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In this paper, a lattice Boltzmann method (LBM) for the fluid-structure interaction of an incompressible neo-
Hookean medium is proposed. The objective is to use the lattice Boltzmann method to model the fluid and the
solid domains at the same time, and thus avoid coupling two solvers, one for the fluid and one for the structure.
The specific case of a neo-Hookean incompressible medium allows us to use a Eulerian formulation for the
structure problem, which resembles the Navier-Stokes equation. Then, a macroscopic multiphase equation can
be used to model the fluid and structure problems together. Next, the LBM approach is deduced from this
macroscopic multiphase formulation of the fluid-structure interaction problem. It consists in extending the LBM
to the solid domain by adding a tensor term in the equilibrium function of the collision operator. The effect of the
added tensor term is to cancel in the solid domain the viscous fluid constraints and add neo-Hookean constraints.
Thus, only the third moment of the LBM is modified, the first two being conserved, and only the constraints in
the macroscopic Navier-Stokes equation are changed. The LBM scheme obtained can then model the interaction
of a fluid and a structure composed of an incompressible neo-Hookean medium with a single solver for the fluid
and the solid. Two additional equations are used, one to track the fluid and solid domains with the Cahn-Hilliard
equation, and the other to compute the solid displacement field by a finite-difference scheme. The proposed
method is applied successfully on three cases from the literature.
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I. INTRODUCTION

The classical way to simulate fluid-structure interaction
(FSI) problems is to consider two solvers, one for the
fluid, one for the structure, and then couple them using a
synchronous or asynchronous algorithm. This approach is
intuitive because of the nature of the two subproblems, the
fluid being intrinsically Eulerian and the solid Lagrangian,
but an efficient and fast coupling of the two solvers remains a
major issue [1,2]. For a structure composed of a neo-Hookean
incompressible elastic medium, although the classical equa-
tions are in a Lagrangian framework, they can be written in
a Eulerian framework [3]. Thus, a multiphase formulation,
which consists in extending the Navier-Stokes equations to
the solid domain, can be chosen. This avoids the inherent
problem of coupling two solvers and the explicit computation
of the fluid forces. This approach has been used with the finite-
element method and mesh refinement techniques [3] or with
the immersed boundary method to enforce fluid constraints
[4]. In this paper we propose to use the lattice Boltzmann
method to solve this problem.

The lattice Boltzmann method (LBM) has been used in
fluid mechanics since the 1990s [5] and has gained new in-
terest with the development of computing on graphic cards
(GPU). Indeed, the LBM algorithm is particularly well
adapted to the GPU architecture and allows a significant gain
in computing time. For these reasons, most of the classical
methods used in the fluid-structure interaction (finite ele-
ments, finite volumes) have been adapted to LBM. Each time,
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the displacement of the structure is solved with an external
solver and the effect of the structure is modeled by bounce-
back methods [6–8], immersed boundaries [9,10], or volume
penalization [11,12].

We propose in this paper to treat the fluid and the solid at
the same time by the lattice Boltzmann method, without using
an external solver. For this purpose, a similar approach to the
one proposed by Ref. [3] is used to write the macroscopic
formulation of the problem. In the solid domain, the viscous
stress tensor is replaced by the Eulerian neo-Hookean stress
formulation. Its transcription in LBM consists in adding a
tensor term which aims to remove the Cauchy constraints
and add the desired term. Then, the different fluid and solid
domains are followed via an interfacial evolution equation,
solved here by the LBM formulation of the Cahn-Hilliard
equation. A third equation is also needed to calculate the
displacement field in the solid domain. This one is solved by
a finite-difference scheme.

The first section presents the mathematical background,
i.e., the multiphase formulation for the neo-Hookean medium
in a macroscopic way. Then, the LBM model is presented, for
the multiphase approach and for the Cahn-Hilliard equation.
The proposed method is successfully applied to three exam-
ples from the literature.

II. THEORETICAL BACKGROUND

A. Multiphase formulation for neo-Hookean materials

The case of a domain containing a fluid and an incom-
pressible neo-Hookean medium is considered. The objective
is to propose a monolithic formulation of the system. If we
consider the equation governing the fluid domain, we obtain
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the classical incompressible Navier-Stokes equations

ρ f
∂u f

∂t
+ ρ f (u f · ∇u f ) − ∇ · σ f = f f in � f ,

(1)∇ · u f = 0,

with associated boundary conditions, where ρ f is the fluid
density, p f is the fluid pressure term, and σ f the stress tensor
in the fluid, defined by

σ f = −p f Id + 2ν f D(u f ). (2)

μ f is the dynamic viscosity of the fluid, Id represents the
identity tensor, and D(u f ) is the deformation rate tensor, itself
defined by

D(u f ) = 1
2 (∇u f + ∇T u f ). (3)

The equation solved in the solid for us is

ρs
∂us

∂t
+ ρs(us · ∇us) − ∇ · σs = fs in �s,

∇ · us = 0. (4)

ρs is the solid density. For neo-Hookean incompressible ma-
terials, the stress tensor σs is defined by [3,4]

σs = −ps Id + μs(FFT − Id), (5)

and ∇ · us = 0. μs is the Lamé coefficient and F is the defor-
mation gradient tensor,

F = (Id − ∇d)−1, (6)

with d the displacement field of the solid. Note that all opera-
tors are defined in a Eulerian frame.

In order to obtain a multiphase formulation, a characteristic
function χ is introduced:

χ (x, t ) =
{

1 if x ∈ �s(t ),

0 if x ∈ � f (t ).
(7)

Combining Eqs. (1) and (4), the multiphase formulation is

ρ
∂u
∂t

+ ρ(u · ∇u) − ∇ · σ = f in �,

(8)∇ · u = 0,

FIG. 1. Discrete velocities of the D2Q9 model.

with

ρ = ρ f (1 − χ ) + ρsχ,

u = u f (1 − χ ) + usχ,

σ = σ f (1 − χ ) + σsχ.

(9)

The solid displacement is obtained using the definition of the
total derivative in time:

∂d
∂t

+ u · ∇d = u in �s. (10)

B. LBM approach

1. LBM-TRT

Based on the Boltzmann equation [Eq. (11)], the lattice
Boltzmann method has been widely used as a computational
fluid dynamics (CFD) tool since the 1990s. A complete bibli-
ography can be found in Ref. [13] to give an overview of the
different variants or applications:

∂ f

∂t
+ c · ∇x f = �( f ). (11)

Here, we present the two relaxation time (TRT) approach that
is used in this work. Let us consider the most commonly used
model to simulate two-dimensional flows, the nine-velocity
square lattice model D2Q9 (Fig. 1) [14].

cα =

⎧⎪⎨
⎪⎩

(0, 0), α = 0,[
cos

(
(α − 1)π

2

)
, sin

(
(α − 1) π

2

)]
c, α = 1, 2, 3, 4,[

cos
(
(2α − 9)π

4

)
, sin

(
(2α − 9) π

4

)]√
2c, α = 5, 6, 7, 8,

(12)

where c = �x
�t . Usually �x = �y = �t = 1 are chosen.

We note cα the discrete velocity along the α direction and cᾱ = −cα the discrete velocity in the opposite direction ᾱ.
Considering fα (x, t ) = f (x, cα, t ), the TRT-LBM computational scheme, for α = 0, . . . , 8, leads to

fα (x + cα
t, t + 
t ) − fα (x, t ) = −
t

τ+
[

f +
α (x, t ) − f eq +

α (x, t )
] − 
t

τ−
[

f −
α (x, t ) − f eq −

α (x, t )
] +

(
1 − 
t

2τ+

)
Fα,

(13)

with

f +
α = fα + fᾱ

2
, f −

α = fα − fᾱ
2

. (14)
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In the same way, f eq +
α and f eq −

α are defined, with

f eq
α = ωαρ

(
1 + cα · u

c2
s

+ uu :
(
cαcα − c2

s I
)

2c4
s

)
, (15)

and the forcing term Fα is according to Guo et al. [15],

Fα =
(

1 − 1

2τ

)
ωα

(
cα − u

c2
s

+ cα · u
c4

s

cα

)
· ρf . (16)

For a D2Q9 model, the weighting coefficients are

ωα =

⎧⎪⎨
⎪⎩

4
9 , α = 0,

1
9 , α = 1, 2, 3, 4,

1
36 , α = 5, 6, 7, 8.

(17)

τ+ is the relaxation time related to viscosity of ν:

ν = c2
s �t

(
τ+ − 1

2

)
. (18)

The relaxation time τ− is obtained as follows:

τ− = 
t 

τ+ − 1
2

+ 1

2
. (19)

In this work, we choose  = 1
6 , because of the better stability

we obtained with this value.
Under the limitation of the low Mach number (u/cs), The

TRT-LBM scheme leads to the incompressible Navier-Stokes
equations (1). Finally, the macroscopic quantities are com-
puted by the following expressions:

ρ =
∑

α

fα, ρu =
∑

α

cα fα + �t

2
ρf . (20)

2. LBM for Cahn-Hilliard equation

To avoid the difficulties inherent in solving the advection
of the sharp function χ , the diffuse interface method is used.
We define a smooth function φ that follows a Cahn-Hilliard
equation (CHE) [16]:

∂φ

∂t
+ u · ∇φ = M∇2μφ. (21)

M is the mobility parameter and μφ the chemical potential is
defined as follows:

μφ = 4β
(
φ − φ�s

)(
φ − φ� f

)
(φ − φ̄) − k∇2φ. (22)

β and k are parameters related to the interface thickness W
and the surface tension force σ , φ� f (respectively φ�s ) is the
value defined to mark the domain � f (respectively �s), and
φ̄ = (φ� f + φ�s )/2. In the context of multiphase fluid flows,
β and k have a physical meaning:

W = 4

|φ�s − φ� f |

√
k

2β
and σ = |φ�s − φ� f |3

6

√
2kβ.

(23)

This allows us to define the Peclet number Pe =
U0W/[Mβ(φ�s − φ� f )2].

In the present work, interfacial forces compete with the
difference in stresses in the fluid and solid domains. We as-
sume that the interfacial forces are negligible compared to
the stresses in the solid domain. The present study is closer

to the case of a fluid-rigid body interaction than a fluid-fluid
interaction. This means that these parameters are chosen in
such a way that they have no influence on the overall system.
Another point is that the parameters k and β are chosen to
decrease the artificial Peclet number of the simulation in order
to improve the stability of the calculation.

The function φ is defined in the initial step as

φ(x, 0) =
{

tanh
( 2‖x−γ (0)‖

W

)
if x ∈ �s(0),

−tanh
( 2‖x−γ (0)‖

W

)
if x ∈ � f (0),

(24)

where γ (0) is the position of the fluid-solid interface at t = 0.
Then, the values of φ are always between −1 and 1, and thus
the transition between � f and �s is smooth.

Once φ is calculated, the following calculation is used to
adjust the function χ between 0 and 1:

χ = − φ − φ�s

φ� f − φ�s

+ 1. (25)

Then χ can be used directly in Eqs. (9).
The LBM approach for CHE proposed by Zu et al. [17] is

used,

gα (x + cα
t, t + 
t ) − gα (x, t )

= −gα (x, t ) − geq
α (x, t )

τg
+ (2τg − 1)

× [
geq

α (x + cα
t, t ) − geq
α (x, t )

]
, (26)

where φ = ∑
α gα , M = (τg − 1/2)�
t , and � is a numerical

parameter controlling the mobility M and

geq
α =

⎧⎨
⎩

φ + (1−ω0 )�μφ

2(τg−1)c2
s

, α = 0,

−ωα
�μφ+(cα ·u)φ

2(τg−1)c2
s

α �= 0.
(27)

3. Multiphase LBM formulation FSI
with neo-Hookean formulation

Consider a LBM formulation for Eq. (4) with the constraint
tensor (5). The approach is to remove the viscous constraint
tensor τ ν

s and add σs.
Let τ ν

s = 2ν f D(us) and τμ
s = μs(FFT − Id ). τ ν

s can be
computed with the distribution functions fα , which avoids
computing explicitly spatial derivatives:

τ ν
s = −

(
1 − 1

2τ

)∑
α

cα ⊗ cα

(
fα − f eq

α

)
. (28)

Let us define the tensor T:

T = τ ν
s − τμ

s . (29)

The equilibrium functions are modified so that only the third
moment is changed:

f̃ eq
α = ωαρ

(
1 + cα · u

c2
s

+
(
u ⊗ u + T

ρ

)
:
(
cα ⊗ cα − c2

s I
)

2c4
s

)
.

(30)

This leads to affect the third moment:

�
eq
i j =

∑
α

f̃ eq
α cαicα j = ρuiu j + ρc2

s δi j + Ti j . (31)
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FIG. 2. Lid driven cavity with neo-Hookean structure at the
bottom.

This leads to modify the macroscopic Navier-Stokes equa-
tion by adding −∇ · T:

ρs
∂us

∂t
+ ρs(us · ∇us) = −∇p + ∇ · τ ν

s − ∇ · T + fs in �s.

(32)
Considering Eq. (29), we obtain the following equation:

ρs
∂us

∂t
+ ρs(us · ∇us) = −∇p + ∇ · τμ

s + fs in �s. (33)

The term τμ
s is calculated using a finite-difference scheme.

Let us note di,t+1
β = dβ (xi, t + 
t ). Equation (10) is solved

using an explicit finite-difference scheme:

di,t+1
β = di,t

β + 
t
(
ui,t

β − ui,t
1 di,t

β,1 − ui,t
2 di,t

β,2

)
. (34)

Depending on the sign of ui,t
1 and ui,t

2 , we choose an upwind
or downwind discretization scheme for di,t

β,1 and di,t
β,2.

Let us summarize the algorithm:

Algorithm 1. One time step.

ρ(t ), u(t ), χ (t ), and d(t ) are known.
1. Compute T [Eq. (29)].
2. Compute ρ(t + �t ) and u(t + �t ) [Eq. (13)] with

f eq
α = (1 − χ ) f eq

α + χ f̃ eq
α . (35)

3. Compute d(t + 
t ) [Eq. (10)].
4. Compute φ(t + 
t ) and χ (t + 
t ) [Eq. (26)].

Note that the fluid constraints on the fluid-structure inter-
face do not need to be computed explicitly. They are intrinsic
to the proposed formulation. It is one of the interests of this
approach.

III. APPLICATIONS

All computations were performed on a NVIDIA QUADRO
P500 GPU card, using a CUDA implementation.

A. Lid driven cavity with neo-Hookean structure at the bottom

This first application was studied by Dunne [3], Wang et al.
[18], Zhang et al. [19], and Zhao et al. [4]. Velocity is imposed
at the top of the cavity (Fig. 2), and the resulting flow deforms

FIG. 3. Streamlines and function φ at a physical time t = 8 s
(stationary solution), and � stationary interface from Ref. [4] (ap-
plication A).

the elastic bottom to a stationary configuration. The physical
parameters are as follows: L = 2 cm; Ls = 0.5 cm, ρ f = ρs =
1 g cm−3, ν f = 0.2 dyn s cm−2, and μs = 0.2 dyn cm−2, and

u(x, L, t ) =U0

⎧⎪⎨
⎪⎩

sin2 (πx/0.6)x, x ∈ [0.0, 0.3],

x, x ∈ [0.3, 1.7],

sin2 (π (x − 2)/0.6)x, x ∈ [1.7, 2].
(36)

The LBM parameters are in lattice units (l.u.): LLBM = 200,
ρLBM = 1, U0LBM = 0.011, ν f LBM = 0.447, μsLBM = 0.0001.

The parameters of the LBM model are chosen such that
the mass ratios between the fluid and solid phase and the
Reynolds number are conserved. We first choose the density
of the LBM model. We fix it at ρLBM = 1, which is classical
in lattice Boltzmann methods. Then, the size of the discretized
model, i.e., the number of nodes in the lattice, is fixed by
the value of LLBM. The last parameter we need to control is
μsLBM, because a too small value could make the constraint
τμ

s numerically negligible compared to τ ν
s in expression (29).

Next, we compute U0LBM using the nondimensional definition
of the parameters defined earlier:

U0LBM =
√

νsLBM

ρLBM

ρsU 2
0

μs
. (37)

Finally, the viscosity of the LBM model (and thus the relax-
ation time) is obtained from the conservation of the Reynolds
number.

The solution obtained at physical time t = 8 s is rescaled to
the physical parameters and plotted in Fig. 3. The position of
the interface is compared with that obtained by Zhao et al. [4]
(� red square) at the same physical time. A good agreement
is found between our result and the literature. The solution
obtained here is also stationary since approximatively the time
t = 6 s (Fig. 4). We can see that due to the fluid flow, the
solid domain sinks in on the right-hand side and rises on the
left-hand side. The streamlines show that there is no
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FIG. 4. Energy vs time (application A). The solution becomes
stationary around 6 s.

penetration of the fluid into the solid and that physically the
two domains are well separated.

B. Cavity with normal fluid flow

The second application focuses on the L × L square cavity
(Fig. 5) with a periodic normal velocity imposed at the inlet:

u(x, L) = −U0[1 − cos (2πt )] sin (2πx)y. (38)

Periodic conditions are imposed on the left and right bound-
aries, and at the initial time, the velocity field in the cavity
is equal to 0. The physical parameters are as follows: L =
1 m, Ls = 0.5L, U0 = 1 m s−1, ρ f = ρs = 1 kg m−3, ν f =
0.001 Pa s, μs = 0.25 Pa.

The LBM parameters used here are as follows: L =
400, U0 = 0.1265, ν f LBM = 0.2529, μsLBM = 0.001. In the
previous application, the fluid flows tangentially along the
boundary, and the deformation of the solid is due to the shear,
with relatively low velocities. In the current case, the fluid
hits the solid on the left-hand side of the cavity, and sucks
on the right-hand side. In addition, the fluid that flows at
the inlet is nonstationary, which increases the stress on the

FIG. 5. Square cavity with time-periodic inlet velocity and neo-
Hookean structure at the bottom.

FIG. 6. Solution of application B compared to Zhao et al. [4].
Deformation of the elastic wall at physical time t = 1 s, (�): solu-
tion obtained in [4] and (b) Pressure on x = 0.25 at physical time
t = 0.75 s.

structure. Under the effect of fluid stresses, the neo-Hookean
medium sinks on the left, and under the effect of suction and
incompressibility of the medium, the right-hand side rises.
The results obtained are compared with those of Zhao et al. [4]
(Fig. 6). At a physical time t = 1 s, the same interface position
is obtained [Fig. 6(a)], which means that the same behavior of
the fluid-structure problem is modeled. We can also observe
that the streamlines and the vortex positions are identical. In
Fig. 6(b), the pressure distribution on a line at x = 0.25 and
time t = 0.75 s is also compared. Note that in order to analyze
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FIG. 7. Application C: Comparison of results obtained with
Zhao et al. [4]. (a) Present work: t = 0 s, (b) Zhao et al.: t = 0 s,
(c) Present work: t = 0.5 s, (d) Zhao et al.: t = 0.5 s, (e) Present
work: t = 1 s, and (f) Zhao et al.: t = 1 s.

the pressure distribution, the value obtained by the LBM is
rescaled to be compared with the literature data. We observe
that a similar result from the literature is also obtained. The
pressure jump at the interface is well captured, and fits well
with the reference.

C. Oscillating disk

The last example concerns an oscillating disk in a periodic
square cavity. Initially, the disk is located at the center of the
cavity and is stress free. An initial velocity field is applied both
to the fluid and the solid according to the stream function,

φ(x, y) = φ0 sin (2πx) sin (2πy), (39)

where φ0 = 5 × 10−2. The physical properties are ρs = ρ f =
1 kg m−3, ν f = 0.001 Pa s, μs = 1 Pa, and the disk radius is
r = 0.2 m.

Due to the initial velocity field, the disk starts to stretch
along the x axis from 0 to 0.2 s. Then, the neo-Hookean

FIG. 8. Application C: Comparison of the kinetic energy ob-
tained with the literature [4,20,21].

stresses are dominant, the solid contracts, and begins the
oscillatory behavior. The results at three different times are
compared with those of Ref. [4] in Fig. 7 with good agree-
ments. The same streamlines and solid deformations are
obtained. As Zhao et al. [4], the discontinuity of the velocity
gradient can be seen by the change of the streamlines at the
fluid-solid interface.

The kinetic energy is also compared in Fig. 8, with good
agreement with the results in the literature [4,20,21]. The
kinetic energy decreases with oscillation. Local maxima and
minima correspond to stretching along the x and y axes.
Robinson et al. [21] used a monolithic approach for the FSI
problem, and they noted that the treatment of the advection
term in the fluid solver would be the cause of the addi-
tional damping observed. Feghali et al. [20] used a linearized
model for the small displacements of the structure using a
finite-element approach, which could explain the differences
observed in this study. Finally, our results are very close to
those of Zhao et al. [4], even though an overdamping is ob-
served after a time 0.6 s. However, this variation is of the order
of what can be observed in Zhao’s study when the mesh size
and the number of Lagrangian markers used for the structure
are changed.

IV. CONCLUSION

We have proposed a multiphase LBM method to model the
interaction between a fluid and a structure consisting of an
incompressible neo-Hookean medium. This LBM approach
is based on existing work on the neo-Hookean medium at
the macroscopic scale. First, a Eulerian formulation of the
structure problem is used. A Navier-Stokes-like equation is
obtained for a neo-Hookean medium. The difference with
the classical Navier-Stokes equation lies in the stress ten-
sor, which is not the Cauchy stress tensor but the Eulerian
writing of the neo-Hookean stress tensor. Combined with the
Navier-Stokes equation for the fluid, a multiphase formulation
for the fluid-structure interaction is obtained [3].

A LBM formulation is built by adding in the equilibrium
function a tensor, such that only the third moment is modified.
The interest is that the fluid forces acting on the structure
do not need to be computed explicitly. They are intrinsic to
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the formulation. The model needs two other equations, one
to track the domains, which is solved using a Cahn-Hilliard
approach, and the last one to compute the Eulerian displace-
ment field, which is solved with an explicit finite-difference
scheme.

The method proposed is applied, on a GPU device, to three
cases from the literature. The first one is a driven cavity,
whose bottom is in a neo-Hookean material. The computation

converges to a stationary solution. The second example is
a periodic square cavity with a normal nonstationary inlet
velocity, and a neo-Hookean medium bottom. The solution
obtained is also in good agreement with the literature. The
last example is an oscillating disk in a periodic fluid flow.
Initially, the disk is stress free, and due to the fluid flow, the
disk stretches alternately along the x and y axes. The same
streamlines of the literature are obtained.
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