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Coherence of oscillations in the weak-noise limit
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In a noisy environment, oscillations lose their coherence, which can be characterized by a quality factor. We
determine this quality factor for oscillations arising from a driven Fokker-Planck dynamics along a periodic
one-dimensional potential analytically in the weak-noise limit. With this expression, we can prove for this
continuum model the analog of an upper bound that has been conjectured for the coherence of oscillations
in discrete Markov network models. We show that our approach can also be adapted to motion along a
noisy two-dimensional limit cycle. Specifically, we apply our scheme to the noisy Stuart-Landau oscillator
and the thermodynamically consistent Brusselator as a simple model for a chemical clock. Our approach thus
complements the fairly sophisticated extant general framework based on techniques from Hamilton-Jacobi theory
with which we compare our results numerically.

DOI: 10.1103/PhysRevE.105.064101

I. INTRODUCTION

Oscillations are ubiquitous in living systems. The cell cycle
[1], circadian rhythms [2,3], glycolysis [4], and biochemical
oscillations in general [5] represent a few examples for such
periodic behavior. These models describe generic processes
that are able to keep track of time, hence, to function as clocks.
Typically, such biochemical clocks work in surroundings with
large fluctuations. Thus, the question arises how these oscilla-
tions emerge and how they maintain their coherence.

On the macroscopic level, bifurcation theory is used to
address these questions, i.e., to rationalize the dynamical
behavior of deterministic chemical rate equations [6,7]. A
prominent example is Selkov’s model for the self-sustained
oscillations in glycolysis [8]. For microscopic systems, chem-
ical master equations and Markov networks [9–11] are
established tools to examine these oscillations [12–19]. The
latter lead to the notion of “Brownian clocks” [20,21] and
to central results like the thermodynamic uncertainty rela-
tion in stochastic thermodynamics [22–24], which links the
precision of such clocks with the ultimate cost, i.e., the
entropy production, see also Ref. [25]. The first correction
of the macroscopic picture toward the microscopic scale
can be determined through the weak-noise limit [12,13]. On
this mesoscopic scale, the master equation is approximated
through a Kramers-Moyal expansion [10]. Thus, the behavior
of the oscillations can be studied in the limit where the volume
of the system becomes infinite. A recent approach uses large
deviation theory to obtain the probability densities beyond
the Gaussian approximation [26]. An alternative route to ex-
amines these oscillations is provided by the phase-reduction
method [17,27,28].

The macroscopic theory is deterministic; hence, oscilla-
tions stay synchronized for all times. For phase diffusion,
and, thus, loss of coherence, randomness in the systems is
needed. Cao and co-workers demonstrated for several stochas-

tic models that the number of coherent oscillations increases
with increasing entropy production rate [29]. A recent study
conjectures a universal trade-off relation between this quantity
and total entropy production per period of oscillation [30].
The number of coherent oscillations is closely related to the
quality factor, which we will discuss in detail below. The latter
has recently also been used as an order parameter to study
nonequilibrium phase transitions [19].

While the mesoscopic theory [12,13] is rather involved in
its general form, we simplify it by performing an explicit
calculation for a one-dimensional Fokker-Planck dynamics.
For the motion along a periodic ring, we derive an original,
simple, analytical expression for the quality factor. Further-
more, we determine an upper bound on this quantity. This
bound is the continuous version of a relation that has been
conjectured for Markov networks in [18]. Moreover, we show
that the number of coherent oscillations of a noisy limit cycle
in two dimensions is also given by that of a one-dimensional
Fokker-Planck system under the assumption that tangent and
normal motion decouple in the weak-noise limit.

We illustrate our results through three numerical case
studies examining a one-dimensional system subject to a pe-
riodic force, the noisy Stuart Landau oscillator also known
as cubic normal form of a Hopf bifurcation, and the noisy
rate equations of the Brusselator in two dimensions. The
coherence resulting from the numerics agrees well with our
analytical results both for the one-dimensional case and in
two-dimensional systems with weak coupling between tan-
gent and normal motion. Based on these numerical studies,
we conjecture that the one-dimensional approximation is in
general an upper bound for the two-dimensional quality factor.

This paper is organized as follows. In Sec. II, we discuss
the quality factor as a quantitative measure for the coherence
of noisy oscillations. Our central result, an explicit expression
for the quality factor in one-dimensional Fokker-Planck sys-
tems is derived in Sec. III A. Using this form, we generalize
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the microscopic bound [18] to dynamics on a one-dimensional
ring in Sec. III B and illustrate these results numerically in
Sec. III C. In Sec. IV, we show that oscillations arising from
a two-dimensional limit cycle can also be characterized by
the one-dimensional expression for the quality factor in the
limit of weak noise. We examine the noisy Stuart-Landau
oscillator in Sec. V A and discuss in detail the validity of
the one-dimensional approximation in Sec. V B. As a generic
example for a chemical reaction network, we numerically treat
the Brusselator in Sec. VI and conclude in Sec. VII.

II. COHERENCE OF OSCILLATIONS

A standard measure to describe the coherence of stochas-
tic oscillations is the quality factor R [12,13,18,19,31]. This
quantity is related to the correlation function of an observable
O(t ),

CO(t ) ≡ 〈O(t )O(0)〉, (1)

which displays damped oscillations if O(t ) performs a noisy
periodic motion. The quality factor,

R ≡
∣∣∣∣ Imλ

Reλ

∣∣∣∣ = ωτ, (2)

is determined by the dominant eigenvalue

λ = −1/τ + iω (3)

of the corresponding dynamical equation. The larger the R,
the longer the oscillator coherence is maintained.

For unicyclic Markov networks, it has recently been con-
jectured that the quality factor is bounded by

R � f (A, N ) ≡ cot(π/N ) tanh(A/2N ), (4)

where N is the number of states. The affinity

A ≡
N∑

i=1

ln
k+

i

k−
i

(5)

is a function of the rates k+
i and k−

i at which a transition from
state i to i ± 1 occurs and a measure for the nonequilibrium
driving in the network. Equation (4) is based on strong nu-
merical evidence and covers in its most general form also
multicyclic networks [18].

The quality factor for systems following a Fokker-Planck
dynamics is obtained by a spectral decomposition of the
Fokker-Planck operator [12,13]. Thus, the number of coherent
oscillations is also given by the dominant eigenvalue, Eq. (2).
This expansion in the eigenbasis leads to a Hamilton-Jacobi
equation with the Freidlin-Wentzell Hamiltonian, respec-
tively, Onsagar-Machlup Lagrangian, for the leading-order
term of the probability density in the weak-noise limit
[12,13,31]. The quality factor is then obtained using tech-
niques from Hamilton-Jacobi theory.

We next perform this eigenfunction expansion to find an
analytical expression for the quality factor of one-dimensional
systems in the weak-noise limit without explicitly using
Hamilton-Jacobi theory.

III. ONE-DIMENSIONAL FOKKER-PLANCK SYSTEMS
IN THE WEAK-NOISE LIMIT

A. Quality factor

Consider a single continuous degree of freedom x(t ), e.g., a
particle or the concentration of a species on a one-dimensional
ring of length L > 0. It is driven by a spatially periodic force
F (x) = F (x + L) and subject to a space-dependent diffusion
Q(x) = Q(x + L). We implement the weak noise explicitly
through an external parameter � > 0, which we assume to
be large compared to all other system scales, i.e., � � 1. The
dynamics of such a system is then described by the following
Fokker-Planck equation [12]

∂t p(x, t ) = −
{
∂x[F (x)p(x, t )] − 1

�
∂2

x [Q(x)p(x, t )]

}
≡ Lx p(x, t ), (6)

where we assume that Q(x) > 0 for all x. Lx denotes the
Fokker-Planck operator. Additionally, we require that the
force has a unique sign. The latter assumptions ensures that
the dynamics has no rest position, which would destroy oscil-
lations in the weak-noise limit. Without loss of generality, we
assume F (x) to be positive.

Following Ref. [12], we expand Eq. (6) to obtain the eigen-
values and, thus, the quality factor. With the splitting ansatz,
p(x, t ) = f (t )h(x), Eq. (6) becomes

df (t )/dt

f (t )
= Lxh(x)

h(x)
≡ λ. (7)

The time dependence of the probability density is thus given
by an exponential f (t ) ∝ exp(λt ).

In order to solve for the eigenvalues λ, we employ the
ansatz h(x) = exp[−�φ(x)] [12]. Plugging this form into
Eq. (7), we obtain an equation for g(x) ≡ φ′(x),

F (x)g(x) + Q(x)g(x)2 + 1

�2
Q′′(x) − 1

�
[λ + F ′(x)

+ 2Q′(x)g(x) + Q(x)g′(x)] = 0. (8)

We solve this relation by expanding g(x) in inverse powers of
�, i.e.,

g(x) = g0(x) + 1

�
g1(x) + 1

�2
g2(x) + O

(
1

�3

)
, � → ∞.

(9)
Comparing the coefficients, we find the following conditions.
In O(1),

F (x)g0(x) + Q(x)g0(x)2 = 0; (10)

in O(1/�),

−λF (x)g1(x) + 2Q(x)g0(x)g1(x) − F ′(x)

− Q(x)g′
0(x) − 2g0(x)Q′(x) = 0; (11)

and in O(1/�2),

F (x)g2(x) + Q(x)[g1(x)2 + 2g0(x)g1(x)]

− Q(x)g′
1(x) − 2g1(x)Q′(x) + Q′′(x) = 0. (12)

There are two solutions for the O(1) constraint, i.e.,
g0(x) = 0 and g̃0(x) = −F (x)/Q(x). We neglect the latter
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since this solution leads to a vanishing quality factor in the
weak-noise limit, see Appendix A.

Solving the system of equations above, Eq. (10)–(12), we
obtain the leading-order terms for g(x),

g0(x) = 0, (13)

g1(x) = λ + F ′(x)

F (x)
, (14)

and

g2(x) = 1

F (x)3
[−λ2Q(x) − 3λQ(x)F ′(x) − 2Q(x)F ′(x)2

+ 2λF (x)Q′(x) + 2F (x)F ′(x)Q′(x)

+ F (x)Q(x)F ′′(x) − F (x)2Q′′(x)]. (15)

The periodicity, p(x, t ) = p(x + L, t ), implies that φ(x) =∫ x g(u)du must satisfy

i2πk = �

∫ L

0
dxg(x) = �[φ(L) − φ(0)] (16)

for an arbitrary k ∈ Z. Plugging the perturbative solution g(x),
Eq. (9), into this relation, we can solve the quadratic equa-
tion for the eigenvalues as

λ
(k)
± = �

2
∫ L

0 Q(x)/F (x)3dx

( ∫ L

0
1/F (x)dx

− 1

�

∫ L

0
Q(x)F ′(x)/F (x)3dx

±
{[ ∫ L

0
1/F (x)dx − 1

�

∫ L

0
Q(x)F ′(x)/F (x)3dx

]2

− i8πk
∫ L

0
Q(x)/F (x)3dx/�

} 1
2
)

. (17)

We find the well-behaved solution by a Taylor expansion
for � � 1 as

λ(k) ≡ λ
(k)
− = −(2πk)2 1

�

∫ L
0 Q(x)/F (x)3dx[ ∫ L

0 1/F (x)dx
]3 + O

(
1

�2

)

+ i 2πk
1∫ L

0 1/F (x)dx
+ iO

(
1

�

)
. (18)

The corresponding eigenfunctions are given by

p(k)(x, t ) = N (k) exp

[
λ(k)t − �

∫ x

g(k)(u)du

]

≡ exp[λ(k)t]h(k)(x), (19)

where g(k)(x) denotes the solution of Eq. (9) for the eigen-
value λ(k) and h(k)(x) the corresponding eigenfunction of the
Fokker-Planck operator, Eq. (7).

The second solution for the eigenvalues is

λ̃(k) ≡ λ
(k)
+

≈ �

[ ∫ L

0
1/F (x)dx

]/[∫ L

0
Q(x)/F (x)3dx

]
+ O(1)

− i2πk/

∫ L

0
1/F (x)dx + iO

(
1

�

)
, (20)

which we can neglect since the λ̃(k) would lead to a vanishing
number of oscillations in the weak-noise limit.

Thus, for a single continuous degree of freedom following
a Fokker-Planck dynamics, Eq. (6), the quality factor is given
by

Rcont ≡
∣∣∣∣ Im λ(1)

Re λ(1)

∣∣∣∣ = �

2π

[∫ L
0

1
F (x) dx

]2

∫ L
0

Q(x)
F (x)3 dx

. (21)

This transparent expression is the first main result of this
paper. In the next section, we discuss implications of this
result for the microscopic bound, Eq. (4).

B. Bound on the quality factor

We first calculate a continuum limit of the bound on the
quality factor, Eq. (4), and then use our main result, Eq. (21),
to derive and prove the continuous version of this bound in the
form

Rcont � fcont ≡ �

2π

∫ L

0

F (x)

Q(x)
dx. (22)

We start by discretizing the Fokker-Planck equation (6)
in space to obtain a master equation for a unicyclic
network,

∂t pi(t ) = −(k+
i + k−

i )pi(t ) + k−
i+1 pi+1 + k+

i−1 pi−1(t ), (23)

where pi(t ) denotes the probability to be in state i after time
t and k±

i are the associated transition rates. To this end,
we use central differences to approximate the derivatives,
i.e.,

f ′(x) ≈ [ f (x + 	x) − f (x − 	x)]/(2	x) and

f ′′(x) ≈ [ f (x + 	x) − 2 f (x) + f (x − 	x)]/	x2. (24)

Comparing the result with Eq. (23), we get the rates

k+
x−	x = Fx−	x

2	x
+ Qx−	x

�	x2
,

k−
x+	x = −Fx+	x

2	x
+ Qx+	x

�	x2
. (25)

with Fx ≡ F (x), 	x ≡ L/N , and relabeling of the states
i → x = i	x.

The cycle affinity A, Eq. (5), becomes by a Taylor expan-
sion

A =
N∑

x=1

ln
k+

x

k−
x

= �

N∑
x=1

Fx

Qx
	x + O(	x2). (26)

Thus, we find for the bound on the quality factor, Eq. (4), in
the continuum limit, i.e., N � 1 respectively 	x � 1,

f = cot
π

N
tanh

A
2N

≈ �

2π

N∑
x=1

Fx

Qx
	x

≈ �

2π

∫ L

0

F (x)

Q(x)
dx ≡ fcont. (27)
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The quality factor Rcont from Eq. (21) and fcont can be
related through a Cauchy Schwartz inequality,

[∫ L

0

1

F (x)
dx

]2

=
[∫ L

0

√
F (x)

Q(x)

√
Q(x)

F (x)3
dx

]2

�
[∫ L

0

F (x)

Q(x)
dx

][∫ L

0

Q(x)

F (x)3
dx

]
. (28)

Dividing both sides by
∫ L

0 Q(x)/F (x)3dx leads to Eq. (22).
Thus, we have proven the continuum version of the bound,
Eq. (4), which has been conjectured in Ref. [18] for discrete
unicyclic Markov networks. This is our second main result.

C. A specific example

For an illustration, we consider a particle on a one-
dimensional ring of length L = 2π . The particle experiences
a periodic force Fε(x) ≡ 1 + ε sin x with −1 < ε < 1. We
keep the diffusivity constant, i.e., Q(x) ≡ 1. The dynamics is
governed by the Langevin equation

ẋ(t ) = Fε[x(t )] +
√

2

�
ξ (t ) (29)

with 〈ξ (t )〉 = 0 and 〈ξ (t )ξ (t ′)〉 = δ(t − t ′). This equation is
equivalent to a Fokker-Planck equation of the form of Eq. (6).
Thus, we can apply the theory developed in the previous
sections.

We keep the initial value constant, x0 = −π ; thus, the
correlation function is proportional to the mean value of x(t ),

Cx(t ) = 〈x(t )|x(0) = x0〉x0. (30)

In the weak-noise limit, the deterministic solution for the
mean value is given by

x∞(t ) = −2 arctan

{
ε −

√
1 − ε2

× tan

[
1

2
t
√

1 − ε2 + arctan
ε + tan(x0/2)√

1 − ε2

]}
. (31)

The quality factor for this system can be calculated analyti-
cally with Eq. (21) as

Rcont = �
2(1 − ε2)3/2

2 + ε2
. (32)

The bound, Eq. (27), is simply fcont = �.
As shown in Fig. 1(a), we observe a numerical convergence

toward the deterministic solution [Eq. (31)] for increasing
�, while the phase diffusion smears out the sharp edges
the stronger the noise becomes. In this regime, we observe
exponentially damped oscillations. From the numerically cal-
culated correlation function, we obtain the frequency, the
decay rate, and the quality factor R as given by Eq. (2). The
ratio R/� is shown in Fig. 1(b) for various � as a function
of ε. The numerical result for this one-dimensional system
agrees very well with our analytical prediction. For vanishing
ε, the bound, Eq. (27), is saturated as predicted by Eq. (32),
while the quality factor tends to zero for ε → ±1. This is due
to the fact, that the force field, Fε(x) = 1 + ε sin x, establishes
a root for ε ≈ ±1, for which oscillations vanish.

0 25 50 75 100
t

−4

−2

0

2

4

C
x
(t

)/
x

0

Ω = 102

Ω = 103
Ω = 104

Eq. (32): Ω → ∞

(a)

−1.0 −0.5 0.0 0.5 1.0
ε

0.0

0.5

1.0

R/
Ω

fcont/Ω

Rcont/Ω

Ω = 102

Ω = 103

Ω = 104

(b)

FIG. 1. (a) Correlation function Cx (t )/x0 for various � and ε =
−1/2, x0 = −π for a particle on a ring. (b) Ratio R/� as a function
of ε. The continuous bound is the gray dashed line. The solid line
represents the theoretical prediction for the quality factor, Eq. (32).
We include error bars taking into account the fitting error.

In what follows, we turn to two-dimensional systems.
We demonstrate analytically and numerically that the one-
dimensional quality factor, Eq. (21), is also applicable to
planar noisy oscillations for which a limit cycle emerging
through a Hopf bifurcation is a prime example.

IV. PLANAR OSCILLATIONS IN THE WEAK NOISE LIMIT

Consider two continuous degrees of freedom, x(t ) and
y(t ). Their coupled dynamics is governed by an autonomous
Langevin equation,

d

dt

(
x(t )

y(t )

)
=

[
Fx(x(t ), y(t ))

Fy(x(t ), y(t ))

]
+ 1√

�
C(x(t ), y(t ))

[
ξ1(t )

ξ2(t )

]
,

(33)

where 〈ξi(t )〉 = 0 and 〈ξi(t )ξ j (t ′)〉 = δi jδ(t − t ′). The weak-
noise limit is again given explicitly through the external
parameter � � 1. We denote the entries of the matrix char-
acterizing the multiplicative noise as

C(x(t ), y(t )) =
[

cx,1(x(t ), y(t )) cx,2(x(t ), y(t ))

cy,1(x(t ), y(t )) cy,2(x(t ), y(t ))

]
.

(34)
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We assume that the deterministic dynamics has a stable
limit cycle, i.e., a closed curve in phase space which we
denote as {x̄, ȳ}. Along this curve, the vector-field F (x, y) ≡
(Fx(x, y), Fy(x, y)) has no root, thus, a nonvanishing norm,

‖F (x̄, ȳ)‖ > 0. (35)

The norm ‖v‖ of a vector v = (vx, vy) is induced by the
standard scalar product in R2,

‖v‖ ≡ √
v · v ≡

√
v2

x + v2
y . (36)

Continuity of the vector field assures that Eq. (35) holds in a
neighborhood of the limit cycle. Thus, we define the vector
parallel to the force as

f̂‖(x, y) ≡
(

Fx(x, y)

Fy(x, y)

)/∥∥∥∥
(

Fx(x, y)

Fy(x, y)

)∥∥∥∥ (37)

and the perpendicular one as

f̂⊥(x, y) ≡
(

Fy(x, y)

−Fx(x, y)

)/∥∥∥∥
(

Fx(x, y)

Fy(x, y)

)∥∥∥∥. (38)

We denote the projections along these directions as

s ≡ f̂‖(x, y) ·
(

x

y

)
and s⊥ ≡ f̂⊥(x, y) ·

(
x

y

)
. (39)

In order to obtain the dynamics along a noisy limit cycle, we
concentrate in the following on the parallel projection. The
time evolution is given by Ito’s formula [32] and Eq. (33) as

d

dt
s(t ) = ‖F (x(t ), y(t ))‖ + s⊥(t )DF (x(t ), y(t )) f̂‖(x(t ), y(t )) · f̂⊥(x(t ), y(t )) + O

(
1

�

)
+ 1√

�
f̂‖(x(t ), y(t ))

· C(x(t ), y(t ))ξ (t ) + 1√
�

s⊥(t )DF (x(t ), y(t )) f̂‖(x(t ), y(t )) · f̂⊥(x(t ), y(t )) · C(x(t ), y(t ))ξ (t ). (40)

DF (x, y) denotes the Jacobian matrix of the vector field F (x, y). For briefness of notation, we write x(t ) or y(t ) in the
equation above where we mean x(t ) and y(t ) parameterized in the new degrees of freedom, i.e., x(t ) = x(s(t ), s⊥(t )) and similarly
for y(t ).

In the vicinity of the limit cycle, the dominant direction is parallel to the force. Thus, we neglect the perpendicular component
and set s⊥(t ) = 0 in Eq. (40) to obtain the following Langevin equation as a zeroth-order Taylor expansion,

d

dt
s(t ) � F‖(s(t )) + 1√

�
C‖[s(t )] ·

[
ξ1(t )

ξ2(t )

]
, (41)

with the force

F‖(s) ≡ ‖F (x(s, 0), y(s, 0))‖ (42)

and the vector
C‖(s) ≡ CT (x(s, 0), y(s, 0)) · f̂‖(x(s, 0), y(s, 0))

≡
[
C‖,1(s)

C‖,2(s)

]
.

(43)

Hence, the diffusivity is given by

Q‖(s) ≡ 1
2 [C‖,1(s)2 + C‖,2(s)2]. (44)

The Ito-Langevin equation, Eq. (41), is equivalent to the Fokker-Planck equation,

∂t p(s, t ) = −∂s[F‖(s)p(s, t )] + 1

�
∂2

s [Q‖(s)p(s, t )]. (45)

We can now use the solution p(s, t ) to calculate the autocorrelation function of x(t ),

Cx(t ) ≡ 〈x(t )x(0)〉, (46)

along the noisy trajectory as

Cx(t ) =
∫

dx
∫

dy
∫

dx0

∫
dy0xx0 p(x, y, t |x0, y0)p0(x0, y0)

�
∫

ds
∫

ds⊥
∫

ds0

∫
ds⊥,0x(s, 0)x(s0, 0)p(s, s⊥, t |s0, s⊥,0)p0(s0, s⊥,0)

=
∫

ds
∫

ds0x(s, 0)x(s0, 0)p(s, t |s0)p0(s0) =
∑
k∈Z

∫
ds

∫
ds0x(s)x(s0) exp(λ(k)t )h(k)(s|s0)p0(s0)

= C(0) + C(1) cos[Im λ(1)t] exp[Re λ(1)t] +
∑
|k|�2

C(k) exp(λ(k)t ). (47)
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In the second line, we neglect the s⊥(t ) dependence of x(t )
to obtain the behavior parallel to the closed curve. The
eigenvalues λ(k) and eigenfunctions hk (s|s0) are the ones
corresponding to the one-dimensional Fokker-Planck equa-
tion (45) and can be calculated as described above for the
one-dimensional system, Sec. III A. The constants are given
as

C(k) ≡
∫

ds
∫

ds0x(s)x(s0)h(k)(s|s0)p0(s0). (48)

In the weak-noise limit, the coordinate s(t ) effectively
becomes the arc-length. Hence, the integrals appearing in
Eq. (18) can be evaluated according to∫ s(T )

s(0)

Q‖(s)

F‖(s)3
ds =

∫ T

0

Q‖(x̄(t ), ȳ(t ))

F‖(x̄(t ), ȳ(t ))3

ds

dt
dt

=
∫ T

0

Q‖(x̄(t ), ȳ(t ))

F‖(x̄(t ), ȳ(t ))2
dt . (49)

The quality factor of a two-dimensional limit cycle oscillation
is thus given by the one-dimensional expression [Eq. (21)] in
the weak-noise limit with F‖(s) and Q‖(s) as defined above,
which is our third main result.

We note that the above argument is not restricted to
planar oscillations. The basic idea, i.e., focusing on the
parallel direction does not depend on the number of di-
rections orthogonal to the trajectory. In an N-dimensional
system, the degrees of freedom can be parameterized with
one parallel direction s(t ) and N − 1 orthogonal direc-
tions, e.g., x(t ) = x(s(t ), s(1)

⊥ (t ), . . . , s(N−1)
⊥ (t )), and approxi-

mated through x(t ) ≈ x(s(t ), 0, . . . , 0). Thus, the main result
[Eq. (47)] remains unchanged in this more general case.

The next two sections are devoted to applications. We first
study the noisy Stuart-Landau oscillator and discuss the valid-
ity of the approximations made above. Then, we examine the
thermodynamically consistent Brusselator as a generic model
for a chemical clock.

V. CUBIC NORMAL FORM FOR HOPF BIFURCATION

A. Stuart-Landau oscillator

The cubic normal form for a Hopf bifurcation [7,31,33–
37], often referred to as Stuart-Landau oscillator, is character-
ized by the following vector field in polar coordinates:

∂t r = μr − ar3 ≡ Fr (r)

∂tθ = ω + br2 ≡ Fθ (r, θ ). (50)

When μ changes sign and a > 0, this field undergoes a Hopf
bifurcation and a limit cycle with constant radius r0 ≡ √

μ/a
emerges. We assume the matrix characterizing the noise to be
constant,

C(x(t ), y(t )) =
√

2D

(
1 0

0 1

)
, (51)

with a free parameter D > 0.
The normal and tangent degrees of freedom for the closed

curve in phase space are the radial deviation ρ(t ) ≡ r(t ) − r0

and the angle θ (t ), which compare to s⊥(t ) and s(t ) from

above, respectively. Following the procedure described in
Sec. IV, we arrive at the Fokker Planck equation for the angle

∂t p(θ, t ) = −∂θ [ω0 p(θ, t )] + aD

μ�
∂2
θ [p(θ, t )]. (52)

Thus, θ follows a free diffusion with constant drift, i.e.,

Fθ (θ ) ≡ Fθ (r0, θ ) = ω + bμ/a ≡ ω0 and

Qθ (θ ) = aD/μ. (53)

This definition originates from the zeroth-order Taylor expan-
sion of the angular force, Eq. (50), and Eq. (44). The solution
of Eq. (52) is a Gaussian

p(θ, t |θ0) = 1√
4πtDa/(�μ)

exp

[
−1

2

(θ − ω0t − θ0)2

2tDa/(�μ)

]
.

(54)

For the initial condition p0(θ0) = δ[θ0 − θ (0)], we carry out
the Gaussian integrals and obtain

Cx(t ) = μ

a
cos θ (0)

∫
dθ cos θ p(θ, t |θ0)

= μ

a
cos θ (0)

∫
dθ

1

2
[exp(iθ ) + exp(−iθ )]p(θ, t |θ0)

= μ

a
cos θ (0) cos[ω0t + θ (0)] exp[−(aD/�μ)t].

(55)

Thus, we find for the quality factor

R2d =
∣∣∣∣ ω0

aD/(�μ)

∣∣∣∣ =
∣∣∣∣�D μ

a
(ω + bμ/a)

∣∣∣∣ = Rcont, (56)

in agreement with what we get by putting Eq. (53) into
the formula for a one-dimensional system, Eq. (21). Thus,
we have analytically shown that the two-dimensional qual-
ity factor for the limit cycle oscillation is exactly given by
the one-dimensional approximation. Furthermore, since Fθ (θ )
and Qθ (θ ) are constant, fcont = Rcont.

In Fig. 2, we compare the quality factor obtained by a
simulation of the Langevin dynamics and the analytical result
from above. The parameters are chosen such that we obtain a
decoupling of the angular and the radial motion, i.e., |b| � 1.
Within this parameter range the numerically obtained quality
factor agrees with the analytical one, Eq. (56). For b = 1, we
see deviations from the theoretical value. This is due to the
contribution of the radial motion to the diffusion of the angle
[36] as we will show in the next section.

B. Effective diffusion coefficient

We explain the deviations from the analytical result
[Eq. (56)] and show how to expand the prediction into the
regime where angular and radial motion are coupled. We start
with the solution for the radial deviations ρ(t ) ≡ r(t ) − r0 of
the decoupled Stuart-Landau oscillator.
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b = 0.010

b = 0.100
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FIG. 2. Quality factor for a two-dimensional limit cycle as a
function of μ for different b with ω = a = 1 and � = 103. Dashed
lines represent the theoretical prediction, Eq. (56).

In leading order for � � 1, the Ito-Langevin equation is
given by

∂tρ(t ) ≈ D

�

√
a

μ
− 2μρ(t )

+ 2D√
�

[cos θ (t )ξ1(t ) + sin θ (t )ξ2(t )] (57)

with the corresponding Fokker-Planck equation

∂t p(ρ, t ) = ∂ρ

[(
D

�

√
a

μ
− 2μρ

)
p(ρ, t )

]
+ D

�
∂2
ρ p(ρ, t ).

(58)
Thus, the radial deviations follow an Ornstein-Uhlenbeck pro-
cess with constant drift [36]. The mean is given by

〈ρ(t )〉 = ρ0 exp(−2μt ) + D

2�

√
a

μ3
[1 − exp(−2μt )]

≈ ρ0 exp(−2μt ), for � → ∞, (59)

with variance

Var[ρ(t )] = D

2�μ
[1 − exp(−4μt )] ≈ 0, for � → ∞.

(60)

The fluctuations of ρ(t ) are of order �−1/2 and hence, the
coupling between ρ and θ needs to be included if the coupling
strength

∂rFθ (r0, θ ) = 2b

√
μ

a
(61)

is not negligible. Since this argument holds for any vector
field that does not dependent on θ in polar coordinates, the
following holds beyond the cubic normal form of a Hopf
bifurcation.

The dynamics of the coupled degrees of freedom is effec-
tively given by the Langevin equations

d

dt

(
θ (t )

ρ(t )

)
=

(
0 κ1

0 −κ2

)(
θ (t )

ρ(t )

)
+

(
f1

f2

)
+

[
η1(t )

η2(t )

]
(62)

with Gaussian white noise 〈ηα (t )〉 = 0 and 〈ηα (t )ηβ (t ′)〉 =√
2Dαδα,βδ(t − t ′). The κα , fα , and Dα are constants. The “ef-

fectively” should be understood such that the equation above
leads to the same Fokker-Planck equation as the Langevin
equation for ρ(t ) and θ (t ) if one chooses the parameters
correctly.

The equation for ρ(t ) has the solution presented in the
beginning of this section. Therefore, we concentrate on θ (t )
and calculate its variance in order to get the diffusion constant.
A formal solution is given by

θ (t ) = θ0 +
(

f1 + κ1

κ2
f2

)
t + κ1

κ2

(
ρ0 − f2

κ2

)
(1 − e−κ2t )

+
∫ t

0
dτη1(τ ) + κ1

κ2

∫ t

0
dτη2(τ )(1 − e−κ2t eκ2τ ),

(63)

where the integrals are interpreted in the Ito sense and θ (0) ≡
θ0, respectively, ρ(0) ≡ ρ0. The variance becomes

〈θ (t )2〉 − 〈θ (t )〉2

= 2D1

(
1 + κ2

1

κ2
2

D2

D1

)
t + κ2

1

κ3
2

D2(1 − e−2κ2t − 4 + 4e−κ2t ).

(64)

We obtain the diffusion coefficient as

Dθ ≡ lim
t→∞

〈θ (t )2〉 − 〈θ (t )〉2

2t
=

(
1 + κ2

1

κ2
2

D2

D1

)
D1. (65)

For the noisy Stuart-Landau oscillator, we identify the pa-
rameters as

D1 = Da

�μ
, D2 = D

�
, κ1 = 2b

√
μ

a
, κ2 = 2μ,

f1 = ω + b
μ

a
≡ ω0, f2 = D

�

√
a

μ
. (66)

Thus, the diffusion coefficients becomes

Dθ = D1

(
1 + b2

a2

)
(67)

and the mean angle is given by

〈θ (t )〉 ≈ θ0 + b√
μa

ρ0 +
(

ω0 + b

μ

D

�

)
t

= θ0 + b√
μa

ρ0 + ω0 t + O
(

1

�

)
(68)

in the limit of large times. Thus, for large t , the angular motion
is effectively given by a diffusion with constant Dθ and drift
ω0. According to the calculations in the previous section, the
quality factor is then given in the weak-noise limit by

R̃2d = ω0

Dθ

= R2d

1 + b2/a2
. (69)

In Fig. 3, we show the quality factor obtained by integrating
the Langevin equation, the one-dimensional prediction from
the previous section, the effective theory introduced above and
data calculated using the method presented in Ref. [12], see
Appendix B for a brief explanation. In contrast to the previous
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Eq. (69): b = 0
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Eq. (69): b = 2
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FIG. 3. Quality factor R/� of the cubic normal form as function
of μ for various b. The extensivity parameter is set to � = 103

and ω = a = 1. Solid lines represent the one-dimensional prediction
[Eq. (56)] and dashed lines the description with the effective diffu-
sion coefficient [Eq. (69)]. Dotted lines with crosses are calculated
with the scheme presented in Ref. [12].

section, we consider a parameter range with non-negligible
coupling between radial deviations and angular motion. As
expected, the naive one-dimensional approximation fails to
reproduce the quality factor of the underlying Langevin dy-
namics. Nevertheless, the effective description taking into
account radial motion predicts the quality factor correctly and
is in agreement with the full theory [12].

In conclusion, we have extended the validity of the ap-
proximations made in Sec. IV to a class of systems in which
the normal and tangent motion do not necessarily decouple.
Moreover, the discussion presented above is not limited to the
Stuart-Landau oscillator; it rather holds true for any vector
field that does not dependent on the angle. In the next section,
we discuss an example for which the latter assumptions does
not remain true.

VI. BRUSSELATOR

A paradigmatic model for a chemical clock is the Brusse-
lator [19,38,39],

A
k+

1�
k−

1

X, 3X
k−

2�
k+

2

2X + Y, Y
k−

3�
k+

3

B. (70)

The concentrations cA and cB of the chemical species A and
B in the external bath are kept constant. Due to a difference
in the chemical potential between A and B, i.e., 	μ ≡ μB −
μA > 0, the system is out of equilibrium and the number of the
intermediate species X and Y can oscillate. Considering the
reaction cycle which consumes a substrate B and generates a
product A, the thermodynamic force associated with this cycle
is

A ≡ 	μ = ln
cBk+

3 k+
2 k−

1

cAk+
1 k−

2 k−
3

, (71)

where k±
i are the corresponding reaction rates. This equa-

tion is commonly known as local detailed balance condition
[40].

Following Ref. [13], we obtain F (x, y) and the diffusion
matrix Q(x, y) in the weak-noise limit as

Fx(x, y) = cAk+
1 − k−

1 x + k+
2 x2y − k−

2 x3,

Fy(x, y) = cBk+
3 − k−

3 y − k+
2 x2y + k−

2 x3,

Qx,x(x, y) = 1
2 (cAk+

1 + k−
1 x + k+

2 x2y + k−
2 x3),

Qy,y(x, y) = 1
2 (cBk+

3 + k−
3 y + k+

2 x2y + k−
2 x3),

Qx,y(x, y) = Qy,x(x, y) = − 1
2 (k+

2 x2y + k−
2 x3),

(72)

where x ≡ nX /� and y ≡ nY /�. Here ni denotes the number
of molecules of species X or Y . The external parameter �

represents the volume of the system.
We choose the noise matrix C(x, y), Eq. (34), such that

Q(x, y) = 1
2C(x, y)C(x, y)T , e.g.,

C(x, y) ≡
√

2

Qx,x(x, y)

[
Qx,x(x, y) 0

Qx,y(x, y)
√

det Q(x, y)

]
. (73)

Thus, the noisy rate equation for the Brusselator are of the
form of Eq. (33) and we can apply the theory developed in
Sec. IV.

The deterministic vector field

F (x, y) ≡
[

Fx(x, y)

Fy(x, y)

]
=

(
cAk+

1 − k−
1 x + k+

2 x2y − k−
2 x3

cBk+
3 − k−

3 y − k+
2 x2y + k−

2 x3

)

(74)

undergoes a Hopf bifurcation while increasing the chemical
potential [19]. We obtain the emerging limit cycle by numeri-
cally solving the deterministic equation,

d

dt

(
x(t )

y(t )

)
=

[
Fx(x(t ), y(t ))

Fy(x(t ), y(t ))

]
. (75)

Following the procedure from Sec. IV, we determine the force
F‖(x, y) and diffusivity Q‖(x, y) and numerically obtain our
estimate for the quality factor Rcont.

In Fig. 4(a), we compare our result with three sets of data;
those from Ref. [19] as obtained by a Gillespie simulation of
the Brusselator, from the algorithm of the full theory [12], see
Appendix B, and from data obtained by a Langevin simula-
tion with the force field F (x, y) and matrix C(x, y) described
above. We find for all methods that the quality factor tends to
zero in the vicinity of the bifurcation point 	μc � 3.9 [19] as
expected. For 	μ significantly above 	μc, the data obtained
by a Langevin simulation and by the full theory agree, but
there are deviations to the the data obtained through the Gille-
spie algorithm and our method. The variance in the Gillespie
data is due to the fact that the number of coherent oscillations,
thus the quality factor, scales around the bifurcation point and
away from the transition with an apparent exponent less than
1, i.e., R ∝ �α with α < 1 [19]. Rescaling the data with such
an exponent leads to a better agreement with the other data
sets, see Fig. 4(b). While this procedure leads to consistency
with the full theory, there is still a significant discrepancy to
the method presented in Sec. IV.
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FIG. 4. (a) Quality factor and (b) R/�α of the Brusselator as
function of the thermodynamic force 	μ for various �. The rates are
chosen as k+

1 = k+
3 = 0.1, k−

1 = k+
2 = k−

2 = 1, cA = 1, and cB = 3.
The rate k−

3 is computed with the thermodynamic force 	μ and
relation [Eq. (71)]. α = 0.99 for the � = 100 Gillespie data and
α = 0.95 for � = 103. For all other methods, α = 1 by theory. In
(b) the prediction by Eq. (21) is not displayed in order to focus on
the collapsed data.

The one-dimensional approximation of the quality factor
overestimates the full dynamics of the Brusselator as shown
in Fig. 4(a). The bound, Eq. (22), is about a factor 2 to 3 times
bigger than this continuous quality factor (data not shown).
The significant discrepancy between the data obtained through
Eq. (21) and for example by the algorithm [12] resembles the
corresponding failure for the noisy Stuart-Landau oscillator,
Sec. V B. There, we have analytically shown that the perpen-
dicular motion amplifies the diffusion in the tangent direction.
In particular, we have established an effective diffusion con-
stant which sets the decay time of the correlation function.
While this analytical treatment is not feasible anymore for the
Brusselator due to an angular-dependent limit cycle radius,
we numerically calculate the frequency ω, Fig. 5(a), and the
coherence time τ , Fig. 5(b), for all data sets except the one
obtained by the Gillespie algorithm.

We find only small variations for the angular fre-
quency. However, the decay time τ is overestimated by the
one-dimensional expression, Eq. (18), while the remaining
methods coincide. Thus, as in the strong-coupling regime of
the noisy Stuart-Landau oscillator, the diffusion constant for

4 5 6 7 8
Δμ

0.25

0.30

0.35

ω Eq.(21)

[12]

Langevin : Ω = 102

Langevin : Ω = 103

Langevin : Ω = 104

(a)
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Δμ

0.0

0.2

0.4

0.6

0.8

τ
/Ω

(b)

FIG. 5. (a) Frequency ω and (b) decay time τ/� of the Brusse-
lator as function of 	μ for various �. The rates are chosen as for
Fig. 4.

the tangential motion is larger than predicted by the one-
dimensional approximation. In fact, this is a generic feature
due to the stability of a limit cycle as we have seen in Sec. V B.

In summary, we have also found for the Brusselator that
a coupling between normal and tangent motion leads to a
reduced quality factor. Thus, the approximation we have pre-
sented in Sec. IV can be understood as an effective upper
bound on the coherence. For the generic model presented in
Sec. V B, this upper bound is sharp.

VII. DISCUSSION AND CONCLUSION

We have derived an analytical expression for the quality
factor for an oscillator based on a one-dimensional Fokker-
Planck dynamics, Eq. (21). This expression is obtained by
a spectral decomposition of the Fokker-Planck operator as
presented in Refs. [12,13]. In contrast to these studies, we did
not use the rather involved techniques of Hamilton-Jacobi the-
ory but solved for the eigenvalues and eigenfunctions directly
exploiting the weak-noise limit.

Furthermore, we have derived and proven a continuous
version of the microscopic bound on the quality factor of a
stochastic oscillator which has been conjectured in Ref. [18].
Based on numerical evidence, it has been suggested that the
quality factor of a Markov network is bounded by the network
topology and the force driving the system out of equilibrium.
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This continuous bound [Eq. (22)] is tight, since it is derived
through the Cauchy-Schwartz inequality. It is simply given
by the integral of driving force over state-dependent diffusion
coefficient.

The one-dimensional quality factor also captures the be-
havior of a two-dimensional noisy oscillator. If the coupling
of tangent and normal motion is negligible, then this corre-
spondence is exact. Moreover, even if the directions do not
decouple, then the quality factor for a broad class of oscil-
lators can be obtained through an effective one-dimensional
expression as we have analytically shown for the Stuart-
Landau model as a generic example. The theoretical result
is in agreement with data obtained by numerically integrat-
ing the corresponding Langevin equation. It also matches
the numerical data resulting from the method introduced in
Ref. [12]. This effective description breaks down for systems
in which the two-dimensional motion does not decouple. As
an example, we examined the Brusselator numerically and
observed that the one-dimensional approximation leads to an
overestimate in the decay time as we have also found for
the Stuart-Landau oscillator. The full, rather involved method
introduced in Refs. [12,13] is in good agreement with data
obtained by a Gillespie simulation and by integrating the cor-
responding chemical Langevin equation. Thus, based on the
numerical and analytical findings, we suggest that the theory
for the planar oscillations presented in our paper is an upper
bound on the quality factor of a two-dimensional noisy oscil-
lator. Moreover, the calculations leading to a parametrization
with the arc-length of a limit cycle are not limited to two
dimensions but can be generalized to arbitrary dimensions.

In conclusion, we have presented a transparent formula
for the quality factor of a noisy oscillator. In one dimension
this expression is exact. For a broad class of two-dimensional
systems, this expression can be adjusted to predict the correct
coherence, while for general two-dimensional oscillators, it
should yield an upper bound. The method presented in this
paper provides an elementary approach to the coherence of a
noisy clock. It is sufficient to find the limit cycle numerically
and then integrate a function along it, which is simpler than
the numerically more challenging and sensitive techniques
required for the full theory [12].
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APPENDIX A: IRRELEVANCE OF THE SECOND
SOLUTION OF THE ONE-DIMENSIONAL

FOKKER-PLANCK SYSTEM

We follow the calculations of Sec. III A in the main text and
calculate the eigenvalues for the second solution of Eq. (9),

g̃(x) = −F (x)

Q(x)
+ 1

�

[
− λ

F (x)
+ Q′(x)

Q(x)

]
+ O

(
1

�2

)
. (A1)

From Eq. (16), we obtain the eigenvalues

λ̃(k) ≈ −i 2πk
1∫ L

0 1/F (x)dx
− �

∫ L
0 F (x)/Q(x)dx∫ L

0 1/F (x)dx
. (A2)

The resulting quality factor would be given as

R̃ =
∣∣∣∣ Im λ̃(1)

Re λ̃(1)

∣∣∣∣ = O
(

1

�

)
, for � → ∞. (A3)

Thus, this second solution, Eq. (A1), does not contribute to
oscillations in the weak-noise limit.

APPENDIX B: METHOD INTRODUCED IN REF. [12]

In this Appendix, we briefly discuss the numerical scheme
to obtain the quality factor according to Ref. [12]. For theoret-
ical background we refer to the original publication [12]; see
also Refs. [13,14].

As first step, one obtains the limit cycle by numerically
integrating the deterministic equation of motion, i.e.,

d

dt

(
x(t )

y(t )

)
=

[
Fx(x(t ), y(t ))

Fy(x(t ), y(t ))

]
. (B1)

We label this periodic solution (x̄(t ), ȳ(t )). The period T can
be obtained from the numerical data, for instance, by estimat-
ing the distance of adjacent maxima.

The next step is to calculate the eigenvectors of the funda-
mental matrix

M(T ) =
[

M11(T ) M12(T )

M21(T ) M22(T )

]
(B2)

at time T . In order to do so, one has to solve the following
system of differential equations for 0 � t � T :

d

dt
M(t ) = DF (x̄(t ), ȳ(t )) M(t ),

(B3)
M(0) = I,

with the two-dimensional unity matrix I and the Jacobian
matrix DF (x̄(t ), ȳ(t )) evaluated along the limit cycle. The so-
lution M(T ) has an eigenvalue �1 = 1 with right eigenvector

e1 ≡ F (x̄(T ), ȳ(T )), (B4)

which reflects the stability of the periodic solution. The corre-
sponding left eigenvector is denoted by f1, i.e.,

M(T )T f1 = f1. (B5)

This eigenvector is chosen such that

f1 · e1 = 1, (B6)

where we used the standard scalar product as in the main text.
The second eigenvalue �2 with |�2| < 1 and eigenvectors e2

respectively f2 can be ignored.
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Deviations from the limit cycle evolve during one period according to the following system of differential equations:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

d
dt

[
δx(t )

δy(t )

]
=

[
∂xFx(x̄(t ), ȳ(t )) ∂xFy(x̄(t ), ȳ(t ))

∂yFx(x̄(t ), ȳ(t )) ∂yFy(x̄(t ), ȳ(t ))

][
δx(t )

δy(t )

]
,

[
δx(0)

δy(0)

]
=

(
0

0

)

d
dt

[
δpx(t )

δpy(t )

]
= −

[
∂xFx(x̄(t ), ȳ(t )) ∂xFy(x̄(t ), ȳ(t ))

∂yFx(x̄(t ), ȳ(t )) ∂yFy(x̄(t ), ȳ(t ))

]T [
δpx(t )

δpy(t )

]
,

[
δpx(0)

δpy(0)

]
=

(
f1,x

f1,y

)
.

(B7)

As a last step, the solution

δX (T ) ≡
[
δx(T )

δy(T )

]
(B8)

determines the quality factor as

R ≡ �
T 2

π | f1 · δX (T )| . (B9)
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