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Accurate calculations of the spectral density in a strongly correlated quantum many-body system are of
fundamental importance to study its dynamics in the linear response regime. Typical examples are the calculation
of inclusive and semiexclusive scattering cross sections in atomic nuclei and transport properties of nuclear and
neutron star matter. Integral transform techniques play an important role in accessing the spectral density in a
variety of nuclear systems. However, their accuracy is in practice limited by the need to perform a numerical
inversion which is often ill-conditioned. In the present work we extend a recently proposed quantum algorithm
which circumvents this problem. We show how to perform controllable reconstructions of the spectral density
over a finite energy resolution with rigorous error estimates. An appropriate expansion in Chebyshev polynomials
allows for efficient simulations also on classical computers. We apply our idea to obtain the local density of states
for graphene in a magnetic field as a proof of principle. This paves the way for future applications in nuclear and
condensed matter physics.
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I. INTRODUCTION

A major challenge in nuclear many-body theory is the
accurate prediction of scattering cross sections in low-energy
reactions involving both atomic nuclei and infinite nuclear
matter. For ab initio approaches with a strong connection to
the underlying theory of QCD it is fundamental to be able
to control the approximation errors in both the employed in-
teractions and the adopted many-body method. With the help
of an effective field theory approach the first of this sources
of uncertainty has begun to be put on a firmer ground [1–6],
and theoretical error estimates coming from the modeling
of nuclear interactions are now an integral part of the work
of nuclear theorists [7–10]. Using similar tools great efforts
are being pursued by the nuclear theory community to un-
derstand the systematic errors introduced by the approximate
many-body techniques used to solve the nuclear ground states
[11,12]. Benchmark calculations for ground-state properties
of few-body nuclei have also been performed (see, e.g., [13]),
but a more complete understanding of the various sources
of systematic errors in predictions of nuclear dynamics for
larger systems is hindered by the incredible computational
complexity of the problem.

A very powerful approach to study dynamical properties
in medium-mass systems and infinite matter is the adoption
of integral transform techniques which map the local density
of states into more manageable integrated quantities, a typi-
cal example being sum rules of the nuclear response which
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describe moments of the density of states and can be ex-
pressed directly as ground-state expectation values [14,15].
This important map between real-time observables and
ground-state expectation values can be achieved more gen-
erally by employing integral transforms with various kernels
followed by a numerical inversion of the resulting integral
transform to recover the response function in the frequency
domain. The choice of integral kernel is typically dictated
by the possibility of evaluating the ensuing integral trans-
form with a powerful many-body technique. Two of the most
popular examples are the Lorentz integral transform (LIT)
widely used in conjunction with diagonalization techniques
[16,17] and, more recently, the coupled cluster method (LIT-
CC) [18–20] and the Laplace transform applied with Monte
Carlo methods due to its relationship with imaginary-time
correlation functions [21–23]. A crucial component of these
approaches consists in inverting the integral transform, a pro-
cess that for the Laplace transform can be seen as analytical
continuation from imaginary-time to the real time axis [24].
In general this procedure when applied to invert an integral
transform obtained by numerical methods is ill-posed, in the
sense that small errors in the input response can give rise
to arbitrarily large high-frequency noise in the reconstructed
real frequency response [25,26]. A variety of approximate
inversion techniques that introduce, more or less explicitly,
additional smoothing to reduce these high-frequency oscilla-
tions have been proposed in the past [27–31]. These can be
very successful in situations where the dominant structure
of the response function is simple and known beforehand,
such as for the quasielastic peak in medium energy scattering
[23,32], but the introduced systematic errors are no longer
sufficiently under control to trust predictions with unexpected
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features thus severely limiting explorations of the nuclear
dynamics in challenging regimes where little experimental
information is available to guide the inversion.

At this point it is important to mention that some observ-
ables connected with integrated properties of the response,
like, e.g., the electric dipole polarizability of nuclei [33] or
the impurity contribution to the thermal conductivity in the
outer crust of neutron stars [34], can be obtained directly
from the integral transform thus allowing one to avoid the
inversion step. Moreover, the severity of the induced system-
atic errors strongly depends on the properties of the integral
kernel that defines the integral transform, a feature recognized
early on and one of the inspirations for introducing the LIT
in nuclear physics [16,35] as well as generalizations of the
Laplace transform [36,37]. One of the salient features of an
ideal integral transform kernel is the ability to set a resolution
scale which then allows for an effective coarse graining of the
frequency space signal; e.g., for the LIT this is controlled by
the kernel width. This intuition led recently to the introduc-
tion of quantum algorithms to reliably estimate both inclusive
and exclusive scattering cross sections through an appropriate
integral transform of the spectral density using simulations
performed with quantum computers [38–40] (see also [41–43]
for similar approaches and [44,45] for recent reviews).

In this work we extend the results of Ref. [39] to show
how to reconstruct, with controllable errors, a general re-
sponse function in frequency space from integral transforms
expressed on a basis of Chebyshev polynomials thus com-
pletely avoiding the use of uncontrollable numerical inversion
procedures. The use of Chebyshev polynomials for this task
is reminiscent of the kernel polynomial method (KPM) [46]
introduced in the context of condensed matter physics and
especially popular in conjunction with a matrix product rep-
resentation (see, e.g., [47–49]).

The paper is organized as follows. In the next section we
briefly describe the approach introduced in Ref. [39] for
the calculation of the spectral density discussing differences
and similarities with KPM. The method’s accuracy and its
dependence on the particular choice of integral kernel are
discussed in Sec. III, where we also compare it directly with
the more standard KPM approach. In Sec. IV we introduce a
construction for coarse graining the spectral density in a way
that allows for a direct control of the approximation error and
study a simple benchmark to show its efficacy. We present
also an application of our method to obtain predictions of the
local density of states for graphene in a magnetic field. Finally,
in Sec. V we conclude and discuss the potential benefit of
our proposal when used in conjunction with classical many-
body techniques like matrix product states and coupled cluster
theory.

II. FORMALISM

Following the presentation in Ref. [39] we start by in-
troducing the local density of states (or dynamical response
function) defined as

S(ω) = 〈�0|Ôδ(Ĥ − ω)Ô|�0〉
〈�0|Ô2|�0〉

, (1)

where |�0〉 is the ground state, Ô is an (Hermitian) excitation
operator describing the scattering vertex, and Ĥ is the nuclear
Hamiltonian. Note that with this definition the density of
states is normalized as

∫
dωS(ω) = 1. For finite systems the

Hamiltonian spectrum is discrete by construction, but here we
consider ω as a continuous variable by employing the Dirac δ

function as

S(ω) =
∑

n

|〈�0|Ô|φn〉|2
〈�0|Ô2|�0〉

δ(En − ω) =
∑

n

snδ(En − ω), (2)

with |φn〉 energy eigenstates with eigenvalues En. Fur-
thermore, we will assume that the Hamiltonian has been
normalized so that the entire spectrum {En} is contained in the
interval [−1, 1]. As explained in the introduction, the main
focus of this work will be an integral transform �(ν) of the
response function defined through an integral kernel K (ν, ω)
as

�(ν) =
∫ ∞

−∞
dωK (ν, ω)S(ω). (3)

In this work we will focus on translationally invariant integral
kernels that depend only on the absolute value of the energy
difference K (ν, ω) ≡ K (|ω − ν|), but the results described
here can be easily extended to the general case. For ease of
derivation the limits of integration extend to ±∞, with the
understanding that S(ω) = 0 for |ω| > 1. In order to simplify
the notation we will avoid to specify these limits when there
is no ambiguity. We are in general interested in observables
that can be expressed as energy integrals of the local density
of state S(ω) as

Q(S, f ) =
∫

dωS(ω) f (ω) (4)

with a bounded function f (ω) defining the specific observable
under consideration. Using the integral transform � intro-
duced in Eq. (3) we can define the quantity

Q(�, f ) =
∫

dν�(ν) f (ν)

=
∫

dν

∫
dωK (|ω − ν|)S(ω) f (ν)

=
∫

dω

[∫
dνK (|ω − ν|) f (ν)

]
S(ω)

=
∫

dω f̃ (ω)S(ω) = Q(S, f̃ ). (5)

Our goal is to determine the conditions for which the latter is
a good approximation to the original observable

|Q(�, f ) − Q(S, f )| = |Q(S, f̃ ) − Q(S, f )| � ε, (6)

with bounded error ε > 0. For this purpose, it is convenient
to define integral kernels to be 	-accurate with resolution 


(see also Ref. [39]) if the following holds:

inf
ω0∈[−1,1]

∫ ω0+


ω0−


dνK (ν, ω0) � 1 − 	. (7)

As shown in Ref. [39], for this class of kernels we have

ε � f 

max + 2	 sup

ω∈[−1,1]
| f (ω)|, (8)
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with f 

max the modulus of continuity given by

f 

max = sup

ω∈[−1,1]
sup

x∈[−
,
]
| f (ω + x) − f (ω)|. (9)

In this work we will consider two types of translationally
invariant integral kernels with an energy resolution controlled
by an external parameter λ:

(1) The Lorentzian kernel describing the Lorentz integral
transform (LIT) from Ref. [16]

K (L)(ν, ω; λ) = 1

πλ

λ2

(ω − ν)2 + λ2
(10)

(2) The Gaussian kernel giving the Gaussian integral
transform (GIT) from Ref. [39]

K (G)(ν, ω; λ) = 1√
2πλ

exp

[
− (ω − ν)2

2λ2

]
. (11)

In order to evaluate the integral transform �(ν) using a
suitable many-body method, we will consider an expansion of
these kernels into a complete basis of orthogonal polynomials
{Tk (ω)} as

K (ν, ω; λ) =
∞∑
k

ck (ν; λ)Tk (ω), (12)

with real coefficients ck (ν; λ) depending both on the location
in energy ν and the kernel resolution λ. With this represen-
tation we can now express the integral transform as a linear
combination

�(ν; λ) =
∫

dωK (ν, ω; λ)S(ω) =
∞∑
k

ck (ν; λ)mk (13)

with generalized moments defined as

mk =
∫

dωTk (ω)S(ω) = 〈�0|ÔTk
(
Ĥ

)
Ô|�0〉

〈�0|Ô2|�0〉
(14)

and independent on the specific integral kernel employed in
the construction. This property is particularly advantageous
since, once the moments {mk} are computed with the many-
body method of choice, it allows one to consider a variety of
integral transforms in post-processing.

In practice, only a limited number N of moments
will be available with a finite computational effort. Their
calculation—in the case of many-body systems governed
by complicated dynamics—is very challenging and requires
powerful supercomputer due to high time and memory con-
sumption. This cost can, however, be substantially lower than
what would be required to calculate the full energy spectrum.
In the latter case, for an M × M Hamiltonian matrix, the
cost is O(M3) but for the moment calculation only O(NM2).
Using instead quantum computing, as originally proposed in
Ref. [39], the cost can be made to scale as O(Npolylog(M ))
for large classes of interacting Hamiltonians (e.g., Hamilto-
nian operators in second quantization describing two- and
three-body interactions). We will then consider approxima-
tions to integral transforms obtained by a finite truncation of
the series expansion

�N (ν; λ) =
N∑
k

ck (ν; λ)mk, (15)

leading to a finite approximation accuracy

sup
ν∈[−1,1]

|�(ν; λ) − �N (ν; λ)| � β, (16)

with constant β > 0. Ideal kernels, like the Gaussian, have
a fast (i.e., exponential) convergence of β with the number
of terms N . Note that this is not the approximation error
of S(ω) by Eq. (15) but the approximation error of �(ν, λ).
The former cannot be known without additional information
about S, while the latter can be controlled independently and
depends only on the required resolution and the choice of
kernel. The choice of the polynomial basis {Tk} influences this
convergence rate. In this work we use the Chebyshev poly-
nomials of the first kind due to their quick convergence for
smooth functions, and we will refer to our method as CheET
(Chebyshev expansion of integral transforms). An explicit
derivation of the coefficients ck (ν; λ) for both the Lorentzian
and Gaussian kernels can be found in Appendix A.

A. Evaluation of Chebyshev moments

Chebyshev polynomials of the first kind are defined in the
interval [−1, 1] as Tk (ω) = cos[k arccos(ω)]. They follow a
recursive relation

T0(x) = 1; T−1(x) = T1(x) = x,

Tn+1(x) = 2xTn(x) − Tn−1(x). (17)

The moments of the expansion mk from Eq. (14) can be
retrieved using the relation

|�1〉 ≡ Ô|�0〉, |�n〉 = Ĥ |�n−1〉
m0 = 〈�1|�1〉, m1 = 〈�1|�2〉 ≡ 〈�2|�1〉

mn+1 = 2〈�1|�n+1〉 − mn−1 ≡ 2〈�n+1|�1〉 − mn−1, (18)

which is particularly suited to combine with the many-body
methods for which it is possible to iterate the action of the
Hamiltonian, Ĥ |�n〉. From the point of view of the numer-
ical applications, a similar iteration has to be performed in
the Lanczos procedure [46]. Here, however, no orthogonality
restoration is needed at each step. Consequently, at the nth
step only a single |�n〉 state has to be saved from the previous
iterations. This makes the procedure faster and less memory
consuming.

As has been mentioned, in our considerations we assume
that the Hamiltonian is normalized. In practical applications
the range of the Hamiltonian spectrum can be obtained,
e.g., via the Lanczos algorithm and then rescaled so that
[Emin, Emax] → [−1, 1].

B. Comparison with KPM

The KPM, described in detail in Ref. [46], can be under-
stood as a specific approximation of Eq. (12) for which

KKPM(ν, ω; λ) =
∞∑
k

gk (λ)
Tk (ν)

π
√

1 − ν2
Tk (ω), (19)

where the ν dependence of the ck coefficients is approximated
by a single k-degree polynomial Tk (ν) times a fixed weight
factor 1/

√
1 − ν2. The coefficients gk are chosen in such a

way that �(ω) −−−→
N→∞

S(ω) and to reduce Gibbs oscillations.
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A variety of gk were proposed in the past, designed to speed
up the convergance rate depending on the properties of the
signal S(ω). Among them are the Jackson and Lorentz kernels
defined as

gJackson
k = 1

N + 1

[
(N − k + 1) cos

πk

N + 1

+ sin
πk

N + 1
cot

π

N + 1

]
,

gLorentz
k = sinh [κ (1 − k/N )]/ sinh(κ ), (20)

which aim at approximating the Gaussian and Lorentzian
shape of the kernel. It is important to notice that the KPM
coefficients gk do not depend on the resolution λ, while they
are a function of the total number of moments N . (The param-
eter κ in the case of gLorentz

k is introduced to mimic indirectly
the λ dependence.) In other words, λ and N dependencies
become entangled in a nontrivial way. This complicates the
error analysis, as we have a different kernel for every choice of
N and ultimately leads to less flexibility in balancing the com-
putational cost with the target accuracy. Although the KPM
is a powerful tool which proved useful in many applications,
it does not allow one to control either the resolution λ with
which we probe the spectrum or the errors depending on the
number of used moments.

III. ANALYSIS OF POINTWISE CONVERGENCE

To appreciate the differences between the CheET and KPM
approaches, let us first consider a continuous signal S(ω) be-
ing a single Gaussian of width � = 0.1 or � = 0.01 centered
at η = 0.3. We have checked that our conclusions hold if the
signal has a Lorentzian shape or when it is composed of more
than one peak (in this case the convergence pattern depends on
the narrowest peak in the spectrum). Since the KPM method
was primarily developed for the signal reconstruction, we
will analyze the pointwise convergence. However, the main
advantage of the CheET method—the error bound—cannot be
appreciated in this case. For the comparison to be meaningful,
within the CheET we will use kernels of the width λ 	 �.

Before discussing the results of this comparisons, it is
important to point out that the optimal (at least asymptotically)
choice for performing an approximation of a smooth signal
S(ω) over the interval [−1, 1] would be to consider directly
the Chebyshev expansion of S(ω) without the use of any
smoothing kernel. The reason for this is a well-known result
by Jackson (see Ref. [50,51]) stating that, if PN (ω) is the
approximation obtained by keeping the first N terms in the
Chebyshev expansion of S(ω), then

sup
ω∈[−1,1]

|S(ω) − PN (ω)| � CN 6S1/N
max, (21)

with a Lebesgue constant CN � [2 + (2/π ) log(N + 1)] (see
Ref. [52]) and S1/N

max the modulus of continuity of S(ω) over
an interval of size 1/N [see definition in Eq. (9) above].
This classic result shows that a bare Chebyshev expansion
for an analytic response S(ω), like the Gaussian used for the
examples in this section, will converge superexponentially in
the order N of the expansion. In order to estimate the error,
however, we need to be able to estimate S1/N

max or at least a

reasonably tight upper bound for it. In the applications of
interest for our study we have access only to the first N
moments of S(ω), and this, alone, does not provide enough
information to obtain an error estimate from Eq. (21) directly.
Furthermore, without prior information about the behavior of
the moments of S(ω) for n > N , we also cannot place a rigor-
ous error bound on the truncation error of the expansion. The
adoption of a smoothing kernel K (ν, ω) enables us instead to
consider an approximation �(ω, λ) to S(ω) with controllable
smoothing properties [obtained from the condition in Eq. (7)]
for which we can compute an upper bound β on the truncation
error which converges exponentially in the order N and which
does not require any knowledge about the target response
S(ω). This can be obtained, even without knowing the value
of moments mk for k > N , using the following bound:

|�(ν; λ) − �N (ν; λ)| =
∣∣∣∣∣

∞∑
k=N+1

ck (ν; λ)mk

∣∣∣∣∣
�

∞∑
k=N+1

|ck (ν; λ)|, (22)

which, when maximized over ν, gives in turn an upper bound
on the truncation error β defined in Eq. (16).

Due to the necessary smoothing, we cannot place directly a
bound on the approximation error of S(ω) by �(ω, λ), but for
the applications described in Sec. IV where we are interested
in observables of the type shown in Eq. (5) this is not needed.
In the latter case, a useful, and rigorous, error estimate can
be obtained from the properties of the function f alone. The
purpose of this section is to show that, empirically, the approx-
imation error is also very small and approaches the optimal
result quickly for sufficiently small regularization width λ.
This is not the case for the procedure used in KPM where the
impact of regularization is orders of magnitude more severe.

Let us first look at the reconstruction within each of the
considered methods in the case of the signal width � = 0.1. In
Fig. 1 we show the results only for the Jackson and Gaussian
kernels, since the behavior of the kernels within each method
(Jackson/Lorentz or Gauss/Lorentz) is qualitatively the same.
The first visible distinction between the KPM and the CheET
with λ = 0.01 results is the fact that the Gibbs oscillation is
suppressed for the KPM approach. Still, the CheET Gaussian
is visibly better converged at much lower number of moments
(already for N = 60).

To get a more quantitative insight into the convergence
pattern, in Fig. 2 we show the pointwise convergence as a
function of used moments (and λ for the CheET), for the broad
signal � = 0.1 and the narrow � = 0.01,

ϑ = max
ω∈[−1,1]

|S(ω) − �(ω)|, (23)

where � is an integral transform of the signal S, as in Eq. (3).
As a reference we plot a result with no kernel, which, as
explained above, converges faster than any other smoothing
method. We use κ = 3 for the Lorentz KPM [see Eq. (20)].
The CheET curves follow a characteristic pattern: after the
initial steep-slope convergence, they reach a plateau. Further
addition of moments would improve the kernel reconstruction
(and thus diminish the truncation error); however, this does
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FIG. 1. Reconstruction of a Gaussian signal S(ω) of a width � = 0.1 centered at η = 0.3. In the case of the CheET method, λ = 0.01 is
used

not affect the quality of signal approximation. The exact num-
ber of moments needed to reach the plateau depends on the
signal itself, in particular on the signal’s resolution �. This
can be seen when comparing both panels of Fig. 2. Using
kernels of the same resolution λ, not only a higher number
of moments is needed for smaller �, but also the plateau is
reached with different accuracy. For λ = 0.001, the CheET
Gaussian reaches an accuracy ∼e−8(e−1) for � = 0.1(0.01).

A direct comparison of CheET with the Lorentzian and
Gaussian kernels with the same width λ clearly shows that
in the latter case the convergence is orders of magnitude
better. In order to obtain results of a similar precision, we
would need to use a Lorentzian of a much smaller width. This
consequently requires a larger number of moments if we are
to control the truncation error.

In the case of the pointwise error considered here, neither
KPM nor CheET is able to give a full theoretical uncertainty
estimation. Using the KPM method has an advantage that with
the increasing number of moments N , we converge to the
original signal �N

KPM(ω) −−−→
N→∞

S(ω). However, the pace of

convergence or the approximation error is unknown. From our
observations, the CheET rate of convergence (before reaching
a plateau) is much faster than KPM. Although for a given
resolution λ the CheET method reaches a plateau, in the limit

N → ∞ the CheET predictions can also converge to the orig-
inal signal. In order to achieve this we should progressively
reduce the resolution λ of the kernel with the increasing num-
ber of moments. We may do so by appropriately scaling λ(N ),
e.g., by keeping fixed the truncation error at a satisfactory low
value. This behavior can be actually observed in Fig. 2 when
we compare various CheET results with the reference curve
without any smoothing kernel. They initially follow the same
steep-slope convergence pattern, until the CheET curves reach
the plateau.

For the CheET, we are still able to provide an estimate for
the truncation error β as a function of number of moments
used for the reconstruction of the kernel. In Fig. 3 we show the
bound obtained using the approximation in Eq. (22) for eight
values of λ (see Appendix B for closed-form expressions for
these). As expected, the Gaussian kernel performs better than
the Lorentzian. For the truncation error to be at the order of 0.1
and λ = 0.01 one needs N ≈ 900 moments. To go an order
of magnitude further to λ = 0.001, the number of moments
increases correspondingly to N ≈ 10 000. When comparing
these numbers with Fig. 2, we realize that the plateau is
reached much faster, even below N = 100. This discrepancy
is likely coming from the use of the bound in Eq. (22), which
erases structural information from the moments and therefore

(a) (b)

FIG. 2. Comparison of the pointwise convergence of CheET and KPM methods for a Gaussian signal of width � = 0.1(0.01) on the left
(right) panel. The measure of convergence ϑ is defined in Eq. (23). Solid lines correspond to CheET method with the Gaussian kernel of λ

resolution as labeled. The results for CheET Lorentzian kernel (dashed lines) have λ corresponding to the Gaussian CheET. The dashed line
with point markers shows the convergence pattern when no kernel is used. The inset shows the behavior of KPM (both Jackson and Lorentz)
for a much larger number of moments.

055310-5



JOANNA E. SOBCZYK AND ALESSANDRO ROGGERO PHYSICAL REVIEW E 105, 055310 (2022)

FIG. 3. Truncation error as a function of number of moments.
Solid (dashed) line corresponds to CheET Gaussian (Lorentzian) for
eight resolutions λ.

assumes the truncation is for a worse-case scenario signal of
width ≈ λ instead.

Let us come back to a remark made in Sec. II B. While in
the case of KPM (at least for the Jackson kernel), the only
free parameter of the signal reconstruction is N , the number
of moments used in the reconstruction, the CheET method
introduces explicitly a smoothing scale λ which corresponds
to the regularization parameters used for the standard inver-
sion techniques. When the signal has structures of a higher
resolution, we are not able to resolve them. At first sight
it might seem to be a drawback. However, λ gives directly
the scale at which we can rely on the signal reconstruction.
This is lacking in the KPM, for which in the asymptotic
regime we might never see a uniform convergence of errors.
Moreover, in practical applications one has only a limited
number of moments available and would like to reconstruct
the signal controlling the approximation. This can be done
within CheET. The resolution scale can be set depending on
N to keep the truncation errors sufficiently low.

To further illustrate the differences between both ap-
proaches, we present yet another comparison, this time taking
as a signal a step function normalized to 1,

S(ω) =
{

5 if ω ∈ [0.1, 0.3]

0 otherwise
. (24)

FIG. 4. Reconstruction of a step function using KPM with
Jackson kernel and CheET Gaussian for four values of N =
1500, 2000, 2500, 3000. In case of CheET the kernel width λ =
0.001 was chosen.

The pointwise convergence in this case is not a meaningful
measure, since in the vicinity of the discontinuity ω = 0.1 we
have ∃�ω S(ω + �ω) − �(ω + �ω) ≈ 2.5. Nevertheless, we
depict in Fig. 4 this region to see the convergence behavior of
KPM Jackson and CheET Gaussian methods. For the CheET
we choose the resolution λ = 0.001, and for the number of
moments between N = 1500–3000 we observe nearly over-
lapping curves, which—for lower N—suffer from the Gibbs
oscillations (as shown in the inset). This again manifests that
we control the reconstruction through λ, not through the num-
ber of moments (their number has to be sufficient only to
control the truncation error β). For the KPM the increasing
number of moments corresponds heuristically to smaller λ.
The flexibility afforded by the CheET strategy allows to obtain
results qualitatively similar to KPM with N = 3000 using
only N ≈ 2500 moments.

IV. DIRECT APPROXIMATION OF THE SPECTRAL
DENSITY USING HISTOGRAMS

The results shown in the previous section are useful to gain
insights into the possible benefits of using different kernel
functions to study the local spectral density. For a more re-
alistic case when the target response is not known, however, it
will not be possible to compute directly the pointwise error
from Eq. (23), and a different, computable, error metric is
needed. We achieve this by explicitly introducing a target
energy resolution scale � and using the properties enjoyed
by 	-accurate with resolution 
 integral kernels to bound
the error on a suitably coarse-grained energy distribution. For
this purpose, we introduce an energy histogram as a frequency
observable like Eq. (5) by defining the following window
function

f (ω, η; �) =
{

0 |η − ω| > �

1 otherwise
. (25)

The histogram of the frequency signal S(ω), with associated
bin width equal to 2�, is found by integrating over the spec-
trum. Explicitly, the value of the histogram centered at η is
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given by

h(η; �) =
∫ 1

−1
dωS(ω) f (ω, η; �) =

∫ η+�

η−�

dωS(ω). (26)

We now define an approximate histogram by taking the
convolution of the window function in Eq. (25) with an in-
tegral kernel with resolution 
:

f̃ 
(ω, η; �) =
∫ 1

−1
dνK (ν, ω; 
) f (ν, η; �)

=
∫ η+�

η−�

dνK (ν, ω; 
). (27)

The resulting approximate histogram can be written as

h̃
(η; �) =
∫ 1

−1
dω f̃ 
(ω, η; �)S(ω)

=
∫ 1

−1
dω

∫ η+�

η−�

dνK (ν, ω; 
)S(ω). (28)

Finally, we will further approximate h̃
(η; �) as a Cheby-
shev expansion truncated to order N introducing an error
bounded by

sup
η∈[−1,1]

|̃h
(η; �) − h̃

N (η; �)| � 2�β. (29)

Using these quantities we can then approximate the histogram
with bin size 2� at η using the following pair of bounds:

h̃

N (η; � − 
) − 	 − 2β(� − 
) � h(η,�),

h(η,�) � h̃

N (η; � + 
) + 	 + 2β(� + 
). (30)

The derivation of Eq. (30) can be found in Appendix C, the
truncation errors β (G,L) for the Gaussian and Lorentzian are
given in Eqs. (B5) and (B22) in Appendix B. Last, the tails
	 [see the definition in Eq. (7)] for the Lorentz and Gaussian
kernels are bounded by

	(L) � 2λ

π

, 	(G) � exp

(
− 
2

2λ2

)
. (31)

The approximated histogram bin of Eq. (28) can be ex-
pressed in terms of Chebyshev moments expansion

h̃
(η; �) =
∫ η+�

η−�

dν
∑

k

ck (ν, λ)mk

=
∑

k

dk (η − �, η + �,λ)mk, (32)

with dk coefficients which can be obtained analytically from
the ck and are given in Eq. (A21) for the Gaussian kernel.
Through this procedure we do not introduce any further nu-
merical error and the calculation cost of ck and dk coefficients
is of the same order. On the other hand, using the KPM to
calculate a histogram would more troublesome, since in this
case using the kernel of Eq. (19) one gets

h̃
(η; �) =
∫ η+�

η−�

dν
∑

k

gk (λ)
Tk (ν)

π
√

1 − ν2
mk . (33)

The integral has no analytical closed form, therefore its cal-
culation has to be done numerically which is computationally
more expensive.

A. Synthetic data

We will consider an example of the signal reconstruction
of both a discrete and continuous spectrum, in terms of a his-
togram. To generate the synthetic data we will use a function

g(x) = √
x − 0.8 exp

(
− x

0.35

)
, (34)

which is qualitatively similar to nuclear responses in the
quasielastic regime.

1. Discrete signal

In this case we generate the synthetic data by mimicking a
many-body calculation for which the spectrum has a discrete
form as in Eq. (2). For this study, the spectrum is generated
as a uniform random distribution of 500 delta peaks with
strengths taken from Eq. (34) (the total strength is normalized
to 1) in a range (−0.8, 1).

2. Continuous signal

We generated a continuous function using directly Eq. (34),
with the total strength normalized to 1.

In our example we take the width of histogram bins to be
2� = 0.2. For the CheET method we set a desired kernel
resolution to be 
 = 0.01. This is driven by the following
observation. Looking at Eq. (30), we see that when the kernel
is accurate enough (	 is small) and we keep the truncation
error β low (i.e., we use a sufficient number of moments), the
uncertainty is driven by (h̃�+
 − h̃�−
). Therefore we expect
the error to be roughly proportional to 
/�. For the chosen
values of � and 
, we keep it at the order of ≈10%.

Having set 
, we should choose λ, so that the tails of
the distributions 	 [see Eq. (31)] are small enough. Finally,
knowing λ, the truncation error β as a function of number
of moments N can be estimated. In Fig. 5 we show the total
truncation error 2β(� + 
) and the tail bound 	 in relation to
(λ, N ) for a chosen � = 0.1 and 
 = 0.01, for both the Gaus-
sian and Lorentz kernels. The horizontal lines correspond to
	(L,G). In the right panel where λ = 0.001, 	(G) is already
negligibly small and not visible. A compromise between the
number of used moments N and the desired accuracy λ has to
be found. From the central panel of Fig. 5, we conclude that
λ = 0.0025 is good enough to quench 	(G), while keeping
the number of moments N = 4000. For this value of N , and
for the Lorentzian kernel the truncation error is smaller than
	(L).

The results for both discrete and continuous signals for
this setup are shown in Fig. 6. All the results, both KPM and
CheET, correspond to h̃


N (η; �), i.e., truncated expansion of
Eq. (28) with the same number of moments N = 4000. All
four predictions give similar results which stay in agreement
with the reference signal. However, the error estimation, given
in Eq. (30), is not available for the KPM approach. The large
errors for CheET Lorentz come mostly from 	(L) ∝ λ/
.
They have been divided by factor 2 in Fig. 6, to fit them in
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FIG. 5. Truncation error as a function of number of moments, for a histogram bin 2� = 0.2. Kernel resolution is 
 = 0.01, using λ =
0.004, 0.0025, 0.001 are shown, respectively, on the left, central, and right panels. The dashed curves correspond to the Lorentzian kernel.
The horizontal dashed and solid lines in each plot correspond to 	(L) and 	 (G) (the tail bound). In the right panel 	 (G) is already orders of
magnitude smaller and not visible at this scale.

the plots. They could be diminished by improving the pre-
cision λ, which would consequently require a larger number
of moments. From the right panel of Fig. 5 we see that di-
minishing this error by factor 2.5 would require λ = 0.001
and so over N = 10 000 moments. At the same time, the
CheET Gaussian gives much better uncertainty estimation.
The tail bound 	(G) and truncation error β are negligible
in this case, and the uncertainty is driven by the difference
h̃
(η,� + 
) − h̃
(η,� − 
).

FIG. 6. Signal reconstruction for a discrete case (upper panel)
and a continuous case (lower panel). In both cases the CheET Lorentz
error bars were rescaled by factor 0.5.

B. Graphene in a magnetic field

As a proof of principle, we apply our method to obtain
the local density of states (LDOS) for graphene in a magnetic
field. We choose a single layer of graphene with the circular
shape and radius of 30 nm in a magnetic field of 20 T. We use
the Pybinding [53] Python library to retrieve the Chebyshev
moments.

Within the KPM or the CheET method we would be able
to get the spectrum of single peaks (with a given broaden-
ing), resolving the excitations in the vicinity of E = 0 which
correspond to Landau levels. However, the density of states
grows with energy so that the reconstruction of higher-lying
states requires an increasing number of Chebyshev moments.
Instead, we create a histogram to show the LDOS in the whole
range of energies (−8.45, 8.45) eV. For our simulation we set
the histogram width 0.4 eV, 
 = 0.05 eV, and λ = 0.015 eV.
The results shown in Fig. 7 were performed using N = 5000
moments. This number of moments corresponds to the broad-
ening of 5 meV in the Jackson KPM method, which allows
us to distinguish the first five Landau levels, up to the energy
±0.3 eV. We plot as a reference f (E ) ∝ E3/2, to show that
the distribution is in good approximation (up to E ≈ 2 eV)
related to the positions of Landau states, with En ∝ √

n, since∫ √
ndn = n3/2. The error bars in Fig. 7 are mostly driven

FIG. 7. Local density of states of the monolayer graphene in
a magnetic field of 20 T reconstructed using CheET method with
Gaussian kernel.
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by h̃

N (η; � + 
) − h̃


N (η; � − 
) [see Eq. (30)]. In this case
the spectrum is uniform, therefore we suspect the errors ≈

/� = 0.05/0.2 = 25%, which indeed is the case. This un-
certainty could be quenched by diminishing 
, which would
require a larger number of Chebyshev moments.

V. SUMMARY AND CONCLUSIONS

Predicting the dynamical response of strongly coupled
many-body systems is a problem of central importance in
nuclear physics since most of the experimental information
comes from scattering cross sections. A quantitative under-
standing of many-body dynamics is also crucial in cold atoms
experiments and quantum chemistry. In the linear response
regime, the scattering cross section is related to the local
spectral density, a notoriously difficult observable to evaluate
in ab initio methods. In this work we have presented a method
for the reconstruction of the spectral density starting from an
expansion in terms of Chebyshev polynomials using earlier
results discussed in the context of quantum algorithms [39].
This idea is similar in spirit to both the kernel polynomial
method (popular in condensed matter) and to the Lorentz
integral transform method (employed in nuclear physics). Im-
portantly, the approach presented here allows for a systematic
control of the errors in the reconstruction, a key ingredient
which is in general not easily achievable in both of the above
mentioned techniques.

Our results are an important step which will directly al-
low us to perform a full ab initio calculation of dynamical
response functions in many-body systems. In particular, they
pave the way to extend the LIT-CC calculations [18–20] to
compute observables for which the inversion procedure may
be numerically unstable. The approach presented in this work
can also be beneficial as an extension of KPM in applications
using tensor networks [48,49] and the new error bounds on
the histogram discretization will provide additional guidance
for the design of quantum algorithms for the estimation of the
spectral density [39,43],

In the future work we plan to address two further issues.
First of all, the error estimates derived here are not necessarily
tight (especially the truncation error for the Gaussian kernel in
Appendix B 2) and it will be beneficial to improve the accu-
racy of the bounds. Second, the present method does not allow
to estimate another major source of systematic bias in these
calculations: the presence of an artificially discrete spectrum
coming from the need to carry the many-body simulation in
a finite basis. This is taken care of in the LIT framework
by a careful choice of the energy resolution of the kernel.
Performing a benchmark of these strategies in solvable models
will be an important step forward that we will address in the
future.
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APPENDIX A: CHEBYSHEV MOMENTS
FOR INTEGRAL KERNELS

In this Appendix we provide a complete derivation of the
Chebyshev moments ck for the Lorentzian and Gaussian ker-
nels defined in Eqs. (10) and (11),

K (G,L)(ν, ω; λ) =
∞∑

k=0

ck (ν, λ)Tk (ω), (A1)

used in the main text.

1. Moments for Lorentzian kernel

Following Ref. [54] the Chebyshev expansion of the
Lorentzian can be written as

K (L)(ν, ω; λ) = 1

π

∞∑
k=0

(2 − δk,0)R[Dλ(ν)Zλ(ν)k]Tk (ω)

(A2)

where R[z] is the real part of z and the two functions are
defined as

Dλ(ν)−1 =
√

1 − (ν + iλ)2,

Zλ(ν) = (ν + iλ) − iDλ(ν)−1. (A3)

If we consider the situation where (ν2 + λ2) < 1 we can
express the second factor explicitly as

Zλ(ν) = −i exp [i arcsin(ν + iλ)] = −ie−λeiν . (A4)

If we also decompose the first factor in polar coordinates
Dλ(ν)−1 = ρeiθ we can write compactly the coefficient in the
Chebyshev expansion as

c(L)
k (ν; λ) = R[Dλ(ν)Zλ(ν)k]

= ρ−1e−kλ cos
[
k
(
ν − π

2

)
− θ

]
. (A5)

2. Moments for Gaussian kernel

We start the discussion by first recalling the Chebyshev
expansion of a Gaussian function

1√
2πλ

e− ω2

2λ2 =
∞∑

k=0

ak (λ)Tk (ω), (A6)

where the moments ak (λ) are given explicitly as

an =
{ γn√

2πλ
i

n
2 exp

(− 1
4λ2

)
Jn/2

(
i

4λ2

)
for even n

0 for odd n
(A7)

with γn = 2 − δn,0 and Jn, the Bessel function of order n.
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Using this expansion, the Gaussian kernel can be expressed
as

K (G)(ν, ω; λ) =
∞∑

k=0

ak

(
λ

2

)
Tk

(ν − ω

2

)
, (A8)

in terms of Chebyshev polynomials depending on both vari-
ables ν and ω. Our goal is instead to find a decomposition in
terms of polynomials in ω of the form of Eq. (A1)

The procedure proposed in Ref. [39] to obtain the moments
ck (ν, λ) proceeds as follows: we first perform the expansion

Tk

(ν − ω

2

)
=

∞∑
m=0

bk
m(ν)Tm(ω), (A9)

with expansion coefficients given by

bk
m(ν) = γm

π

∫ 1

−1

dω√
1 − ω2

Tk

(ν − ω

2

)
Tm(ω). (A10)

Apart from the weight factor 1/
√

1 − ω2, the integrand is a
polynomial in ω of maximum degree D = k + m. This in turn
implies that, if we can perform the integration exactly using
Gauss-Chebyshev quadrature as

bk
m(ν) = γm

π

L∑
i=1

wiTk

(ν − ωi

2

)
Tm(ωi ) (A11)

with weights wi = π
L and Chebyshev nodes

ωi = cos

(
π

2i − 1

2L

)
, (A12)

provided we choose L > (D + 1)/2. In the following we will
take L = Lm,k = �(m + k + 1)/2�.

Now, by realizing that, for any choice of ν, the function
Tk[(ν − ω)/2] is a polynomial of order k in ω, the sum in
Eq. (A9) can be truncated at order m � k without incurring
in an approximation error. This implies that we can take, for a
given k, the truncation in Eq. (A11) as

L = Lk,k =
⌈

2k + 1

2

⌉
= k + 1. (A13)

Suppose now that we approximate the Gaussian kernel
with a truncated sum of the form

K (G),N (ν, ω; λ) =
N∑

k=0

ak

(
λ

2

)
Tk

(ν − ω

2

)

=
N∑

k=0

∞∑
m=0

ak

(
λ

2

)
bk

m(ν)Tm(ω), (A14)

with a corresponding truncation error β
(G)
N derived in Ref. [39]

and discussed in more detail in the next Appendix. In the orig-
inal derivation in Ref. [39] the expansion in m was truncated
at m = N � k resulting in

K (G),N (ν, ω; λ) =
N∑

k=0

N∑
m=0

ak

(
λ

2

)
bk

m(ν)Tm(ω)

=
N∑

m=0

[
N∑

k=0

ak

(
λ

2

)
bk

m(ν)

]
Tm(ω)

=
N∑

m=0

c̃m
[N](ν, λ)Tm(ω), (A15)

with expansion coefficients given explicitly as

c̃m
[N](ν, λ) =

N∑
k=0

Lk,k∑
i=1

γm

Lk,k
ak

(
λ

2

)
Tk

(
ν − ωk

i

2

)
Tm

(
ωk

i

)
,

(A16)

with Chebyshev nodes ωk
i depending explicitly on k due to

the corresponding k dependence of the number of terms Lk,k .
As in Ref. [39] this can be removed by performing a further
simplification by choosing Lk,k = N + 1 independent on k. As
the discussion on the Gaussian quadrature formula provided
above shows, this does not introduce further errors and results
in a modest O(N ) increase in number of summands. The final
expression for the expansion coefficients is then1

c̃m
[N](ν, λ) = γm

N + 1

N∑
k=0

N+1∑
i=1

ak

(
λ

2

)
Tk

(
ν − ω̃i

2

)
Tm(ω̃i ),

(A17)

where we have defined the k-independent nodes

ω̃i = cos

[
π

2i − 1

2(N + 1)

]
. (A18)

We will call the scheme presented so far method 1. It has
one main disadvantage with respect to the construction for the
Lorentz kernel above: evaluation of the kernel (or equivalently
the integral transform) at different frequencies ν incurs in
a cubic cost with the number of terms N whereas for the
Lorentz kernel this cost is only linear in N . Another drawback
of the present construction is that the coefficients c̃m(ν, λ) in
the kernel expansion of Eq. (A15) and provided explicitly
in Eq. (A17) are not the same as the ck (ν, λ) coefficients
obtained from a direct univariate expansion of the kernel in
the ω frequency as in Eq. (A1). As we will see below this
might result in a worse truncation error, at fixed N , than one
could obtain if the latter expansion coefficients were known
analytically (as in the case of the Lorentzian).

To address both of these problems, here we also consider
a second approach that directly estimates the “exact” coeffi-
cients

ck (ν, λ) = γk

π

∫ 1

−1

dω√
1 − ω2

K (G)(ν, ω; λ)Tk (ω) (A19)

by approximating the integral with a Gauss-Chebyshev
quadrature using a large number of nodes M > N for a target
truncation level N :

c[N,M]
k (ν, λ) =

M∑
m=1

γk

M
K (G)(ν, ωm; λ)Tk (ωm) (A20)

with ωm = cos(π 2m−1
2M ) the Chebyshev nodes as above. This

construction, method 2 has the main advantage of resulting
in a faster evaluation of the kernel and integral transform.

1We note two typos in Ref. [39] with (N + 1) being indicated as
N and the numerator in Eq. (A18) being quoted to be (effectively)
2i + 1 instead of 2i − 1. These do not affect any of the results
discussed there but are important for a correct implementation of the
expansion coefficients.
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FIG. 8. Reconstruction of the Gaussian signal (λ = 0.05, ν =
0.3) using two different sets of expansion coefficients given by
Eqs. (A17) (method 1) and (A20) (method 2). In all cases we use
N = 120 moments. For method 2 we show both M = 120 and M =
240 integration points.

The coefficients c[N,M]
k (ν, λ) converge close to the exact ones

c(G)
k (ν, λ) in the large M limit, and this appears to considerably

reduce the truncation error. For the results presented in the
main text we use method 2, i.e., coefficients of Eq. (A20). To
support our choice, in Fig. 8 we present a simple comparison
between the two expansions, which shows a faster conversion
of method 2.

The histogram calculation requires integration over the
c[N,M]

k coefficients [see Eq. (32)]. This can be done analyti-
cally:

dk (a, b; λ) =
∫ b

a
dν c[N,M]

k (ν, λ)

=
M∑

m=1

γk

M

∫ b

a
dν K (G)(ν, ωm; λ)Tk (ωm)

=
M∑

m=1

γk

M

1

2

[
erf

(
b−ωm√

2λ

)
− erf

(
a−ωm√

2λ

)]
Tk (ωm).

(A21)

APPENDIX B: BOUNDS ON THE TRUNCATION ERROR

In this Appendix we provide the proofs for the bounds on
the truncation error β from Eq. (16).

1. Lorentz kernel

Following the derivation in Appendix A 1, for the case of
the Lorentzian we have directly a closed-form expression for
the expansion coefficients of the integral transform. We can
then estimate β by first using

δ
(L)
trunc = sup

ν∈[−1,1]

∣∣∣∣∣
∞∑

k=N+1

ck (ν; λ)mk

∣∣∣∣∣
� sup

ν∈[−1,1]

∞∑
k=N+1

|ck (ν; λ)|, (B1)

and then using the expression for coefficients ck from
Eq. (A5):

δ
(L)
trunc � sup

ν∈[−1,1]

2

πρ

∞∑
n=N+1

e−λn
∣∣∣cos

[
n
(
ν − π

2

)
− θ

]∣∣∣
� 2

πρ

∞∑
n=N+1

e−λn

� 2

πρ

∫ ∞

N
dxe−λx = 2e−λN

λρπ
. (B2)

Note at this point that we have also

ρ = [(1 + ν2 + λ2)2 − 4ν2]1/4 �
√

1 − ν2, (B3)

but this lower bound is not useful if we keep the spectrum
in [−1, 1] as it approaches zero. One option is to rescale the
Hamiltonian operator in order to work in a smaller interval, an
alternative is to use instead the bound

ρ � [(2 + λ2)2 − 4]1/4 =
√

λ(4 + λ2)1/4 �
√

2λ. (B4)

Using this we have the error bound used in the main text:

β
(L)
N =

√
2e−λN

λ3/2π
. (B5)

2. Gaussian kernel

We first compute the bound for the method 1 approximation
in Eq. (A15). First note that we can directly bound the error in
the integral transform in terms of the error in the kernel using

|�(ν; λ) − �N (ν; λ)|

=
∣∣∣∣∫ dωS(ω)[K (ν, ω; λ) − KN (ν, ω; λ)]

∣∣∣∣
�

∫
dωS(ω)|K (ν, ω; λ) − KN (ν, ω; λ)|

� sup
ω∈[−1,1]

|K (ν, ω; λ) − KN (ν, ω; λ)|, (B6)

where we used that S(ω) � 0 and normalized to one. Since we
perform the exact expansion of the two-variable Chebyshev
polynomial Tk[(ν − ω)/2] using Eq. (A9) truncated at m =
N � k, we find directly that

δ
(G),N
trunc = sup

ν∈[−1,1]
sup

ω∈[−1,1]
|K (G)(ν, ω; λ) − K (G),N (ν, ω; λ)|

= sup
ν∈[−1,1]

sup
ω∈[−1,1]

∣∣∣∣∣
∞∑

k=N+1

ak

(
λ

2

)
Tk

(ν − ω

2

)∣∣∣∣∣
�

∞∑
k=N+1

∣∣∣∣ak

(
λ

2

)∣∣∣∣. (B7)

The sum on the last line was shown in Ref. [39] to be bounded
as

∞∑
k=N+1

∣∣∣∣ak

(
λ

2

)∣∣∣∣ � 1

2λ

√
π

κ (1)
erfc

(
(N + 1)λ

√
κ (1)

2

)
, (B8)
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where the function κ is given by

κ (x) = log(x + √
1 + x2)

2
− 1

4x

(x − 1 + √
1 + x2)2

x + √
1 + x2

. (B9)

Therefore for method 1 the truncation error can be bounded
by

β
(G)
N = 1

2λ

√
π

κ (1)
erfc

(
(N + 1)λ

√
κ (1)

2

)
. (B10)

For the Gaussian kernel obtained with the method 2 coeffi-
cients from Eq. (A20) we can find a bound on the truncation
error (possibly very loose) as follows. First we can use the
expansion in Eq. (A8) to reexpress the new expansion coeffi-
cients as

c[N,M]
k (ν, λ) =

M∑
m=1

γk

M

∞∑
n=0

an

(
λ

2

)
Tn

(ν − ωm

2

)
Tk (ωm).

(B11)

The full kernel can then be written as

K (G),N,M =
N∑

k=0

M∑
m=1

γk

M

∞∑
n=0

an

(
λ

2

)
× Tn

(ν − ωm

2

)
Tk (ωm)Tk (ω). (B12)

At this point it is convenient to define a finite order approxi-
mation to the two-variable Chebyshev coefficient as

T N,M
n (ν, ω) =

N∑
k=0

γk

M

M∑
m=1

Tn

(ν − ωm

2

)
Tk (ωm)Tk (ω). (B13)

Following the discussion used to obtain the Chebyshev coef-
ficients from method 1, we know that

T N,M
n (ν, ω) = Tn

(ν − ω

2

)
for N � n, M � n + 1. (B14)

Using this notation we can write

K (G),N,M (ν, ω; λ) =
∞∑

n=0

an

(
λ

2

)
T N,M

n (ν, ω), (B15)

while the exact kernel reads

K (G)(ν, ω; λ) =
∞∑

n=0

an

(
λ

2

)
T n,n+1

n

(ν − ω

2

)

=
∞∑

n=0

an

(
λ

2

)
Tn

(ν − ω

2

)
. (B16)

We can then write their difference as

K (G)(ν, ω; λ) − K (G),N,M (ν, ω; λ)

=
∞∑

n=N+1

an

(
λ

2

)[
Tn

(ν − ω

2

)
− T N,M

n

(ν − ω

2

)]
, (B17)

provided we choose M � N + 1.
In order to bound the difference between Tn and T N,M

n
defined as

δN
n (ν, ω) =

∣∣∣Tn

(ν − ω

2

)
− T N,N+1

n (ν, ω)
∣∣∣, (B18)

we first recall that, from theorem 2.1 of [55] we have, for any
ω ∈ [−1, 1], that (see also [52])

δN
n (ν, ω) �

[
2 + 2

π
log(N + 1)

]∣∣∣Tn

(ν − ω

2

)
− p∗

N (ω)
∣∣∣,

(B19)

where p∗
N (ω) is the optimal approximating polynomial of

order at most N for a given fixed choice of ν (i.e., we look
at Tn[(ν − ω)/2] as a function of ω only). One option is to
now use Jackson’s theorems [51] to bound the right-hand side.
However, owing to the fact that n � N for our purposes, we
weren’t able to obtain tight bounds in this way. The alternative
used to compute the error estimates in the main text was
instead to use∣∣∣Tn

(ν − ω

2

)
− p∗

N (ω)
∣∣∣ � ∣∣∣Tn

(ν − ω

2

)
− p∗

0(ω)
∣∣∣, (B20)

with p∗
0(ω) the optimal approximating constant. Using the fact

that |Tn(ω)| � 1 together with Corollary 1.6.1 of [51] we have
|Tn[(ν − ω)/2] − p∗

0(ω)| � 1 so that

sup
ν∈[−1,1]

sup
ω∈[−1,1]

δN
n (ν, ω) �

[
2 + 2

π
log(N + 1)

]
. (B21)

In the main text we have then used the following truncation
bound for method 2

β
(G)
N,N+1 =

[
2 + 2

π
log(N + 1)

]
β

(G)
N . (B22)

As evident by the results in Fig. 8, where we show a
comparison between the kernel function obtained using both
methods, this estimate for the truncation error of method 2
is likely a very conservative upper bound, and we expect in
general that β

(G)
N,M � β

(G)
N . In future work it would be valuable

to find tighter error bounds as they will impact the total error
budget in the estimation of histograms of the spectral density.

APPENDIX C: ERROR BOUND ON HISTOGRAMS

We want to assess the error for h(η; �) defined in Eq. (26).
The error has two sources, coming from the fact of using 	-
accurate kernel and from the truncation of the kernel.

Starting from the definition of a histogram of Eq. (27), let
us first notice that

f̃ 
(η, η; 
) =
∫ η+


η−


dνK (η, ν; 
) � 1 − 	. (C1)

This property also holds for larger intervals δ > 
 and for
energies |ω − η| � δ − 
 as follows:

f̃ 
(ω, η; δ) =
∫ η+δ

η−δ

dνK (ω, ν; 
) � 1 − 	.

This is obtained by realizing that f̃ 
(ω, η; δ) is at least (1 −
	) if we can find an interval of size 2
, centered in η and
contained in the full interval of size 2δ. Since the kernel is
normalized, this also implies

1 − f̃ 
(ω, η; δ) =
∫ η−δ

−1
dνK
(ω, ν) +

∫ 1

η+δ

dνK
(ω, ν)

� 	 for |ω − η| � δ + 
. (C2)
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This condition allows us to construct an approximation of the
window function f using its transform. In fact we have the
following bound:

sup
|ω−η|∈[0,δ−
]∪[δ+
,∞]

| f (ω, η; δ) − f̃ 
(ω, η; δ)| � 	. (C3)

The error in the two disjoint intervals has different signs,
more explicitly we have

sup
|ω−η|∈[0,δ−
]

[ f (ω, η; δ) − f̃ 
(ω, η; δ)] � 	 (C4)

since the approximation is always smaller that the indicator
function there, and

sup
|ω−η|∈[δ+
,∞]

[ f̃ 
(ω, η; δ) − f (ω, η; δ)]

= sup
|ω−η|∈[δ+
,∞]

f̃ 
(ω, η; δ) � 	. (C5)

Let us also notice that

f (ω, η; δ + 
) � f̃ 
(ω, η; δ) for |ω − η| � δ + 
,

(C6)

Combining Eqs. (C5) and (C6) we find the following lower
bound for any ω:

f (ω, η; δ + 
) � f̃ 
(ω, η; δ) − 	. (C7)

This immediately implies the following lower bound to the
histogram:

h(η; �) � h̃
(η; � − 
) − 	. (C8)

For the upper bound we can use instead

f (ω, η; δ − 
) � f̃ 
(ω, η; δ) for |ω − η| � δ − 
,

(C9)

together with the (inner) tail condition from Eq. (C4):

f̃ 
(ω, η; δ) � 1 − 	 for |ω − η| � δ − 
. (C10)

Combining these two we find the following upper bound for
any ω:

f (ω, η; δ − 
) � f̃ 
(ω, η; δ) + 	. (C11)

This immediately implies the following lower bound to the
histogram:

h(η; �) � h̃
(η; � + 
) + 	. (C12)

The final result is the following two-sided bound on the
correct histogram:

h̃
(η; � − 
) − 	 � h(η; �) � h̃
(η; � + 
) + 	.

(C13)

Including the truncation error, as in Eq. (29), we arrive
finally at Eq. (30).
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