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Noise correction of large deviations with anomalous scaling
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We present a path integral calculation of the probability distribution associated with the time-integrated
moments of the Ornstein-Uhlenbeck process that includes the Gaussian prefactor in addition to the dominant
path or instanton term obtained in the low-noise limit. The instanton term was obtained recently [D. Nickelsen
and H. Touchette, Phys. Rev. Lett. 121, 090602 (2018)] and shows that the large deviations of the time-integrated
moments are anomalous in the sense that the logarithm of their distribution scales nonlinearly with the integration
time. The Gaussian prefactor gives a correction to the low-noise approximation and leads us to define an instanton
variance giving some insights as to how anomalous large deviations are created in time. The results are compared
with simulations based on importance sampling, extending our previous results based on direct Monte Carlo
simulations. We conclude by explaining why many of the standard analytical and numerical methods of large
deviation theory fail in the case of anomalous large deviations.
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I. INTRODUCTION

We have shown recently [1] that time-integrated functions
or observables of simple diffusions can have anomalous large
deviations in the sense that their distribution decays expo-
nentially with a scaling exponent that is nonlinear in the
integration time. A simple model showing this behavior is the
Ornstein-Uhlenbeck process (OUP) on R defined by

dXt = −γ Xt dt + σdWt , (1)

where γ > 0 is the friction coefficient, σ > 0 is the noise am-
plitude, and Wt is a Brownian or Wiener motion representing
the driving noise. Considering the integrated random variable

AT = 1

T

∫ T

0
X α

t dt, (2)

which is an estimator of the α-moment of the stationary distri-
bution of the OUP, we have shown that the probability density
pT (a) of AT scales for integers α > 2 according to

pT (a) ∼ e−T ξ Ī (a)/σ 2
, (3)

with ξ = 2/α in the limit of large integration time (T → ∞)
and small noise amplitude (σ → 0) [1]. This is to be con-
trasted with the scaling

pT (a) ∼ e−T I (a)/σ 2
, (4)

which is usually expected to hold for random variables or
observables that are integrated in time as in (2).

Other processes are known to have anomalous large de-
viations characterized by the scaling (3), including tracer
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dynamics [2–4], the Kardar-Parisi-Zhang equation [5–7],
branching processes [8–10], some non-Markovian processes
[11–14], as well as random walk models arising in queueing
theory [15–19]. The simplicity of the OUP makes it a use-
ful model for understanding anomalous large deviations with
analytical methods. For this process, we find normal large
deviations that scale according to (4) for α = 1 and α = 2, but
anomalous large deviations for α > 2 with ξ < 1, so moments
larger than 2 have fatter tails in time. This is confirmed by
mathematical results that have been reported recently for a
class of diffusions that includes the OUP as a special case [19].

In this paper, we extend these results by including the
Gaussian prefactor in the instanton approximation of the path
integral of pT (a), which underlies the low-noise approxi-
mation (3). This prefactor, which is expressed in terms of
a functional determinant, not only gives a correction to the
low-noise approximation, but can also be used in the path
integral to define an instanton variance, which is useful for
understanding how anomalous large deviations are created
in time. To test these results, we present simulations based
on importance sampling that extend the direct simulations
previously reported [1].

The corrected pT (a) agrees remarkably well with the sim-
ulations and gives overall a good idea of the scaling of this
density when considering only the long-time limit. The results
on the instanton variance also support the conjecture that
anomalous large deviations are created by a modified or effec-
tive process that is inherently time dependent [1]. By contrast,
it is known that normal dynamical large deviations governed
by the scaling (4) are created by a time-independent effective
process, obtained by solving a spectral problem which hap-
pens to be ill defined for anomalous large deviations [20–22].

We explore these two fluctuation mechanisms in Sec. III by
comparing the instanton and its variance for α = 1 and α = 3,
after reviewing in Sec. II the theory behind the instanton
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approximation and its Gaussian correction. We then conclude
in Sec. IV by explaining why many of the standard analytical
and numerical techniques used in large deviation theory to
study the long-time limit fail in the case of anomalous large
deviations. The reasons are fundamental to the theory of large
deviations and point to the need for new methods.

II. INSTANTON APPROXIMATION
AND GAUSSIAN CORRECTION

Gaussian corrections to path integrals date back to the work
of Gel’fand and Yaglom [23] in quantum mechanics and have
been used for classical stochastic processes to derive cor-
rections to instanton approximations of escape problems and
transition pathways [24–29], yielding temperature-dependent
corrections to the original Kramer’s escape result, as well
as for large deviations [30–33]. In this section, we present
the standard approach to these corrections in which the path
integral underlying pT (a) is discretized in the process space
so as to perform a Gaussian integral around the instanton.
In the continuum limit, the result of the Gaussian integral
is expressed in terms of a functional determinant, calculated
by solving a set of coupled linear differential equations with
appropriate boundary conditions.

Since the determinant depends on the instanton, we start
by recalling our results [1] about the low-noise approximation
of pT (a) as well as the instanton underlying this approxima-
tion, and then present our results for the Gaussian correction
based on the functional determinant. The detailed calculations
leading to the determinant are presented in the appendices.

A. Instanton

The starting point of the low-noise or instanton approxima-
tion is the path representation of pT (a),

pT (a) =
∫

D[x] P[x] δ(AT [x] − a), (5)

expressing this probability density as an integral over the path
probability density P[x] of all paths of the stochastic process
leading to AT = a. From the work of Onsager and Machlup
[34], formalized in large deviation theory by Freidlin and
Wentzell [35], we know that P[x] can be expressed, up to a
normalization constant, as

P[x] = e−S[x]/σ 2
(6)

in terms of the action

S[x] =
∫ T

0
L(x, ẋ)dt, (7)

where

L(x, ẋ) = 1
2 (ẋ + γ x)2 (8)

is the Lagrangian associated with the OUP. As a result, we can
write

pT (a) =
∫

D[x] e−S[x]/σ 2
δ(AT − a). (9)

This path integral is exponential with the noise amplitude
σ , so it is natural to approximate it in the low-noise limit
σ → 0 using the path having the lowest action, similarly to

semiclassical approximations of quantum path integrals. The
difference with the latter is that, apart from the fact that the
path integral is real, we have to take into account the constraint
AT = a using either a Lagrange parameter or by expressing
the δ function in terms of its Laplace transform, which would
add another integral in the path integral. The result of both
procedures is the same: The optimal path or instanton having
the lowest action, denoted by x̄(t ), is found by minimizing the
modified action,

S[x, β] = βTa +
∫ T

0
L(x, ẋ, β ) dt, (10)

which includes a Lagrange parameter β dual to the constraint
AT = a in the Lagrange function,

L(x, ẋ, β ) = 1
2 (ẋ + γ x)2 − βxα. (11)

Equivalently, β can be seen as the parameter of the Laplace
transform that represents the δ function in the path integral.
In this case, the additional Laplace integral is further approxi-
mated by a specific value of β which is known to be equivalent
to the Lagrange parameter β(a) fixing the constraint AT = a
(see [36, Appendix C.1]).

The minimization of the modified action proceeds at this
point in the usual way using the Euler-Lagrange equation for
the modified Lagrangian, which here takes the form

ẍ(t ) = γ 2x(t ) − βαx(t )α−1. (12)

The boundary conditions are

ẋ0 − γ x0 = 0, ẋT + γ xT = 0, (13)

since we consider open terminal conditions in which x0 and
xT are not a priori fixed.

These equations can be solved analytically in the T → ∞
limit, as shown by Meerson [37], and lead to an explicit
expression for the Lagrange parameter fixing the constraint
AT = a [1],

β̄(a) = 1

2
γ

α+2
α (aT )−

α−2
α

(
2
√

π

α − 2

	
(

α
α−2

)
	

(
3α−2
2α−4

)
) α−2

α

, (14)

valid for α > 2. With these two results, we then find an ana-
lytical expression for S[x̄], which scales with T according to
T 2/α , yielding the scaling (3) for pT (a) with

Ī (a) = lim
T →∞

−σ 2

T ξ
ln P[x̄] = lim

T →∞
S[x̄]

T ξ
, (15)

where ξ = 2/α. The exact expression of Ī (a) is too long to
show (see Eq. (13) in [1]), but also scales like |a|ξ .

We recall that the instanton physically represents the path
most likely to be followed (measured or observed) if we
condition the process Xt on the event AT = a, that is, if we
select only the paths of this process that realize this event.
Figure 1 shows examples of instantons for the case α =
3, obtained numerically for various values of a by solving
the Euler-Lagrange equation with a relaxation method [38].
The time used, T = 30, is large enough for the action to
converge [1].

The properties of the instanton were already discussed [1],
so we only recall the main ones needed for the results to follow
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FIG. 1. Instantons obtained by numerically solving the Euler-
Lagrange equation (12). Parameters: α = 3, γ = 1, σ = 0.5, and
T = 30.

when α > 2:
(i) x̄(t ) has a maximum in the middle T/2 of the simulated

time interval and is symmetric with respect to this time, attain-
ing a value very close to 0 for t = 0 and t = T . The symmetry
follows from the fact that the OUP is a reversible diffusion.

(ii) The maximum of the instanton grows with a and T
according to

x̄max(a) =
(

γ 2

2β̄(a)σ 2

) 1
α−2

∝ (aT )1/α. (16)

(iii) x̄(t ) is well approximated by two symmetric exponen-
tials: One growing with rate γ up to the maximum above, and
another decaying back from this point with the same rate γ .
This approximation does not capture the finite curvature of
x̄(t ) at its maximum, but does give the correct scaling of Ī (a)
with a.

(iv) The instanton is localized over a time proportional to
1/γ . This is consistent with the exponential approximation
described above and explains why an integration time as short
as T = 30 reaches the large deviation limit. For longer inte-
gration times, the instanton does not change much except for
its height, and its tails close to 0 do not contribute significantly
to the action for longer times. Much of the action, so to speak,
happens in the localized region.

B. Gaussian correction

The instanton solution determines the scaling

pT (a) ∼ e−S[x̄]/σ 2
(17)

in the low-noise limit and, because of the time scaling of the
action, the large deviation scaling shown in (3) with Ī (a) as
given in (15). One way to correct this approximation is to
expand the action to second order around the instanton and to
carry out the resulting Gaussian path integral so as to obtain

pT (a) ∼ 1√
D0

e−S[x̄]/σ 2
, (18)

where D0 is a functional determinant corresponding to the
continuous-time limit of the standard determinant that arises

in Gaussian integrals. We refer to the scaling above with D0 as
the Gaussian correction of the low-noise approximation (17),
which does not mean, of course, that pT (a) is Gaussian.

For completeness, we present the full derivation of D0 in
Appendix A based on the discretization of the path integral.
The end result is that D0 is obtained from a set of four coupled
linear differential equations [31]:

Ä(t ) = 2γ Ȧ(t ) − α(α − 1) β̄ x̄α−2A(t ), (19)

Ḃ(t ) = γ B(t ) − α

T
x̄α−1A(t ), (20)

C̈(t ) = 2γ Ċ(t ) − α(α − 1) β̄ x̄α−2C(t ) − 2α

T
x̄α−1B(t ), (21)

Ḋ(t ) = −α(α − 1)β̄ x̄α−2C(t ) − 2α

T
x̄α−1B(t ), (22)

with final values

1 = A(T ),

0 = Ȧ(T ) = B(T ) = C(T ) = Ċ(T ) = D(T ). (23)

The correction term D0 corresponds to the value D(0), ob-
tained by integrating the equations above backwards in time
from the terminal conditions in (23). The solution of these
equations is the main result of this paper, which we study for
specific parameter values in the next section.

C. Instanton variance

The expansion of the action up to second order around the
instanton can be used to define a time-dependent function,
denoted by v̄(t ), which gives the local curvature of the path
distribution P[x] around the instanton and which is therefore
interpreted as the variance of the path distribution along the
instanton. The derivation of v̄(t ) is outlined in Appendix B;
the result is

v̄(t ) = σ 2R(t )

D0
A(t )A(T − t ), (24)

where A(t ) is the solution of (19) and D0 follows from (22).
The factor R(t ) ensures that the constraint AT = a is met and
is given by the integral

R(t ) = α

T

[∫ t

0
dτ x̄(τ )α−1r1(τ ) +

∫ T

t
dτ x̄(τ )α−1r2(τ )

]
,

(25)

where the auxiliary functions r1(τ ) and r2(τ ) both obey the
same differential equation,

r̈(τ ) = [γ 2 − α(α − 1) β̄ x̄(τ )α−2] r(τ ) − α

T
x̄α−1, (26)

but differ in their boundary conditions,

0 = γ r1(0) − ṙ1(0), 0 = r1(t ),

0 = r2(t ), 0 = γ r2(T ) + ṙ2(T ),
(27)

which make r1(τ ) and r2(τ ) dependent on t .
For large T , it can be shown that R becomes constant,

R = α

T

∫ T

0
dt r(t ) x̄(t )α−1, (28)
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where r(t ) satisfies (26) and the boundary conditions

0 = γ r(0) − ṙ(0), 0 = γ r(T ) + ṙ(T ). (29)

We discuss this instanton variance and its meaning for specific
parameters in the next section.

D. Importance sampling simulations

The Gaussian approximation of pT (a) shown in (18) needs
to be compared with simulation results that should ideally
cover a wide range of values of AT . In our previous work [1],
we simulated large numbers of trajectories of the process Xt

and used them to directly estimate pT (a) and its correspond-
ing rate function I (a) by considering large simulation times
[39]. This method is obviously limited in that, since pT (a) is
exponentially small in both T and σ , an exponentially large
sample is required to resolve the rate function over a wide
range of values.

To improve the estimation, we can apply the idea of im-
portance sampling by simulating a new process Yt , different
from Xt , chosen so as to make the event AT = a more likely
and, ideally, to make it typical. Let Q[x] denote the path
distribution associated with this process. Then we can write

pT (a) =
∫

D[y] Q[y]WT [y] δ(AT − a), (30)

where

WT [y] = P[y]

Q[y]
= exp

[
− 1

σ 2
(S[y] − SY [y])

]
, (31)

and SY [y] is the action of the Yt process. Thus, pT (a) can
be estimated by simulating this process many times and by
constructing a histogram of the samples of AT obtained, in-
cluding in the histogram the likelihood factor WT computed
as part of the simulation, in order to correct for the fact that
we simulate Yt rather than Xt [39–41]. Since Yt is chosen so
as to “hit” the event AT = a more often than Xt , it leads to a
better estimation of pT (a) and, in turn, I (a), sometimes with
very few trajectories.

In practice, there are many processes that can be used to
render AT = a typical. A natural one is obtained by guiding Yt

along the instanton using

dYt = ˙̄x(t )dt + σdWt , (32)

with Y0 = x̄(0), so that, in the limit σ → 0, Y (t ) = x̄(t ). This
change of process has been used before in various contexts
[42–45], but was not found here to be accurate for sampling
pT (a) as the noise drives trajectories far from the instanton
over long times. To mitigate this effect, we guide a linear
process with the same friction as Xt around the instanton using
the stochastic differential equation,

dYt = −γ (Yt − x̄(t ))dt + σdWt . (33)

This has the effect of producing trajectories that wander ran-
domly around the instanton shown in Fig. 1. Other nonlinear
friction terms were tested, but we found that the linear friction
above, which defines another OUP that tracks the instanton,
gives accurate results for the values of α considered, as it leads
to a low variance for the likelihood factor WT [41].

Note that importance sampling can be used to indepen-
dently validate our theoretical results even if it uses the
instanton because the estimator of pT (a) based on (30) is
unbiased and consistent for any modified process Yt . Thus
any such process can be used, in principle, to estimate pT (a),
including the original OUP which is not guided in any way,
provided that the sample is large enough. What defines a good
change of process is the variance of the resulting estimator,
determined by the variance of WT . For more details about the
efficiency of importance sampling, we refer to [41].

III. RESULTS

We present in this section the results of the Gaussian cor-
rection and the instanton variance for the empirical moments
of the OUP. We first consider α = 1 to test our method for
normal large deviations, and then α = 3 to obtain results for
anomalous large deviations. The value α = 3 is representative
of all integer values α � 3 leading to anomalous large devia-
tions [1].

A. α = 1

For α = 1, all the results can be obtained exactly. For the
instantons, we obtain, from (12),

x̄(t ) = aγ T

2�2
T

(2 − e−γ t − e−γ (T −t ) ), (34)

with

�2
T = γ T + e−γ T − 1. (35)

This predicts for T � 1/γ that a fluctuation AT = a is created
by a constant instanton evolving close to a for a time propor-
tional to T . The exact action of this instanton is

S[x̄] = a2γ 3T 2

2�2
T

(36)

and scales like S[x̄] ∼ γ 2a2T/2 consistently with the fact that
x̄(t ) ≈ a for t ∈ [0, T ]. Consequently, pT (a) has the normal
large deviation scaling (4) with

I (a) = γ 2a2

2
. (37)

To find the Gaussian correction to this result, we solve
the coupled differential equations underlying the fluctuation
determinant,

A(t ) = 1, (38)

B(t ) = 1 − e−γ (T −t )

γ T
, (39)

C(t ) = e−2γ (T −t ) − 4e−γ (T −t ) − 2γ (T − t ) + 3

2γ 3T 2
, (40)

D(t ) = 2γ (T − t ) − 2 + 2e−γ (T −t )

T 2γ 2
. (41)

Therefore,

D0 = 2�2
T

γ 2T 2
, (42)
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FIG. 2. Gaussian-corrected pT (a) (red line) compared with di-
rect Monte Carlo (MC) simulations and importance sampling (IS)
simulations. Parameters: γ = 1, σ = 0.5, and T = 30.

so that

pT (a) ∼
√

γ 2T 2

2�2
T

exp

[
−a2γ 3T 2

2σ 2�2
T

]
, (43)

which becomes, for large T ,

pT (a) ∼
√

γ T

2
exp

[
−a2γ 2T

2σ 2

]
. (44)

The result on the right-hand side is actually the exact dis-
tribution of AT if we normalize it properly, so the instanton
calculation gives, in this case, the correct density for all noise
amplitudes. This was already noted by Onsager and Machlup
[34] and arises because the linear integral of a Gaussian pro-
cess is also Gaussian.

We compare in Fig. 2 the theoretical result (44) with nu-
merical results obtained from the direct Monte Carlo (MC)
and importance sampling (IS) simulations of pT (a). The direct
sampling, also shown in the inset, is naturally limited by the
exponential concentration of pT (a) and the fact that this den-
sity is extremely small in the tails. Here we have used about
106 sample trajectories, leading to events seen in Fig. 2 to have
a density of about 10−6. The importance sampling overcomes
this limitation by returning values that accurately match the
theoretical distribution for values as low as 10−50 with a much
smaller (and constant) sample size. The importance sampler
in this case is chosen as

dYt = −γ (Yt − a)dt + σdWt (45)

to sample AT at the value a. This choice of dynamics, corre-
sponding to an OUP recentered at a, is known to be optimal
as it has a near-constant likelihood factor in the long-time
limit [22], resulting in an estimator of pT (a) that has the least
asymptotic variance [46].

This optimal property of Yt is related to the instanton vari-
ance, which can also be calculated exactly. From (26), we

obtain the auxiliary functions

r1(τ ) = 2 − (2 − e−γ t )e−γ (t−τ ) − e−γ τ

2γ 2T
, (46)

r2(τ ) = 2 − (2 − e−γ (T −t ) )e−γ (τ−t ) − e−γ (T −τ )

2γ 2T
, (47)

for the two boundary conditions in (27), giving

R(t ) = 2γ T − 6 + 4(e−γ t + e−γ (T−t ) ) − (e−2γ t + e−2γ (T−t ) )

2γ 3T 2
,

(48)

when inserted in (25). From the constant A(t ) = 1, we thus
find, with (24),

v̄(t ) = 2γ T − 6 + 4(e−γ t + e−γ (T−t ) ) − (e−2γ t + e−2γ (T−t ) )

4γ�2/σ 2
,

(49)

which reduces to

v̄(t ) = σ 2

2γ
(50)

in the limit T → ∞. Hence, the path distribution P[x] has a
constant variance along the constant instanton x̄(t ) = a, which
means physically that the fluctuation AT = a can be seen as
being created by a linear process with stationary mean a and
variance σ 2/(2γ ). These, as can be checked, are precisely
the stationary mean and variance of the importance sampling
process Yt defined above, so that this process matches the
local process determined from the path distribution around the
instanton.

This result is expected. From recent works [20–22], it is
known that the process Xt conditioned on realizing the fluc-
tuation AT = a is equivalent in the long-time limit to another
Markov process, called the effective or driven process, which
happens here to be the process Yt defined in (45) [21, Sec. 6.2].
The construction of the driven process is known when the
large deviations of AT are normal, in the sense of (4), and
predicts in this case that the driven process is a homogeneous
process. The low-noise limit of that process gives the instan-
ton, which explains why we obtain here a constant instanton
centered at a having a constant variance.

B. α = 3

The instanton and fluctuation determinant cannot be found
analytically for α = 3 when the integration time T is finite,
so we resort to obtaining them numerically. For the instanton,
we solved the Euler-Lagrange equation (12) with an relaxation
algorithm for different a, using a double exponential peaked at
t = T/2 as the initial guess. Once we have the instantons for
two contiguous a values, we extrapolate from these a new ini-
tial guess for the next a value. We repeat this procedure until
we cover a desired range of a values. For the boundary solver,
we use a minimal tolerance of 3 × 10−14 and a maximum of
105 mesh points. We also use T = 30 for the integration time,
which appears to be enough to give results that are in the large
deviation regime [1]. The solutions are shown again in Fig. 1,
with the properties that we listed in the previous section, and
were checked for a peak at t = T/2.
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FIG. 3. Gaussian-corrected pT (a) (red line) for α = 3 com-
pared with MC and IS simulations. Parameters: γ = 1, σ = 0.5,
and T = 30.

To obtain the fluctuation determinant, we numerically
solve Eqs (19)–(22), feeding in the instantons as high reso-
lution cubic interpolation functions and using a Runge-Kutta
scheme with a minimum tolerance set to 3 × 10−14 to control
numerical instabilities. We show in Fig. 3 the approximate
pT (a) obtained from (18) with the resulting value for D0, as
well as

S[x̄] ∼ T 2/3 Ī (a) (51)

and

Ī (a) =
(

9

10

) 1
3

γ
5
3 a

2
3 . (52)

These results for the action and the rate function were found
in our previous study [1]. We also show in Fig. 3 the results of
the MC and IS simulations based on the modified OUP (33)
tracking the instanton.

The simulation results show again that the Gaussian cor-
rection gives a good approximation of pT (a), except now near
a = 0 where the low-noise approximation based on Ī (a) above
predicts a peaked maximum at a = 0 which is actually smooth
when σ is finite. This rounding effect is illustrated in Fig. 4,

FIG. 4. Log-probability scaled with σ and T for different values
of σ showing the convergence to the low-noise rate function Ī (a).
Parameters: α = 3, γ = 1, and T = 30.

FIG. 5. Instanton variance v̄(t ) for different values of a. Parame-
ters: α = 3, γ = 1, σ = 0.5, and T = 30.

which shows the same data on a different scale and different
values of σ . The convergence to the low-noise rate function
Ī (a), shown in red, and the emergence of a peak at a = 0 are
clearly seen.

The fact that the instanton evolves in a time-dependent way
for α = 3, as seen in Fig. 1, makes this case very different
from the case α = 1 and is what gives rise to the scaling (3)
describing anomalous large deviations. The instanton variance
v̄(t ) found from (24) is also time dependent, as shown in
Fig. 5.

Obtaining v̄(t ) is a challenging task since the values in-
volved in Eqs. (26) and (25) are very small (of the order
of 10−30 to 10−20). For this reason, we took care to solve
these equations numerically using different mesh points and
interpolations for the instanton to see if the results were stable.
We found that the maximum value of v̄(t ), which sets the
scale of the variance, cannot be relied on since it is sensitive
to the order of approximation used for x̄(t ) [47], but that
the double-peak shape of v̄(t ) seen in Fig. 5 is stable and
so is quantitatively valid. Initially, the variance is low and
starts to increase when the instanton itself starts increasing
to its maximum. Unlike the instanton, however, the variance
has a turning point before t = T/2, beyond which it decreases
rapidly to a low value (close to 0 from numerical calculations)
precisely at t = T/2. After this time, the same behavior is re-
peated, showing overall that the fluctuations of AT are created
by stochastic trajectories that follow the time-dependent in-
stanton and fluctuate around that instanton, except at t = T/2,
where they all converge and go through x̄(T/2) = x̄max as a
result of v̄(T/2) ≈ 0.

It is difficult to verify the instanton variance independently
from simulations since it relies on rare trajectories underlying
the large deviations of AT whose variance differs from the
variance of the trajectories simulated with importance sam-
pling [48]. However, the behavior of v̄(t ) shown in Fig. 5
agrees qualitatively with the fluctuation paths reported in our
previous study [1, Fig. 3], which have reduced fluctuations
at the instanton peak (shifted numerically at t = T/2 for
comparison). The fact that v̄(t ) is symmetric with respect to
t = T/2 is also supported qualitatively from that figure and
is consistent with the fact that the conditioning of the OUP
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on the event AT = a is a reversible process since the OUP
itself is reversible [21, Sec. 5.5]. This does not mean that all
stochastic trajectories realizing the event AT = a have to be
symmetric with respect to t = T/2. However, the time rever-
sal of any such trajectory realizes the same value AT = a with
the same probability, by virtue of the OUP being reversible,
which means that the whole ensemble of trajectories realizing
AT = a must define a reversible process.

This ensemble of trajectories realizing AT = a was studied
extensively for normal large deviations [20–22]: It is defined
mathematically as a conditioning of the path distribution P[x]
on the event AT = a, and is known in the regime of normal
large deviations to be a time-homogeneous and stationary
Markov process, at least in the absence of dynamical phase
transitions [49]. The case α = 1 follows this result: The mean
and variance of the instanton are time independent since
the conditioning of P[x] on AT = a is time independent in
the long-time limit. For α = 3, by contrast, we find a time-
dependent instanton mean and variance, suggesting that the
ensembles of paths realizing AT = a are described as a whole
by a time-dependent process. Similar results are found in the
context of simple random walks and jump processes arising in
queueing theory [15–17].

Based on these results, it is natural to conjecture that a
necessary condition for observing anomalous large deviations
is that the ensemble of trajectories or process realizing AT = a
is time dependent. In other words, if the large deviations of AT

are anomalous, then the conditioned process realizing those
large deviations is explicitly time dependent. This is suggested
not only by our instanton results, which provide partial in-
formation about the mean and variance of that process, but
also by the fact that many techniques used for obtaining large
deviations do not work for anomalous large deviations, either
because they assume or predict that that process is time inde-
pendent in the long-time limit. We discuss this point in more
detail in the next section and suggest ideas for dealing with
anomalous large deviations.

IV. CONCLUDING REMARKS

In principle, the Gaussian correction of the path integral is
not expected to describe pT (a) for arbitrary noise amplitudes
since it is a further approximation of the path integral in terms
of σ . However, the good agreement that we find between this
correction and the simulation results shows that it recovers
much of pT (a), especially in the tails (see Fig. 4), giving us
some information about the anomalous large deviations of AT

in the limit where T → ∞ with σ finite. In this regime, pT (a)
is expected to scale according to

pT (a) ∼ e−T ξ J (a) (53)

as T → ∞, so the limit function

J (a) = lim
T →∞

− 1

T ξ
ln pT (a) (54)

should exist. Mathematical estimates of this function have
been reported recently for a class of diffusions that include
the OUP [19], although it is not clear whether they involve
the low-noise limit. With this extra limit, the rate function that

one obtains is

Ī (a) = lim
σ→0

lim
T →∞

−σ 2

T ξ
ln pT (a) = lim

σ→0
σ 2J (a), (55)

which follows from the instanton approximation, as well
as logarithmic corrections of this function coming from the
Gaussian prefactor [50].

The reason for considering the low-noise limit, as we have
argued before [1], is that many techniques that are standard
in large deviation theory do not work in the case of anoma-
lous large deviations. In particular, we cannot obtain J (a) by
applying the contraction principle to the level 2 or level 2.5
rate functions (see [51] for details), as these all are defined in
the normal scaling regime and thus predict normal large devi-
ations for AT when the contraction has a nontrivial solution.
We also cannot obtain J (a) as the Legendre transform of the
scaled cumulant generating function (SCGF), defined as

λ(k) = lim
T →∞

1

T
ln E [eT kAT ], (56)

since the exponential in the expectation above has the wrong
scaling in T and, therefore, does not capture the anomalous
scaling (53). In fact, the SCGF, as defined above, diverges for
all k 
= 0. This follows because the SCGF is related, in the
case of normal large deviations, to the ground-state energy of
a quantumlike potential [52], which is not confining and has
no lower bound when α > 2 and k 
= 0 [1].

To circumvent this problem, one can attempt to regularize
the related quantum problem, e.g., by considering a limited
range of the potential, as done recently by Smith [53]. This
approach is able to recover the central, Gaussian part of pT (a),
but seems insufficient to obtain J (a) since it is based on
approximating the SCGF, which is again formally divergent,
and predicts a normal rather than anomalous scaling of large
deviations because of the effective confinement introduced.

Another idea is to redefine the SCGF by the limit,

λξ (k) = lim
T →∞

1

T ξ
ln E [eT ξ kAT ], (57)

to match the limit (53) capturing the anomalous scaling of
pT (a). This modified SCGF is covered by large deviation
theory (see [36, Appendix D]), although little is known about
its properties, especially its connection with the Feynman-Kac
equation and long-time solutions of this equation. In our case,
λξ (k) also diverges when α > 2 because the right tail of J (a),
which asymptotically matches that of Ī (a), is nonconvex, but
there might be other processes and observables for which the
modified SCGF is finite, provided that their large deviations
are anomalous and have a convex rate function.

These considerations affect not only analytical methods
for obtaining rate functions, but also numerical methods. For
instance, the divergence of λ(k) should be seen in runs of
the cloning algorithm since this algorithm gradually estimates
the limit (56). In this case, one could attempt to modify the
algorithm to compute the modified SCGF in (57), but the
precise form of this modification is yet to be investigated.

Similarly, it is not clear how importance sampling methods
should be modified to account for anomalous large deviations.
From our results, it seems that the appropriate way to use
this method is to use a change of process that is inherently
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time dependent, but finding processes that are efficient for
sampling anomalous large deviations is also an open problem.
The change of process used here, which has the effect of
recentering the OUP, gives good results, as we have seen, but
it is not expected to be optimal in the sense that it minimizes
the asymptotic variance [40]. One way to solve this problem is
to include time-dependent controls in the optimal control for-
malism developed for normal large deviations [22]. This leads
to time-dependent Hamilton-Jacobi-Bellman equations that
could be solved numerically, if not analytically.

ACKNOWLEDGMENTS

The work of D.N. is supported by the Oppenheimer Memo-
rial Trust (postdoctoral fellowship).

APPENDIX A: CALCULATION OF FLUCTUATION
DETERMINANT

We explain in this section how the fluctuation determinant
D0 is obtained in the continuous-time limit. The starting point
is Laplace’s method applied to the finite-dimensional integral,

F =
∫
RN

dz1 · · · dzN e− 1
σ2 f (z1,...,zN )

. (A1)

We assume that f : RN → R is such that the integral ex-
ists and has a unique minimum at the point z̄ = (z̄1, . . . , z̄N )
satisfying ∇ f (z̄1, . . . , z̄N ) = 0. Expanding f to second order
around z̄, we obtain, after carrying out the Gaussian integral,

F ∼ (2πσ 2)
N
2√

det H
e− 1

σ2 f (z̄1,...,z̄N )
, (A2)

in the limit σ → 0, where the fluctuation determinant enters
as the determinant of the Hessian,

Hkl = ∂2 f (z1, . . . , zN )

∂zk∂zl

∣∣∣∣
z=z̄

. (A3)

This is the Gaussian-corrected form of the Laplace approxi-
mation. Additional corrections can be obtained by considering
more terms in the Taylor expansion of f around z̄ beyond the
second-order term [54].

In our problem, we apply Laplace’s method to the path
integral representation of pT (a), given in (9), replacing the

Dirac δ function by its Laplace transform [30,31],

pT (a) =
∫

dx0

Z

∫
dxT

∫
dq

2πσ 2

∫ (T,xT )

(0,x0 )
D[x] e−S[x,β]/σ 2

,

(A4)

where β = iq/T and

S[x, β] = γ x2
0 + βTa +

∫ T

0
L(x, ẋ, β )dt (A5)

is the modified action. Note that compared with (10), we now
integrate explicitly over the final state xT and the initial state
x0 with the stationary density

p(x0) = e−γ x2
0/σ 2

Z
, Z =

√
πσ 2

γ
. (A6)

These added terms do not influence the approximation signif-
icantly, so we do not include them in the text.

Discretizing the path integral into N time slices or steps,
t j = jε, T = Nε, x j = x(t j ), we obtain

pN (a) =
∫

dq

2πσ 2

∫
dx0

Z

N∏
j=1

∫
dx j√

2πσ 2ε
e− 1

σ2 SN (x0,...,xN ,β )
,

(A7)

with the discretized action

SN = γ x2
0 + ε

N−1∑
j=0

[
1

2

(x j+1 − x j

ε
+ γ x j

)2

− βxα
j

]
+ βa.

(A8)

Applying (A2) to the discretized path integral, we then obtain

pN (a) ∼ e−SN (x̄0,...,x̄N ,β̄ )/σ 2

Z
√

εN det H
, (A9)

where H is the (N + 2) × (N + 2) Hessian with elements

Hkl = ∂2SN (x0, . . . , xN , β )

∂xk∂xl

∣∣∣∣
x j=x̄ j ,β=β̄

, (A10)

using xN+1 = q. Note that the exponent can also be expressed
in terms of the bare action S, since the instanton with β̄

enforces the constraint AT = a, so that S (x̄0, . . . , x̄N , β̄ ) =
S(x̄0, . . . , x̄N ).

We now consider the continuous-time limit by writing the
Hessian as

H =

⎛
⎜⎜⎜⎜⎝

a0/ε −b0/ε 0 · · · 0 i u0

−b0/ε a1/ε −b1/ε · · · 0 i u1
...

. . .
. . .

...
...

0 · · · 0 −bN−1/ε aN/ε i uN

i u0 i u1 · · · i uN−1 i uN 0

⎞
⎟⎟⎟⎟⎠, (A11)

with

aN = 1, (A12)

a j = 2 − 2εγ + ε2γ 2 − ε2α(α − 1)β̄ x̄α−2
j , (A13)

a0 = 1 + ε2γ 2 − ε2α(α − 1)β̄ x̄α−2
0 , (A14)
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b j = 1 − εγ , (A15)

u j = εαx̄α−1
j /T, (A16)

uN = 0, (A17)

recalling that β = iq
T . The matrix elements are rescaled with ε such that the determinant

D0 = − lim
ε→0

N→∞

∣∣∣∣∣∣∣∣∣∣

a0 −b0 0 · · · 0 u0

−b0 a1 −b1 · · · 0 u1
...

. . .
. . .

...
...

0 · · · 0 −bN−1 aN uN

u0 u1 · · · uN−1 uN 0

∣∣∣∣∣∣∣∣∣∣
(A18)

exists in the continuous limit, so that (A9) becomes

pT (a) ∼ e−S[x̄]/σ 2

Z
√

D0
. (A19)

To arrive at this result, which differs from (18) by the added Z term, we have retrieved the Hessian in (A10) from the matrix in
(A18) by multiplying the first N + 1 rows with 1/ε, the last column with ε, and the last row and column with i.

To perform the continuous limit for D0, we define the minor

Cj =

∣∣∣∣∣∣∣∣∣∣

a j −b j 0 · · · 0 u j

−b j a j+1 −b j+1 · · · 0 u j+1
...

. . .
. . .

...
...

0 · · · 0 −bN−1 aN uN

u j u j+1 u j+2 uN−1 uN 0

∣∣∣∣∣∣∣∣∣∣
, (A20)

which results from dropping the first j rows and columns, and, similarly, the two auxiliary minors

Bj =

∣∣∣∣∣∣∣∣∣∣

−b j 0 0 · · · 0 u j

a j+1 −b j+1 0 · · · 0 u j+1
...

. . .
. . .

...
...

0 · · · −bN−2 aN−1 −bN−1 uN−1

0 · · · 0 −bN−1 aN uN

∣∣∣∣∣∣∣∣∣∣
(A21)

and

Aj =

∣∣∣∣∣∣∣∣∣∣

a j −b j 0 · · · 0
−b j a j+1 −b j+1 · · · 0

...
. . .

. . .
...

0 · · · −bN−2 aN−1 −bN−1

0 · · · 0 −bN−1 aN

∣∣∣∣∣∣∣∣∣∣
. (A22)

We expand the determinant Cj in the following way:

Cj = a jCj+1 + b j

∣∣∣∣∣∣∣∣∣∣

−b j −b j+1 0 . . . 0 u j+1

0 a j+2 −b j+2 . . . 0 u j+2
...

. . .
. . .

...

0 . . . 0 −bN−1 aN uN

u j u j+2 u j+3 . . . uN 0

∣∣∣∣∣∣∣∣∣∣

−(−1)N− ju j

∣∣∣∣∣∣∣∣∣∣

−b j a j+1 −b j+1 0 . . . 0
0 −b j+1 a j+2 −b j+2 . . . 0
...

. . .
. . .

0 0 . . . 0 −bN−1 aN

u j u j+1 . . . uN−2 uN−1 uN

∣∣∣∣∣∣∣∣∣∣
= a jCj+1 + b j[−b jCj+2 + (−1)N− ju jB j+1] (A23)

−(−1)N− ju j[−b jB
T
j+1 + (−1)N− ju jA j+1] (A24)

to arrive at the recursion formula,

Cj = a jCj+1 − b2
jCj+2 + 2(−1)N− ju jb jB j+1 − u2

j A j+1. (A25)
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Similarly, we find for the two auxiliary minors the recursion
formulas,

Bj = −b jB j+1 + (−1)N− ju jA j+1 (A26)

and

Aj = a j · Aj+1 − b2
j · Aj+2. (A27)

Together with the final conditions

CN = u2
N = 0, (A28)

CN+1 = 0, (A29)

BN = uN = 0, (A30)

AN−1 = aN−1aN − b2
N−1, (A31)

AN = aN , (A32)

we can iterate backwards to obtain the full fluctuation deter-
minant C0 in the discretized approximation.

The fluctuation determinant D0 is obtained by turning the
recursion formulas (A25)–(A27) into differential equations.
Special care must be taken to ensure convergence.

As a first step, we eliminate the alternating factor (−1)N− j

by the replacement Bj �→ (−1)N− jB j , obtaining

Cj = a jCj+1 − b2
jCj+2 − 2u jb jB j+1 − u2

j A j+1, (A33)

Bj = b jB j+1 + u jA j+1. (A34)

Plugging in the coefficients a j , b j , and u j and inspecting
the order in ε, it turns out that εCj is of the order of O(1).
Multiplying (A25) by ε and rearranging, we get

(εCj+2) − 2(εCj+1) + (εCj )

ε2

= 2γ
(εCj+2) − (εCj+1)

ε
− α(α − 1)β̄ x̄α−2

j (εCj+1)

− 2α

T
x̄α−1

j B j+1 + O(ε). (A35)

Similarly, we can rearrange (A26) and (A27) to obtain

Bj+1 − Bj

ε
= γ Bj+1 − α

T
x̄α−1

j A j+1 (A36)

and

(Aj+2) − 2(Aj+1) + (Aj )

ε2

= 2γ
Aj+2 − Aj+1

ε
− α(α − 1)β̄ x̄α−2

j A j+1 + O(ε).

(A37)

Taking the continuous limit, we then recover the differential
equations (19)–(21), noted earlier, with the final conditions
(A28)–(A32).

Since the first (and last) row of H deviates from the other
rows, as seen in (A11), we have

lim
ε→0

εC0 = 0, (A38)

and a final step is necessary to derive D0. Inspecting the last
recursion step from (A25), we find

D0 = lim
ε→0

(−a0C1 + b2
0C2 + 2u0b0B1 − u2

0A1
)

= lim
ε→0

[
(εC2) − (εC1)

ε
− 2γ εC2 + O(ε)

]
(A39)

= Ċ(0) − 2γC(0). (A40)

The solution for C(t ) can be plugged into the equation above
to obtain D0. From a numerical perspective, however, it is
better to use Ḋ(t ) = C̈(t ) − 2γ Ċ(t ) as in (22) to avoid can-
cellation of small numbers involving Ċ(0).

APPENDIX B: CALCULATION OF INSTANTON
VARIANCE EQUATIONS

The basis of the Gaussian correction is the Taylor ex-
pansion of the action around the instanton, which defines a
multivariate Gaussian distribution in discrete time,

pN (a) ∼ e− 1
σ2 SN (x̄)

∫ N+1∏
i=0

dxi

× exp

[
− 1

2σ 2

∑
kl

(xk − x̄k ) Hkl (xl − x̄l )

]
. (B1)

Here, we have dropped the normalization constants and use
xN+1 = β. From this expression, we see that the instanton
given by the components x̄ j in time is the mean vector of
the multivariate Gaussian, while the Hessian gives the inverse
covariance matrix,

Σ = σ 2H−1, (B2)

describing the Gaussian fluctuations about the instanton. As a
result, it is natural to define the variance of the instanton as

v̄(tk ) = Σkk . (B3)

To find the diagonal elements of H−1, we use Cramer’s
rule,

(H−1)kl = det H(kl )

det H
, (B4)

where H(kl ) denotes the matrix that results from dropping the
kth row and lth column in H . Expressing this element, as
defined in (A11), in terms of the matrix

C =

⎛
⎜⎜⎜⎜⎝

a0 −b0 0 · · · 0 u0

−b0 a1 −b1 · · · 0 u1
...

. . .
. . .

...
...

0 · · · 0 −bN−1 aN uN

u0 u1 · · · uN−1 uN 0

⎞
⎟⎟⎟⎟⎠, (B5)

which underlies (A20), we can rewrite (B4) as

(H−1)kl = ε det C(kl )

det C
. (B6)

To further simplify det C(kl ), we focus on the diagonal ele-
ments (k = l) and write, in block form,

det C(kk) = det

⎛
⎝A0,k−1 0 U0,k−1

0 Ak+1,N Uk+1,N

U0,k−1 Uk+1,N 0

⎞
⎠, (B7)
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with

A0,k−1 =

⎛
⎜⎜⎜⎜⎝

a0 −b0 0 · · · 0
−b0 a1 −b1 · · · 0

...
. . .

. . .

0 · · · −bk−3 ak−2 −bk−2

0 · · · 0 −bk−2 ak−1

⎞
⎟⎟⎟⎟⎠, (B8)

Ak+1,N =

⎛
⎜⎜⎜⎜⎝

ak+1 −bk+1 0 · · · 0
−bk+1 ak+2 −bk+2 · · · 0

...
. . .

. . .

0 · · · −bN−2 aN−1 −bN−1

0 · · · 0 −bN−1 aN

⎞
⎟⎟⎟⎟⎠,

(B9)

U0,k−1 = (u0, . . . , uk−1), (B10)

Uk+1,N = (uk+1, . . . , uN ). (B11)

Making use of the Schur complement, we can write

det C(kk) = − det A0,k−1 · det Ak+1,Nε
(
U T

0,k−1 A−1
0,k−1 U0,k−1

+ U T
k+1,N A−1

k+1,N Uk+1,N
)
. (B12)

Recognizing det Ak+1,N as Ak+1 in (A22), and noting that in
the continuous limit the initial conditions for the forward
determinant starting at t = 0 are the same as in (A32) for
t = T , we find that

det A0,k−1 det Ak+1,N → A(T − t ) · A(t ) (B13)

for ε → 0.
For the quadratic form ε U T

0,k−1 A−1
0,k−1 U0,k−1, we define an

auxiliary vector,

r1 = ε A−1
0,k−1 U0,k−1, (B14)

and similarly define

r2 = ε A−1
k+1,N Uk+1,N (B15)

for the second quadratic form. Knowing r1 and r2, we obtain
the value of the quadratic form via the dot product

Rk = U T
0,k−1 · r1 + U T

k+1,N · r2. (B16)

To get r1, we multiply (B14) with 1
ε

A0,k−1 from the left and
obtain a linear set of equations,

A0,k−1 r = ε U0,k−1, (B17)

where we temporarily dropped the index of r1. Plugging in the
coefficients (A12)–(A17) and rearranging, we find

r j+1 − 2r j + r j−1

ε2
= [

γ 2 − α(α − 1) β̄ x̄α−2
j

]
r j − α

T
x̄α−1

j ,

(B18)

up to terms of the order of ε, which becomes the differential
equation

r̈(τ ) = [γ 2 − α(α − 1) β̄ x̄(τ )α−2]r(τ ) − α

T
x̄(τ )α−1 (B19)

in the limit ε → 0. This differential equation is completed by
the two boundary conditions

γ r1(0) − ṙ1(0) = 0, r1(t ) = 0, (B20)
resulting from evaluating the first and last equations of (B17).

The same steps apply to r2 in (B15), leading to the same
differential equation as in (B19), but with the boundary con-
ditions

r2(t ) = 0, γ r2(T ) + ṙ2(T ) = 0. (B21)

To obtain R(t ), we then insert the solutions r1(τ ) and r2(τ )
into the integrals that result from taking the continuous limit
of (B16),

R(t ) = α

T

[∫ t

0
dτ x̄(τ )α−1 r1(τ ) +

∫ T

t
dτ x̄(τ )α−1 r2(τ )

]
.

(B22)

For large T , the two solutions r1(τ ) and r2(T − τ ) ap-
proach each other (as boundary values approach zero) and
(B22) becomes

R(t ) = α

T

∫ T

0
dτ x̄(τ )α−1 r(τ ). (B23)

As a result, the determinants in (B12) become equal in the
continuous limit to −R(t )A(t )A(T − t ). Together with D0

from (A40) as the continuous limit of the determinant det C,
we finally arrive at

v̄(t ) = σ 2

D0
R(t )A(t )A(T − t ). (B24)
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