
from the value at pc by less than 0.1%. The symbols indicate which
selection maximizes the structure factor. The Q3−2d f dependence, and
the fact that the maximum is obtained for larger fractions at larger Q
are in agreement with the arguments given in the text.

dependence, and the fact that the maximum is obtained for
larger germs fractions at larger Q are accurately confirmed by
Fig. 10.

The Q3−2d f dependence of the maximal absolute structure
factor quantifies the physical expectation that percolation is
more easily detected at small Q values (small scattering an-
gles). Moreover, a second reason for using small scattering
angles emerges from the inset of Fig. 9(b). Zooming on the
region close to pc for Q = 20/L reveals that, for small germ
fractions, the maximum of I (Q, p, dg) occurs beyond percola-
tion, the growth of peff offsetting the decrease of IN (Q, p, dg).
This behavior is observed not only for our simulations, but
also for the predicted curves, showing that it is not due to finite
size or sampling errors. This implies that precisely measuring
the percolation threshold through the position of the maximal
scattering signal requires not only the germ fraction to be
small, but also Q.

To summarize, percolation invasion from bulk germs at a
fixed small fraction has a clear scattering signature at small
scattering angles. This result is qualitatively obvious. Indeed,
in such conditions, clusters can grow up to a large size before
the concentrated regime is reached. What our study allows
is to quantify these conditions. As an example, according to
Figs. 10 or 9(b), for Q = 0.02, corresponding to probing a
scale 50 times the mesh size, the scattering signal increases
by a factor 2500 with respect to its incoherent value as long
as the germ fraction remains smaller than 10−5. This extended
dynamic range allows the detection of percolation, and a test
of the fractal structure of the clusters over a large range of
scales, even in the case where the incoherent scattering is
small and/or masked by some background. Furthermore, as
shown by the inset of Fig. 9(d), even though the absolute
signal peaks at p < pc, the relative deviation of p from pc

is less than about 1%, for xg � 10−4. Hence, for such small
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FIG. 11. Theoretical optical signature of percolation invasion from bulk germs for evaporation of helium in a porous material. (a) Depen-
dence of the parameters p (continuous line) and xg (open symbols) on the pressure P at three temperatures for P < P∞

cav (i.e., a nonzero germ
fraction) as analytically computed for a Gaussian distribution of pore radius (see text). Both p and xg increase when the pressure decreases or
the temperature increases. For T > T ∗ = 3.35 K, crosses indicate the value of the germ fraction at the percolation threshold. Closed symbols
give peff (P) as obtained from simulations on a L = 512 pore lattice generated using the same radius distribution. (b) Absolute structure factor
obtained from these simulations for Q = 0.044 as a function of peff at different temperatures (symbols). At large peff , IN (Q) approaches the
incoherent limit peff (1 − peff ), given by the dotted line. The value of peff at percolation for T > T ∗ is indicated by arrows. It coincides with pc

above 3.8 K. Continuous lines give the structure factor predicted from p and xg using Eqs. (5)–(7). These predictions correctly reproduce the
main trends of the simulation results.

germ fractions, the percolation transition nearly corresponds
to the peak of scattering. Note however that, as illustrated in
the next section, this conclusion fails if the germ fraction is
too large.

F. Application to evaporation in a 3D connected disordered
porous material

In this section, we discuss evaporation from a 3D con-
nected porous material in the regime of percolation invasion
from bulk germs created by thermally activated cavitation.
In this regime, both xg and p depend on pressure and tem-
perature. Hence, in contrast to the previous section, xg the
germs fraction is no longer constant, but increases with p.
To evaluate the resulting structure factor, a first approach is
to rely, as above, on specific simulations, using a physical
model to compute the input parameters xg and p. Given these
parameters, an alternative, though approximate, approach, is
to apply Eqs. (5)–(7). In the following, we first use the sim-
ulation approach to determine and to discuss the temperature
dependence of the scattering signal. We then show that the
second approach properly reproduces, at nearly no numeri-
cal cost, the main features of this temperature dependence,
thereby demonstrating its interest.

As in Ref. [8], we model the porous material by pores
of randomly distributed radius R occupying the sites of a
cubic lattice. At given temperature T and pressure P, p and
xg are, respectively, given by the fractions of pores such that
Peq(R, T ) > P and Pcav(R, T ) > P, where Peq and Pcav are
defined in the introduction. Peq(R, T ) and Pcav(R, T ) both
increase with R, so that p(P, T ) and xg(P, T ) are, respec-
tively, the fraction of pores of radius R > Req(P, T ) and R >

Rcav(P, T ), where Req is such that Peq(Req, T ) = P and sim-
ilarly for Rcav. For a given pore radius distribution, p(P, T )
and xg(P, T ) can be determined from the radius and tem-

perature dependencies of Peq(R, T ) and Pcav(R, T ) computed
using a model for evaporation in a single pore, such as
that developed in Ref. [29]. This allows to obtain the—
temperature dependent—percolation pressure Pperco such that
p(Pperco, T ) = pc and a crossover temperature T ∗ such that
P∞

cav(T ∗) = Pcav(R → ∞, T ∗) is smaller than Pperco(T ∗). Be-
low T ∗, no bulk germ is present for P � Pperco, so that, at
pc, invasion percolation from bulk germs only takes place
above T ∗.

Figure 11(a) shows the pressure, or, more precisely, the
fugacity [30] dependence of p and xg for the physical con-
ditions studied in Ref. [8], namely liquid helium in the range
3–4 K and pores radii R distributed according to a Gaussian
of mean 3 nm and width 1.31 nm. The three temperatures
shown in Fig. 11(a) are below (3.2 K), above (3.6 K), or close
(3.4 K) to the crossover temperature T ∗ (3.35 K for the above
parameters [8]). At a given temperature, the cavitated pores
act as vapor germs and the pores effectively emptied are those
belonging to the clusters containing these germs. The germ
fraction at percolation is zero below T ∗ and rapidly increases
with temperature above: as shown by Fig. 11(a), xg(pc) is
larger than 10−2 for T � 3.4 K.

In the simulation approach, we evaluate peff and I (Q) using
a single realization of a L = 512 lattice where the pore radius
at each site is drawn according to the Gaussian distribution
above. At each pressure P, we select the clusters containing
the germs and compute peff and I (Q) as described in Secs. II B
and II C [31]. Figures 11(a) and 11(b), respectively, show the
results for peff (T ) as a function of P and I (Q, T ) as a function
of peff for different temperatures and Q = 0.044 (this value
corresponding to the scattering angle in Fig. 1(b)).

Above T ∗, a peak of the structure factor develops during
evaporation. In agreement with the experimental behavior
shown in Fig. 1(b), its amplitude increases when the tempera-
ture decreases. In contrast to the situation shown in Fig. 9, the
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FIG. 12. Invasion from surfaces: the selected clusters are those touching the top side of the same 2D lattice as in Fig. 4. Periodic boundaries
conditions are used only along the direction parallel to this boundary. Labels indicate the relative distance to the percolation threshold, which
varies from −1% to 0%. For comparison, the last image shows the largest cluster right at pc.

peak occurs well before percolation. This difference follows
from the fast increase of the germ fraction below P∞

cav [see
Fig. 11(a)]. Except in a narrow interval above T ∗, dg ∼ ξ

occurs for a small value of dg, hence ξ , accounting for the
peak occurring well below pc.

Below T ∗, cavitation in the largest pores takes place below
Pperco. Because we considered periodic boundary conditions,
thus excluding invasion from surfaces, peff and the structure
factor abruptly jump from zero to finite values at P∞

cav. At lower
pressures, peff increases, but the decrease of dg makes I (Q) to
decrease, accounting for the decrease of I (Q) with increasing
peff observed in Fig. 11(b) for T = 3.0 and 3.2 K. Finally,
at all temperatures, I (Q) at large enough values of peff is
given by the incoherent limit peff (1 − peff ). This results from
the fact that, below a temperature dependent critical radius,
Pcav(R, T ) coincides with Peq(R, T ) [29]. Below this common
pressure, all potential sites are germs, so that all the clusters
are selected and the structure factor coincides with that for a
random distribution with peff = p. This high peff regime is a
direct illustration of the key role of the selection process in the
obtention of a coherent enhancement of I (Q).

The predictions based on Eqs. (5)–(7) are shown by con-
tinuous lines in Fig. 11(b) [32]. Comparison to the closed
symbols shows that this second approach correctly accounts
for the results of the first one. Specifically, the temperature
dependence of the position and height of the peak of I (Q),
as well as of the range of peff ’s over which the coherent
signal vanishes, are well reproduced. Considering that the
expressions for I (Q) are only precise within a factor 2, and
that Fig. 11(b) explores ranges of p and xg not included
in the determination of Eqs. (5) and (7) (far below pc and
xg > 10%), this agreement is quite satisfying.

This comparison demonstrates that the approximate ex-
pressions presented for IN (Q) and peff can be efficiently used
to predict I (Q) for radius distributions or fluid properties
different from those simulated here, without having to resort
on specific and numerically expensive simulations. They thus
provide a tool to analyze the role of percolation as an evapo-
ration process in future scattering experiments.

V. SURFACE GERMS

In this last section, we discuss the structure factor for
invasion from the boundaries of the sample when no bulk
germs are present. For evaporation from porous materials, this
situation occurs when the temperature is too low for thermally
activated cavitation to take place and to create bulk germs. In
this case, only clusters connected to the surfaces of the sample

in contact with the outer vapor can empty. The result of the se-
lection process for increasing p values is illustrated in Fig. 12
in the 2D case, when only clusters contacting the top side of
the square are considered. Comparison of this figure to the first
row of Fig. 4 shows that, in contrast to the case of bulk germs,
one can never identify a dilute regime. Close to the surface,
the density of germs is always large. In particular, in the first
layer parallel to the surface, all potential sites act as germs.
Their typical separation, p−1/2 (at 3D), is thus of order unity
for p > 0.1. Due to this large germ density, it is not obvious
that percolation should have a clear-cut signature in terms of
light scattering. We show below that this is nevertheless the
case.

Due to the anisotropic character of the distribution of se-
lected sites in the present case, obtaining the structure factor
requires to modify its computation with respect to the case
of bulk germs. Using the same averaging scheme over the
different orientations of Q at fixed Q, and selecting all clus-
ters connected to the six sample’s surfaces would result in a
spurious Q dependence at small Q. Indeed, in the directions
(±Q, 0, 0), the large number of sites along the surface (0, y,
z) give a strong coherent contribution, and similarly for the
other surfaces. Since, at three dimensions, the number of Q
vectors of modulus Q scales as Q2, the singular directions give
an extracontribution diverging as 1/Q2 at small Q values, as
can be checked numerically. To avoid this artifact, we select
one of the six faces of the sample, and only pick the clus-
ters contacting this face. Moreover, we restrain the angular
averaging process to Q vectors parallel to the chosen surface.
As expected, using this procedure suppresses the divergence
at small Q (except at pc), at the cost of a larger statistical
noise. The obtained structure factor corresponds to the typical
experimental situation of Ref. [16], where the incident wave
vector is normal to the surface of the sample and the scattered
radiation is observed at small angles close to the forward
direction.

Figures 13(a) and 13(b) show the resulting Q-dependence
of the normalized structure factor below and above the perco-
lation threshold, computed by averaging over the same four
samples as in the germs case. As in the case of invasion from
bulk germs [Figs. 5(a) and 7(a)], the saturation value at low
Q values grows as percolation is approached on both sides of
pc. At pc, IN (Q) varies close to Q−d f , as is the case for the
larger cluster, or for a dilute distribution of bulk germs. This
behavior results from the fact that IN (Q) probes the whole
volume of the sample: since clusters extend perpendicular
to the surface only over a depth of order their radius of gy-
ration, only the larger ones contribute to IN (Q) far enough
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FIG. 13. Normalized structure factor for invasion from a surface below (a) and above (b) pc. In (a), the inset shows the scattering geometry
considered, where the incident wave vector is perpendicular to the surface. The data are noisier than in the germs case, due to the fact that
the average is performed over a limited number of orientations of the Q vector (see text). At percolation, a fractal behavior is obtained over a
larger Q range than in the germs case at fraction 10−7 (Fig. 5).

of the surface, explaining why, in contrast to bulk invasion,
the fractal structure at pc is retained at large scale. At 2D,
Fig. 12 provides a pictural demonstration of this property.
Except close to the invasion surface, the active sites at pc

are those of the largest (percolating) cluster. This property
explains why, as seen in Fig. 1(b) [16,33], the structure factor
measured during evaporation from the surface of Vycor does
exhibit a Q−d f behavior, despite the large density of surface
germs.

The large number of clusters of small size close to the
surface has however consequences. As shown by Fig. 14(a),
away from pc, the low Q limit of IN (Q) for invasion from
surfaces is smaller than for invasion from dilute germs. More-
over, Fig. 14(a) also shows that IN (Q → 0) increases with ξ

approximately as ξ 2.2, significantly slower than the ξ d f behav-
ior observed for germs in the dilute limit.

It is interesting to compare the behavior of the absolute
structure factor to that found for bulk invasion. Figure 14(b)

shows that, below pc, the ξ dependence of peff is much slower
than the ξ 3−2d f behavior found for bulk germs. For ξ > 30,
peff ∼ ξ 0.5. This exponent is consistent with the simple as-
sumption of a fractal structure up to ξ , confined in a layer
of thickness ξ , which gives peff ∼ ξ d f −2/L. This different
behavior is responsible for the p dependence of I (Q, p) below
pc being different for the two situations of invasion, as seen
in Figs. 9(c) and 9(d). However, Figs. 9(a) and 9(b), and
Fig. 14(b), respectively show that, at pc, both the normalized
structure factor IN (Q) and peff are nearly identical for invasion
from the surface, and for invasion from bulk germs at a very
small fraction. As a result, the absolute structure factor at pc

is identical as well. For our finite-size sample, this identity
results from the fact that, in both cases, all physical quantities
are dominated by the largest cluster. We expect that this would
remain true for any size L, provided that, in the case of bulk
germs, the germ fraction is low enough. For invasion from sur-
faces, the percolation threshold is also correctly determined
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FIG. 14. Comparison of invasion from bulk germs and surface: (a) below pc, IN (Q → 0) grows slower with ξ for invasion from surfaces
than from bulk germs at xg = 10−7; (b) peff for surface invasion below (filled symbols) and above (open symbols) pc. Below pc, peff grows
approximately as ξ 0.5, much slower than the ξ 3−2d f behavior observed for dilute bulk germs at xg = 10−7 and 10−6. At percolation, peff ≈ Ld f −3,
indicated by the horizontal dotted line, showing that the density is controlled by that of the percolating cluster.
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by the maximum of the absolute structure factor, despite the
locally large density of surface germs.

We conclude that, at pc, both the Q dependence and the
absolute value of the scattering signal should be similar for
invasion from surfaces or dilute bulk germs. Differentiating
the two processes thus requires to perform spatially resolved,
local, measurements of IN (Q → 0) as a function of the dis-
tance to the sample’s surface.

VI. CONCLUSIONS

Our systematic numerical study and its analysis allowed us
to decipher the scattering properties of percolation clusters.
For single clusters, we demonstrated that their well-known
fractal structure at the percolation threshold pc remains essen-
tially unaffected in a wide range around the transition. To the
best of our knowledge, this property had not been previously
reported. For clusters assemblies, we answered the different
questions raised in the introduction, enabling us to establish
the scattering signatures of invasion percolation.

First, for invasion both from bulk germs and surfaces,
we show that the structure factor at large wave vectors Q
decays as Q−d f , where d f is the fractal dimension associated
with individual clusters. This result contrasts with that pre-
viously reported for clusters generated by gelation followed
by dilution, a difference which we could trace to the differ-
ent cluster-size distribution. For invasion from bulk germs,
larger clusters are over-sampled with respect to the Bernoulli
distribution relevant for dilution. The structure factor is then
dominated by the largest clusters, giving a Q−d f decay. Sim-
ilarly, for invasion from surfaces, only the largest clusters
exist far from the surfaces, leading to the same Q−d f decay.
In the latter case, our simulations show that, at percolation,
this behavior extends down to Q = 0. Retrospectively, this
confirms the interpretation of the earlier experiment by Page
et al [16], which ascribed to a percolation phenomenon the
observed power law decay of the structure factor.

Second, we show that the low Q limit of the structure
factor (once normalized by the structure factor for a random
distribution of sites with the same density) behaves differently
for the two modes of invasion. For bulk germs, as long as the
clusters are well separated, corresponding to ξ smaller than
the distance dg between germs, this limit varies as ξ d f as in
the case of the largest cluster only. In this regime, structure
factor measurements may give access to the critical exponent
ν describing the divergence of ξ at percolation. In contrast, for
invasion from surfaces, we find that the divergence of the low
Q structure factor is slower, reflecting that clusters connected
to the surfaces have a wider distribution of sizes than for bulk
germs invasion. Barring this difference, the scattering signal
peaks at percolation, with the same Q−d f dependence, both for
invasion from surfaces and invasion from very dilute germs.
Hence, experimentally distinguishing the two processes re-
quires spatially resolved measurements.

For invasion from bulk germs, we also discussed the effect
of intercluster correlations close to the percolation thresh-
old and beyond. On both sides of the transition, for ξ > dg,
the structure factor and the density of active sites are found
consistent with a blob picture, where the sample is densely
filled by fractal blobs of typical extent dg. For very large
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FIG. 15. Invasion from bulk germs: points of simulation in the
plane (ξ, dg) for which the structure factor has been computed. ξ

and dg are given in units of L = 1024. dg values correspond to
germ fractions increasing from 10−7 up to 10−1 by steps of 10. ξ

corresponds to the values of p given in Table II.

germs concentrations, intercorrelations nearly suppress the
scattering enhancement at percolation. For p > pc, ξ < dg,
and not too small dg, the structure factor and the density of
active sites are controlled by those of the percolating clus-
ter. We presented approximate expressions parametrizing the
structure factor as a function of dg, ξ , and Q. Based on these
expressions, we could reproduce the results of earlier simula-
tions of evaporation in a porous glass in a complex case where
the density of bulk germs and the distance to percolation vary
simultaneously, demonstrating their usefulness.

Finally, we note that, while our simulations were per-
formed on a cubic lattice, the emerging physical conclusions
can be expected to be of wider validity. Our results thus
provide a new basis for analyzing light or neutrons scattering
experiments in the vicinity of a percolation transtion.

APPENDIX A

Simulations were performed for the 23 values of p given
in Table II. For each p, four configurations were generated
and averaged. The averaged values of ξ for the full clus-
ter distribution, excluding the percolating one, are given in
Table II. When the normalization of the axes of figures in-
volves ξ , these are the values used. Simulations for bulk germs
were performed for seven germ fractions, ranging from 10−7

to 10−1 by steps of 10. Figure 15 compares the corresponding
average distance between germs, dg, to ξ . The straight line
ξ = dg approximately separates the dilute and concentrated
regimes.

Specific simulations using a large number of configurations
were carried out to precisely study the p dependence of ξ for
lattices of linear size L from 32 to 512. Figure 16(a) shows the
results of these simulations, using standard finite-size scaling
coordinates. For ξ/L < 0.14, finite-size effects are negligible
and the behavior of ξ in a range of ±30% around pc is well
described by

ξ =
{

1.25 (1 − p/pc)−0.876 p < pc,

0.68 (p/pc − 1)−0.929 p > pc,
(A1)
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TABLE II. Values of p, �p = p/pc − 1 used in this work, and corresponding results for the correlation length ξ .

p 0.21920 0.25616 0.28388 0.29892 0.30526 0.30907 0.30970 0.31032
�p −0.29653 −0.17792 −0.08896 −0.04069 −0.02035 −0.00812 −0.00610 −0.00411
ξ 3.3 5.5 10.5 21 40 83 105 155
p 0.31097 0.31147 0.31154 0.31160 0.31166 0.31173 0.31223 0.31288
�p −0.00202 −0.00042 −0.00019 0.00000 0.00019 0.00042 0.00202 0.00411
ξ 303 350 351 334 313 323 107 96
p 0.31350 0.31413 0.31794 0.32428 0.33932 0.36704 0.40400
�p 0.00610 0.00812 0.02035 0.04069 0.08896 0.17792 0.29653
ξ 50 43 23 11.5 6.0 3.2 2

where ξ is in units of mesh size. These expressions are used
in the paper to produce the continuous lines in Figs. 9. Note
that a good fit requires the exponent of |1 − p/pc| above pc to
slightly differ from ν, in contrast to the usual assupmtion that
the critical exponent is the same on both sides of the transition.
This might result from an off-critical effect due to the large
range of p values studied.

Finally, Fig. 16(b) shows the cluster-size distribution
P(s, p) deduced from our simulations for several values of
p. In agreement with the litterature, P(s, pc) at percolation
is accurately described by a power law distribution s−τ , with
τ = 1 + d/d f . Below pc, this behavior is cut-off at a size s
scaling approximately as ξ d f , consistent with the fact that the
extent of the largest clusters scales as ξ .

APPENDIX B

In this Appendix, we directly study the p dependence of
the average correlation function C(R) for a cluster of given
size s generated by an invasion process, and show that this
dependence is modest. We further show that C(R) for s =
1000 coincides within a constant to the correlation function
C1(R) obtained by a Fourier transform of the structure factor
of the whole set of Bernoulli clusters of size s ± �s studied
in Sec. III B. This confirms that, as assumed in Sec. III B, the
intercorrelation effects for this set are negligible.

To generate the clusters, we use a slightly modified version
of the invasion percolation algorithm [34]. In this algorithm,
the cluster is built site by site on an arbitrarily large cubic
lattice. To generate a cluster at p, one first selects the origin
and randomly chooses the parameter pi for the six neighbors
of the origin. If all pi are larger than p, the cluster is closed of
size one. Otherwise, one adds to the cluster the site with the
lower pi. This creates new neighboring sites i for which one
draws new parameters pi. One iterates until all neighboring
sites have a parameter larger than p or the size exceeds the
maximum size, in which case the cluster is disregarded as not
completed. If the cluster is completed, it is kept only if it has
the desired size. Obviously, if p is small, one has to generate
a huge number of clusters to obtain a large one. Conversely,
if p > pc, most clusters will not close, making it difficult to
generate a cluster of intermediate size.

Having obtained a collection of clusters of size s with a
small tolerance of ± 2%, we obtain the corresponding corre-
lation C(R) by counting for each cluster the number of pairs of
cluster sites separated by a distance R. C(R) is then averaged
over all clusters of the collection, resulting in an excellent
precision.

Figure 17 shows the correlation function C(R) for clusters
of different sizes ranging from 100 to 4000, and for different
values of �p ranging from 0 to −0.2, the larger distance to
pc for which it was possible to generate clusters of the largest
size. In this figure, the correlation function is normalized by
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FIG. 16. (a) Finite-size scaling of the correlation length ξ for all clusters except the percolating one. pm is the size dependent percolation
threshold; (b) cluster-size distribution for different p below pc for a 10243 cubic lattice. �p = (p − pc )/pc. The black line corresponds to a
power law with the theoretical exponent τ = 1 + d/df = 2.189. Arrows correspond to s = ξ d f , where ξ is the correlation length for the full
distribution of clusters.
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FIG. 17. Correlation function for clusters of size s: (a) for clusters generated by an invasion algorithm with s = 100, 1000, 4000, and
different relative distances �p to the percolation threshold pc. For clarity, the curves for s = 1000 and 100 have been, respectively, scaled
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with same size s (within ± 5%) on the L = 1024 lattice, at approximately similar values of p. Lines correspond to the invasion algorithm and
symbols to the result for Bernoulli clusters. In both figures, C(R) is normalized by Rd f −3, and R by s1/d f , the typical extent of a fractal cluster
of size s. The dashed lines show the position of the crossing point R�(s) discussed in the text.

its dependence at percolation, C(R) = Rd f −3, and R is normal-
ized by s1/d f , the typical extent of a fractal cluster of size s.

In agreement with expectation, Fig. 17(a) shows that, at
percolation, C(R)/Rd f −3 behaves as a function of R/s1/d f .
However, unlike often assumed, this function is not a simple
single exponential, but is curved downwards. This explains
our finding that IN (Q) for a single cluster [Fig. 3(a)] does
not coincide with the prediction of Ref. [28]. Away from
percolation, C(R)/Rd f −3 depends on p. Such a dependence
is expected. Indeed, the Boltzmann weight of a cluster of
size s with f frontier sites (the sites connected to the cluster,
but not belonging to it) is proportional to ps.(1 − p) f . This
implies that the cluster structure must depend on p. How-
ever, Fig. 17(a) shows that this dependence has no critical
character at pc and remains modest in a large range around
pc. This extends to a wider range of p and s values the
conclusion drawn in the main text from the study of IN (Q)
for Bernoulli clusters of given size s on a lattice of linear
size L = 1024.

An unexpected feature of Fig. 17(a) is the existence of a ra-
dius R�(s) at which the correlation function is identical for all
tested values of p. This crossing point, indicated by a dashed
line on Fig. 17(a), accurately corresponds to R�(s) ≈ s1/d f

for R � 1000. It would be interesting to study whether this
property could be rigorously demonstrated.

We finally compare the average correlation function C(R)
for a single cluster computed using the invasion algorithm to
C1(R), obtained by an inverse Fourier transform of the struc-
ture factor for all Bernoulli clusters of same size s. Since, at
large distances, C1(R) → peff , Fig. 17(b) more precisely com-
pares C(R) and C1(R) − peff for a size s = 1000, and similar
distances to pc. Both calculations are in excellent agreement,
including the existence and position of the crossing point.
Since C(R) and C1(R) only differ by an additive constant,
the normalized structure factor for Q > 0 of the whole set
of Bernoulli clusters of size s coincides with the average
normalized structure factor of a single cluster of same size.
This validates the physical assumption made in Sec. III B.

APPENDIX C

In this Appendix, we discuss the Q dependence of I (Q)
at the percolation threshold for two different sets of clusters.
The first set includes a small representative fraction of all
the Bernoulli clusters at pc, corresponding to the assumption
made by Martin and Ackerson [20], and the second includes
the clusters selected by invasion from a very small fraction of
bulk germs. In both cases, we assume that the density of clus-
ters is small enough for interference effects to cancel. The to-
tal structure factor is then computed by summing the structure
factors I (Q, s) = s.IN (Q, s) of the individual clusters of size
s, weighted by the cluster-size distribution function N (s, p):

IN (Q, p) =
∫ ∞

1 N (s, p)IN (Q, s) s ds∫ ∞
1 N (s, p) s ds

. (C1)

Figure 3 implies that, at given Q, IN (Q, s) behaves approx-
imately as

IN (Q, s) =
{

s if s < s0(Q),
s0(Q) if s > s0(Q), (C2)

with

s0(Q) ∝ Q−d f . (C3)

Similarly, in agreement with Fig. 16(b), we approximate
the Bernoulli distribution P(s, p) by s−τ with τ = 1 + d/d f

up to s = smax(p) � ξ d f (p) and zero above. If the set of clus-
ters is representative of the Bernoulli distribution, N (s, p) =
P(s, p), and

IN (Q) =
{ τ−2

3−τ
s3−τ

max smax < s0,

s3−τ
0

(3−τ ) − s0 s2−τ
max smax > s0.

(C4)

At percolation, smax → ∞, and, because τ > 2, the first
term of the right-hand side of Eq. (C4) for smax > s0

dominates the second one. IN (Q, pc) then behaves at large
Q as s3−τ

0 ∝ Q−d f (3−τ ), i.e., a power law with an exponent
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� 3 − 2d f , smaller in magnitude than the fractal dimension
d f ≈ 2.52.

This result coincides with Martin and Ackerson’s, obtained
by an exact calculation in the case where the cutoff function
in the two-points correlation function gs(r) is a Gaussian. In
fact, Martin and Ackerson’s result directly reflects the spatial
dependence of C(R), the intracluster correlation function av-
eraged over the Bernoulli distribution, C(R) ∝ R2(d f −d ) [22].
Since Martin and Ackerson assume the structure factor to
be given by the sum of the individual structure factors, this
structure factor coincides with the Fourier transform of C(R),
leading to a Q dependence with an exponent −d − 2(d f −
d ) = d − 2d f , equal to the exponent d f (τ − 3) above.

However, this result does not hold for our case of invasion
percolation, where N (s, P) = s P(s, p). Due to the extra s
factor, the denominator in Eq. (C1) is then controlled by the
the smax bound, yielding

IN (Q) =
⎧⎨
⎩

3−τ
4−τ

smax smax < s0,

3−τ
4−τ

s4−τ
0

s3−τ
max

+ s0 smax > s0.
(C5)

At percolation, smax → ∞, so that IN (Q) is given by
Eq. (C5) for smax > s0. Because τ < 3, IN (Q) = s0(Q) ∝
Q−d f . The fractal exponent is thus preserved by the averag-
ing process. This conclusion is in agreement with our direct
numerical simulations of IN (Q) [see Fig. 5(a)].

Away from pc, and in the Q → 0 limit, smax is finite, and
s0 → ∞, so that IN (Q) is given by Eq. (C5) for smax < s0.
Accordingly, in the dilute regime, the normalized structure
factor IN (Q → 0) should diverge as ξ d f . This is indeed in
agreement with our simulations [Fig. 5(a)].

Note however than the quantity directly measured by
a scattering experiment is the absolute structure factor
I (Q → 0) = peff (1 − peff )IN (Q → 0). This quantity involves
the fraction of selected sites peff = ∫ ∞

1 N (s, p) s ds. Since
sN (s, p) decays as s2−τ , the latter integral diverges as ξ (3−τ )d f ,
also in agreement with our simulations (Fig. 6). As a con-
sequence, in the dilute regime, the low Q absolute structure
factor will diverge as ξ (4−τ )d f , approximately twice faster than
the normalized structure factor. Measurement of d f from the
divergence of the low Q absolute structure factor thus requires
to take into account the extra-factor (4 − τ ) = 3 − 3/d f .
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