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Lattice Boltzmann framework for accurate NMR simulation in porous media
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Nuclear magnetic resonance (NMR) responses of fluids saturating porous media arise from complex
relaxation-diffusion dynamics of polarized spins. These constitute a sensitive probe of the microstructure and
are described by the Bloch-Torrey equations. An NMR simulation framework based on an augmented lattice
Boltzmann method aimed at the fine-scale resolution of nuclear polarization density is presented. The approach
encapsulates the time evolution of the full magnetization vector and naturally incorporates the mechanisms of
diffusional transport. Spin dephasing mechanisms are fully resolved at tomogram voxel scale to account for
magnetic field inhomogeneity. The approach is validated against analytical solutions of spin-echo decays for
simple pore geometries. An application to a nano-computed-tomography image of chalk with inhomogeneous
internal fields yields T2 spectral measures in good agreement with experiment and illustrates the spatial pore-scale
dynamics of net magnetization. Findings establish the feasibility of the framework for pure diffusion and present
an approach vector to modeling the evolution of magnetization under flow conditions.
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I. INTRODUCTION

Morphological characterization of porous media is a
contemporary challenge encountered in medicine [1], mi-
crobiology [2], physical chemistry [3], soil science [4], and
petroleum engineering [5]. Though the sensitivity of an nu-
clear magnetic resonance (NMR) signal to its environment
makes it a useful phenomenon for noninvasive character-
ization of porous systems, this response is nontrivial as
complex relaxation-diffusion dynamics arise from spatial het-
erogeneity and local field anisotropy. Accurate computational
solutions can provide a powerful testbed for model attributes
and experimental parameters to aid in the interpretation of
NMR measurements. While analytical solutions describing
NMR relaxation in idealized systems do exist [6–9], sam-
ples that exhibit complexity necessitate a numerical treatment.
Random-walk algorithms individually model the thermal mo-
tion of polarized. species; they were validated for simple
geometries without internal field gradients [10] and extended
to the case of a constant field gradient [11] and arbitrary
inhomogeneous fields [12,13]. An alternative approach to
random walks is based on finding the finite-difference so-
lution to the Bloch-Torrey (BT) equation [14] to directly
evaluate the evolution of macroscopic net magnetization of
a system discretized in space and time [15]. This has found
applications in magnetic resonance imaging (MRI) where the
magnetization vector is simulated in each imaging voxel [16].
The coarse resolution of MRI facilitates the assumption of
self-contained elementary volumes under isotropic diffusion
constituting effective property spatial subsets of the sample
that evolve independently. Naughton et al. [17] have applied
the lattice Boltzmann method to integrate the BT equation in
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simulating diffusion MRI responses of tissue models. The
work implements the approach in the context of diffusion MRI
in a medium composed of cells with varying cell membrane
permeability under a constant gradient of the MR device.

High-resolution (micro-) x-ray computed tomography
(XCT) [18] as a complementary technique provides signifi-
cantly higher resolution than MRI. NMR or MRI simulations
on fully resolved complex structures may provide additional
insight into fine-scale morphology, surface interactions, and
fluid transport characteristics.

This work presents a fine-scale general purpose NMR sim-
ulation framework based on the abstractions of the lattice
Boltzmann method (LBM) coupled with a modified treat-
ment of the Bloch-Torrey equations. Due to the fundamental
assumption of magnetization transportation, the approach in-
herently incorporates the exchange of magnetization carriers
due to molecular self-diffusion. The principal mechanisms of
magnetization evolution are accounted for locally using the
Bloch-Torrey equations, with magnetization transport facili-
tated by the LBM formalism, also enabling the approach to
encode spin dynamics in arbitrary inhomogeneous magnetic
fields.

A. The Bloch-Torrey equation

The realignment of the net spatial average nonequilibrium
magnetization m of a macroscopic set of resonant atomic
nuclei with a local magnetic field B after an RF pulse at a
site r belonging to a fluid-bearing domain � is described by
the Bloch-Torrey equation [14]:

∂m
∂t

(r) = ∇ · D∇m︸ ︷︷ ︸
(1)

−
⎡
⎣ mx/T2b

my/T2b

(mz − m0)/T1b

⎤
⎦

︸ ︷︷ ︸
(2)

+ γ (m × B)︸ ︷︷ ︸
(3)

, (1)
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where m = [mx, my, mz] and m0 is the magnitude of magne-
tization at equilibrium (t = 0).

The principal evolution terms are (1) magnetization self-
diffusion with tensor D, (2) bulk relaxation with time
constants T1b and T2b, and (3) precessional phase offset in
the rotating frame of reference, where γ is the gyromagnetic
ratio of the nuclear species. The continuum BT equation is
accompanied by the boundary condition:

n̂A · DA∇mA − m(r)ρα,A

= −n̂B · DB∇mB − m(r)ρα,B =
kAB(mA − mB)

⇔ r ∈ d�, (2)

where n̂ denotes the unit normal to the fluid domain boundary
d� at r, ρα,X denotes the surface relaxivity constant for a
given domain X, α denotes either a T2 or T1 process, and kAB

denotes the exchange coefficient between domains A and B.
The localized field behavior at the fluid-solid interface is a

special case of Eq. (2) whereby we assume null magnetization
throughout the solid domain, mB = 0, and an impermeable
boundary by setting k = 0. The solid-fluid discontinuity is
mathematically seen as the boundary condition

n̂ · D∇m − m(r)ρα = 0 ⇔ r ∈ d�. (3)

Computational treatment of the boundary in classical finite-
difference schemes is a challenge; evaluating magnetization at
fluid nodes adjacent to the solid phase presents a mathematical
discontinuity, as the magnetization throughout the latter is
assumed to be zero. To ensure spatially continuous magne-
tization for differential operations, the typical approach sets a
fictitious magnetization value at the boundary node consistent
with the chosen boundary condition, in this case Eq. (3). Its
value is a function of the magnetization at the fluid node
adjacent to the discontinuity. This is achieved by a differential
treatment of Eq. (3). Consider a site A in the fluid phase
with magnetization mA located adjacent to a solid site (B),
whose fictitious magnetization mB represents the unknown
boundary value. Further, assume isotropic diffusion at A. Dis-
cretize Eq. (3) on a Cartesian grid of side length δx. Note that
the transverse and longitudinal magnetization components’
relaxation is numerically distinct, as the former diminishes in
time (exponential decay), while the latter increases (negative
exponential in the limit of M0 for inversion recovery). The
latter necessitates the distinction between surface relaxivities
for T2 and T1 mechanisms. To that end, ρα , where α = 2
or 1 will denote the surface relaxivity constants for T2 or T1

processes, respectively. Assume spatially isotropic diffusion
with scalar coefficient D0. Rearrange Eq. (3) to obtain

mB,xy = λ2mA,xy and mB,z = λ1mA,z + ζ1, where

λα = 2D0 − ραδx

2D0 + ραδx
and ζα = 2ραδx

2D0 + ραδx
.

(4)

The above coefficients constitute an effective method of
mathematically formulating the solid-fluid interface as a dif-
ferential boundary condition to incorporate surface relaxation
modes in finite-difference schemes, and will be used in a
similar manner in the proposed approach [15].

II. THE NMR-LBM STRATEGY

The proposed approach draws from the abstract fluid
dynamics of the lattice Boltzmann method to define a
magnetization evolution algorithm in Cartesian discretized
Euclidean space in discrete time. Herein we will limit our-
selves to the case of self-diffusion of magnetized particle
groups on the macroscopic scale as described by the three
terms of magnetization transport (1), bulk relaxation (2), and
spin dephasing (3) in the Bloch-Torrey equation [Eq. (1)].

A. Magnetization transport

The LBM is a numerical framework of modeling fluid
dynamics [19]. As opposed to traditional computational ap-
proaches to modeling time-evolving systems, LBM does not
directly resolve the governing equation (in the case of fluid
dynamics, the Navier-Stokes equation) at the microscopic
scale. Instead, it abstracts the fundamental dynamic units to
particle assemblages (quanta) undergoing probabilistic mo-
tion on a geometric lattice in discrete time while interacting
with each other as well as the boundary. This mesoscopic
scale formalism leads back to the total physical quantity at
any given lattice location as the sum over these quanta. The
well-known LBM equation is stated as follows [20]:

fi(r + ei, t + δt ) = fi(r, t ) + K, (5)

K = 1

τ

[
f eq
i (r, t ) − fi(r, t )

]
, (6)

where fi is the flux probability density function along basis
element ei, τ is the local relaxation time parameter, K is the
Bhatnagar-Gross-Krook (BGK) collision operator, and f eq

i is
the equilibrium distribution function. Recalling the assump-
tion of pure diffusion, the latter becomes

f eq
i (r, t ) = wiρ(r, t ) ⇔ ρ(r, t ) =

∑
i

fi(r, t ), (7)

where ρ(r, t ) is the fluid density at r and time t and wi is
the directional weight determined by the discretization of the
continuous flux probability density along the lattice basis.

NMR-LBM draws on Eq. (6) and (7) to resolve the me-
chanics of diffusional magnetization exchange as per the
Bloch-Torrey equation. To that end, we assert a conceptual
equivalence between the local fluid concentration probability
function fi(r, t ) and a magnetization probability density vec-
tor function qi(r, t ) with components qi,x, qi,y, and qi,z. The
magnetization components carried by a virtual fluid stream
move along a given lattice direction at a given site r, such
that the local magnetization density m(r) is obtained by a sum
over qi(r):

m(r, t ) = [mx, my, mz]
T =

Q−1∑
i=0

qi(r, t ), (8)

where i denotes lattice direction; i ∈ {1, . . . , Q − 1} for each
of Q − 1 neighboring cells and i = 0 for the resting particle.

The time evolution of magnetization lattice components
is computed in a multistep algorithm. After collision and
streaming (1), magnetization streams are subjected to a
series of finite-difference operations as per the BT equations
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FIG. 1. D3Q27 basis {e0:26} illustrated in 3D perspective projec-
tion with respective weights {w0:26}: twenty-six neighbors in addition
to the rest particle.

to incorporate (2) bulk relaxation and (3) spin dephasing
effects. To obtain the core NMR-LBM dynamics equation, re-
arrange Eq. (6), substituting q for f , for an explicit expression
of local directional magnetization density’s time evolution:

qi,(1) = qi(r, t + δt ) = qi(r − ei, t ) + �(r − ei, t ), (9)

where qi,(1) denotes a magnetization stream along ei after
the collision-streaming step, � denotes the magnetization
collision function, analogously to K in Eq. (6) and δt denotes
the elementary simulation time step. For purely diffusional
systems, the relaxation time parameter τ will be set to 1 in
all simulations in this work; the time step is obtained as δt =
δx2/(6D0), where δx is the side length of the finite-volume
element in the Cartesian computational domain. Herein, un-
less explicitly stated otherwise, these finite volumes will be
referred to as “voxels,” to the extent that denotes the three-
dimensional (3D) generalization of the pixel. The choice of
nomenclature becomes readily apparent at a later point, when
computations are performed on tomographic images. This
implementation utilizes lattice discretization models similarly
to the CFD LBM method [21]. In this investigation, the 3D,
27-velocity-component (D3Q27) model (Fig. 1) will be used,
as the findings of Ref. [22] suggest a positive correlation
between velocity set size and accuracy in the context of NMR
responses of simple 2D systems.

B. Bulk relaxation

Bulk relaxation mechanisms affect magnetization across
the entire domain in accordance with the time constants, T2b

for transverse, and T1b for longitudinal magnetization. These
are introduced into the NMR-LBM formalism [Eq. (9)] with
the magnetization stream qi,(1) undergoing bulk relaxation in
accordance with the Euler finite-difference approximation of
the second term of Eq. (1):

qi,(2) = qi,(1) − [ qi,x,(1)

T2b
,

qi,y,(1)

T2b
,

qi,z,(1)−wim0

T1b

]T
δt, (10)

where qi,x,(1), qi,y,(1), and qi,z,(1) respectively denote the x, y,
and z, magnetization components of a stream along ei and
δt denotes the simulation time step. Note the inclusion of
the factor wi in Eq. (10), signifying that each directional
magnetization component contributes to the local longitudinal
repolarization in accordance with its lattice weight.

FIG. 2. Diagram of finite-difference phase increment operation
on a local magnetization vector qi in R3.

C. Phase encoding

Consider a simulation node at (r, t = 0) with a net nonequi-
librium magnetization m in a region where the local magnetic
field B deviates from the externally applied magnetic field
B0 = [0, 0, B0]. In the rotating frame of reference, this mag-
netization will sustain a transverse phase offset as per the
Bloch-Torrey formulation [Eq. (1)]

∂m
∂t

∣∣∣∣
φ

= γ (m × B), (11)

where the subscript φ denotes magnetization evolution due to
local dephasing.

Taking the Euler approximation of Eq. (11) over δt assum-
ing fine time discretization and a uniformly z-directed B0, the
phase evolution of m may be expressed as a vector rotation
Rz about the z axis with argument dφ [Eq. (12)] [23]. The
resulting procedure [Eq. (13)] induces a phase offset in mag-
netization streams at each time step to encode spin dephasing
commensurate with local field deviations from B0, illustrated
in Fig. 2 (the relative amount of phase accumulation dφ is
highly exaggerated),

dφ = γ ‖B − B0‖δt, (12)

qi,(3) = Rz(dφ)qi,(2), (13)

Rz(α) =
⎡
⎣cos(α) − sin(α) 0

sin(α) cos(α) 0
0 0 1

⎤
⎦, (14)

D. Operator splitting

The bulk relaxation and dephasing differential operations
on the magnetization vector are applied symmetrically around
the collision-streaming operation �. Consider an additive
magnetization evolution operator M acting for a duration δt
on the magnetization vector carried by stream qi; in a given
time step, this operator is applied for duration δt/2 before
density is computed locally and resulting streams are obtained
and again applied for a duration δt/2 to each of the latter.
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The compound magnetization evolution operator can be
formulated as follows:

M(δt )[qi] = {Cw − (Cw − qi ) exp [CR(δt )}]Rz[dφ(δt )], (15)

where M(δt ) acts on a stream qi for a duration δt , with
constants

CR(δt ) = [−δt
T2,b

−δt
T2,b

−δt
T1,b

]
, (16)

Cw = [0 0 wi], (17)

and phase increment dφ evaluated as per Eq. (12).
In this algorithm, the state of evolution of qi within a time

step is documented using sequential subscript notation, with
(1) qi,(M) denoting the application of half of our magneti-

zation time-evolution operator M,
(2) qi,(M�) denoting the result of the streaming operation

on a local density and
(3) qi,(M�M) signifying the second half of the magnetiza-

tion time evolution.
This NMR-LBM strategy is outlined in Algorithm 1.

E. Boundary treatment

The boundary condition to the Bloch-Torrey equation, with
its physical consideration of surface relaxation, is incorpo-
rated using a combination of the LBM bounce-back principle
found in CFD literature and the BT boundary condition. Over
a given time step, the boundary-bound magnetization stream
is reflected along its antidirectional counterpart, having un-
dergone a relaxation as per BT boundary condition [Fig. 3
and Eq. (18)], where λα and ζα denote the boundary constants
in relaxing condition [Eq. (4)]. The fictitious q∗

2 in Eq. (20)
is seen as a stream entering the fluid phase from without to
emulate bounce-back and relaxation on q2. Note the scaling of
additive constant ζ1 by the lattice weight along e2 in Eq. (18)
for q∗

2,z. The equilibrium function for the boundary is eval-
uated in a similar manner—Eq. (18) (with the exception of
ζ1 weighting) is applied to the magnetization density m in

q∗2,x = λ2q2,x

q∗2,y = λ2q2,y

q∗2,z = λ1q2,z + ζ1w2

(18)

Ξ∗ =
1
τ

[w2m
∗ − q∗

2] (19)

q1,(0) = q∗
2 + Ξ∗ (20)

FIG. 3. Illustration of NMR-LBM surface relaxation bounce-
back principle with a D2Q5 lattice example (boundary voxels are
depicted in gray; fluid voxels are in white).

the fluid voxel adjacent to the boundary to evaluate the ficti-
tious magnetization state across the boundary m∗. Following,
this fictitious state is used to evaluate the likewise fictitious
collision function �∗ [Eq. (19)] to compute q1,(0) at (t + δt )
[Eq. (20)].

F. Signal acquisition

The magnetization signal—Sxy for transverse and Sz for
longitudinal—is acquired by taking the sum of local densities
over all elements of the functional space, weighted by the
local fluid concentration, equivalent to porosity φ(r). This
operation captures the net nonequilibrium magnetization over
the fluid domain � at time t :

Sxy(t ) =
∑
r∈�

φ(r)[mx(r, t )2 + my(r, t )2]
1
2 ,

Sz(t ) =
∑
r∈�

φ(r)[mz(r, t )],
(21)

where mx, my, and mz are computed as per Eq. (8).

G. Pulse sequence simulation

The algorithm described above facilitates sequential evalu-
ation of the system’s localized magnetization states at finite
time intervals defined by δt . Following, a combination of
this computational solution with a simulated NMR pulse-
acquisition sequence is introduced to model experimental
encoding conditions. The Carr-Purcell-Meiboom-Gill pulse
sequence (CPMG) [23,24] is a fundamental NMR exper-
imental technique used to encode and acquire transverse
magnetization decay, while partially compensating for secular
T2 relaxation effects due to dephasing. This is accomplished
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by applying π (180◦) refocusing RF field pulses at uniform
time intervals tE , while spin echoes occur at midpoints in
time between refocusing pulses. Starting at time t0 = 0 from
a system at equilibrium with the external field B0,

m(r, t0) = [0, 0, m0]T , qi(r, t0) = wim ∀r ∈ �, (22)

the π/2 pulse rotates qi(r) for all i ∈ {0, 1, . . . , Q − 1} and
for all r ∈ � by π/2 radians, placing the magnetization vec-
tor into the transverse plane. The field state then evolves as
per Algorithm 1 for n = 1, . . . , N , with simulated π pulses
occurring between field evolution steps at n = (2k − 1)νE and
T2 echo acquisitions [Eq. (21)] at n = 2kνE , where k ∈ Z+ is
an integer counter variable and νE = �tE/(2δt )	 is the inte-
ger approximation of the pulse-echo interval in terms of the
discrete time unit δt .

The RF pulses are seen as instantaneous vector operations
occurring between discrete time steps, also referred to as the
“hard pulse approximation.” This can be trivially modified
by substituting the algebraic vector rotations with a series of
finite-difference rotations in a similar manner to Eq. (12)–(14)
by making B1 the torquing field. This modification would in-
crease computational cost, arising from the refined timescale
to avoid numerical stiffness. For all simulations performed
herein, the hard pulse approximation is used.

III. ANALYTICAL VALIDATION

The decay of spin-echo amplitudes in porous media is
governed by structural length lS = V/S (with V denoting
volume and S denoting surface area), dephasing length lg =
[D0/(γ G)]1/3 (with G being the field gradient strength), and
diffusional length lD = √

D0t . At short times in the free dif-
fusion regime, where lD is the shortest length and using the
CPMG pulse sequence, the spin-echo decay is given by

Mxy(t, G) = M0 exp[−γ 2G2D0(2t )3/12]. (23)

At longer diffusion times, in the motional averaging regime
with lS � lD, lg, one has [6,7,9]

Mxy = M0 exp
[ − c1r4

sgr2
dg

(
1 − c2r2

sgr−2
dg

)]
, (24)

where rsg = lS/lg, rdg = lD/lg, and c1 and c2 are geometri-
cal constants with c1 = 108/175, c2 = 747/20 for spheres,
c1 = 7/36, c2 = 297/14 for circles, and c1 = 1/720, c2 =
51/28 for parallel plates. Comparisons between analytical
solutions [Eq. (24)] and NMR-LBM simulations under re-
stricted diffusion conditions for spherical, circular, and planar
confining geometries over a set of field gradients are presented
in Fig. 4. The results are for a characteristic diameter of
d = 2 μm approximated on a square Cartesian mesh of side
length ε = 66.667 nm and the laboratory diffusion coefficient
of water D0 = 2.15 × 10−9 m2/s, resulting in simulation time
step δt = 3.445 × 10−7 s.

IV. RANDOM-WALK COMPARISON

The method is scrutinized by comparison to the well-
known random-walk (RW) NMR simulation method. The
latter fundamentally incorporates a Markov process to model
the spatial dynamics of diffusing spin isochromats, or “walk-
ers,” as a discrete time sequence of steps of equal distance
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FIG. 4. Analytical solutions alongside simulated spin-echo in-
tensity decays under restricted diffusion conditions for [(a) and (d)]
planar, [(b) and (e)] circular, and [(c) and (f)] spherical geometries
(1-, 2-, and 3-spheres, respectively).

in a randomly determined direction and independent of past
system states. NMR mechanisms such as bulk and surface
relaxation, as well as the influence of external field pulses
is simulated by implementing storage of corresponding ob-
servable quantities at each walker, e.g., longitudinal and
transverse polarization, spin phase, and a timescale. Statistical
significance is attained by undertaking an appropriately large
number of simulated walks. In this investigation, the random-
walk simulations utilized 1 474 560 walkers.

The RW magnetization decay data are compared to
NMR-LBM results for synthetic spherical pores of diameter
5 μm, approximated on square Cartesian grids of vary-
ing elementary resolution ε: ε = 250 nm, ε = 125 nm, ε =
83.3 nm, and ε = 62.5 nm, corresponding to discrete diam-
eter of 20, 40, 60, and 80 voxels, respectively (Fig. 5). The
internal magnetic field and the external field gradient were
set to zero. Transverse surface relaxivity was set as ρ2 =
8.0 μm/s, and bulk transverse relaxation time T2,B = 2.4 s.
The results (Fig. 5) demonstrate a trend of divergence of the
decay magnitude between the two solvers as function of dis-
cretization level, converging to a constant factor in the limit of
fine grid resolution. For reference the analytical fast diffusion
limit (FDL) approximation for spheres,

MFDL
T (t ) = exp

[
− t

T2,B
− t

T2,FDL

]
, (25)

T2,FDL = (Aρ2)−1 V

S
= 1

6

d

Aρ2
, (26)

is given as black lines for A = 1.0 and A = 1.5.

055304-5



RYBIN, SHIKHOV, AND ARNS PHYSICAL REVIEW E 105, 055304 (2022)

0 0.05 0.1 0.15

10
-1

10
0

N
or

m
al

iz
ed

 m
ag

ne
ti

za
ti

on

NMR-LBM
RW
FDL, d = 20 ε, A=1.0
FDL, d = 20 ε, A=1.5

0 0.05 0.1 0.15

10
-1

10
0

NMR-LBM
RW
FDL, d = 40 ε, A=1.0
FDL, d = 40 ε, A=1.5

0 0.05 0.1 0.15
t
E
 [s]

10
-1

10
0

N
or

m
al

iz
ed

 m
ag

ne
ti

za
ti

on

NMR-LBM
RW
FDL, d = 60 ε, A=1.0
FDL, d = 60 ε, A=1.5

0 0.05 0.1 0.15
t
E
 [s]

10
-1

10
0

NMR-LBM
RW
FDL, d = 80 ε, A=1.0
FDL, d = 80 ε, A=1.5

FIG. 5. Comparison of NMR-LBM and RW decay data along-
side fast diffusion limit (FDL) analytical models for spherical pores
5 μm in diameter for various Cartesian discretizations: (a) d = 20 ε,
ε = 250 nm; (b) d = 40 ε, ε = 125 nm; (c) d = 60 ε, ε = 83.3 nm;
and (d) d = 80 ε, ε = 62.5 nm.

V. SIMULATION AND EXPERIMENT

Simulations were performed on a nano-XCT image (ZEISS
Xradia 810 Ultra) of a chalk sample, recorded with cu-
bic voxel size of side length ε = 64 nm. The acquired
tomogram was segmented into void space and solid using
an active converging contour method [25,26]. A central 3803

segmented region (Fig. 6) of the original 10003 tomogram
was utilized in the following simulations; resultant porosity
of 29.4% was close to experimentally obtained brine-saturated
porosity of 30.2%. The diffusion coefficient of water was used
D0 = 2.15 × 10−9 m2/s, yielding a simulation time step of
δt = 3.175 × 10−7 s for chalk.

The choice of model parameters {ρ2, D0, T2b, χv} was
dictated by their experimentally measured values, with the
exception of ρ2. The latter was determined by matching an
experimental T2 spectrum with mercury intrusion capillary

FIG. 6. Three-dimensional image of the chalk subsample digi-
tal segmentation used for simulations: cubic voxels of side length
ε = 64 nm, “0” labels for void space, and “1” labels for chalk solid
matrix.

pressure– (MICP) measured pore size distribution. The MICP
experiment is sensitive to the cross section of rock pores that
limit the directional propagation of its front—the pore throat
radii. Therefore, in interpreting the MICP measurements we
assume cylindrical pore geometry [27,28].

Magnetic susceptibility values were obtained through ex-
perimental measurements using a magnetic susceptibility
balance. The mean measured value of volumetric susceptibil-
ity was χv,c = 16 × 10−6 for chalk and χv,w = −8.9 × 10−6

for water in SI units. The corresponding internal field map
was calculated using the magnetic dipole approximation [29].
The 3803 sample subset was chosen to avoid wrap-around
errors in the calculated internal field near the external domain
boundary.

Magnetization decay data was obtained using the pre-
viously described simulated CPMG procedure, utilizing
Algorithm 1 to compute the time evolution of the system
state; this was carried out for two echo times, tE = 100 μs
and tE = 1000 μs. Computations utilized 1440 Intel Xeon
Platinum 8274 processors @3.2 GHz on an InfiniBand cluster.
The resulting transverse magnetization data were subjected
to a numerical inverse Laplace transform to recover its T2

relaxation time spectrum [30,31].
Other simulation specifications, such as field strength, are

set to values used in experimental NMR measurements for
a direct comparison of the results. The NMR experiments
were carried out at two field strengths using a Magritek
Rock Core Analyzer (operating at proton resonant frequency
of 2 MHz) and a benchtop Magritek Spinsolve Carbon
spectrometer (43 MHz for 1H). The chalk core specimen was
saturated with a water-based brine containing 7% by weight
MgCl2, CaCl2, and NaCl following Ref. [32], which demon-
strated that this fluid composition maintains matrix structural
integrity and prevents weakening for at least 6 weeks, which
fully covered the time spans of the NMR acquisitions. The
main coil of the NMR device produces a field of 0.047 T,
corresponding to 2-MHz frequency for 1H.

The CPMG pulse-echo experiment is carried out on
chalk for echo times of tE = 100 μs and tE = 1000 μs at
2 and 43 MHz. These experimental data are compared to
NMR-LBM outputs under simulation settings mimicking
experiment. Acknowledging the variation in magnetic suscep-
tibility between low and high magnetizing fields in carbonate
rocks (owing to incomplete magnetization of the ferromag-
netic inclusions of the solid matrix under a weak field), the
input susceptibility χv,c is increased at 43 MHz to account for
the nonlinear field-magnetization relationship [33,34].

The comparison criteria constituted monoexponential
least-squares decay constant fitting and weighted logarithmic
mean of the Laplace-inverted spectra, as well as the spectra
themselves. These results are presented in Tables I and II and
Figs. 7 and 8. A negative shift in modal peak placement at
the longer echo time is observed in all instances; at 2 MHz,
both experimental and simulated data agree in the direction
of the shift, though the effect is strongest in the experimental
spectra. Peak broadening is observed—both experimental and
simulated spectra exhibit a wider peak at the longer echo time,
though the experimental spectra demonstrate a stronger sen-
sitivity than simulations. At 43 MHz, between tE = 100 μs
and tE = 1000 μs, good agreement is observed in modal
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TABLE I. Monoexponential T2 relaxation time fit and
logarithmic mean comparison of inverted spectra for simulation and
experiment (2 MHz)

Monoexp. fit (ms) Log-mean (ms)

tE EXP SIM RW EXP SIM RW

100 μs 25.74 26.30 22.50 24.29 25.56 21.17
1000 μs 24.18 26.20 22.44 22.76 25.36 21.06

relaxation times and the relative shift between echo intervals
is comparable.

At 2 MHz, the modal relaxation time of ∼22 ms re-
ported by the RW method for chalk is shorter than the modes
obtained by experiment or NMR-LBM, which both report
∼26 ms. The relaxation time responses to the echo spacing
are mutually coherent with the NMR-LBM results, with a
negative relaxation time shift and a peak broadening accom-
panying an increase in echo time. We note that the difference
between numerical solvers is well within the variation range
of A describing the specifics of implicit surface area treatment.

In addition to magnetization responses integrated over
the 3803 system in CPMG numerical experiments, fully re-
solved tomogram-scale magnetization density maps reported
by NMR-LBM for the chalk system are presented. These
constitute functional field (transverse magnetization density,
my) evolution snapshots during a simulated CPMG pulse-
acquisition sequence at a set of time points, wich linear
multiples of echo time tE chosen so that the prevailing re-
laxation modes are visually discernible. Two-dimensional xy
cross sections of these maps at 4, 159, and 318 echo time inter-
vals tE = 100 μs, corresponding to t = 0.4, 15.9, and 31.8 ms
(1260 δt , 50076 δt , and 100156 δt correspondingly in discrete
time; δt = 3.175 × 10−4 ms), are shown in Fig. 9. Magnetiza-
tion density contours are clearly observed and curve inwards
from the solid boundary in accord with pore geometry, be-
coming spherical in large spherical pores. Larger pores exhibit
higher net nonequilibrium magnetization. Interpore magne-
tization exchange is apparent as there are smooth transient
gradients between pores of contrasting sizes and an associated
directional change of magnetization curvature.

VI. DISCUSSION

The comparison of experiment and simulations for the
chalk sample showed good agreement in transverse relax-
ation time modes but had discrepancies in the width of the
distribution between experiment and simulation, as well as

TABLE II. Monoexponential T2 relaxation time fit and
logarithmic mean comparison of inverted spectra for simulation and
experiment (43 MHz).

Monoexp. fit (ms) Log-mean (ms)

tE EXP SIM EXP SIM

100 μs 15.68 15.18 14.69 14.55
1000 μs 7.09 6.97 6.92 6.63
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FIG. 7. Spectral profiles of (a) experimental acquisitions and
(b) NMR-LBM simulations and (c) random-walk simulations on
chalk at 2 MHz; tE = 100 μs and tE = 1000 μs.

differences in the relative peak placement for the numeri-
cal solvers. These observations are discussed systematically:
First, the intersolver discrepancies are addressed, followed by
evaluating the chalk sample using simulated NMR-LBM data.

A. Solver surface treatment

To justify shorter T2 modes reported by random-walk sim-
ulations for chalk, we consider Fig. 5; the relative difference
between the solvers is small in low-resolution sphere dis-
cretizations and increases asymptotically to a constant factor
in the limit of resolution. The modal discrepancy is attributed
to a fundamental difference in the incorporation of surface
relaxation between given solver paradigms, as a result of
which the two solvers differ in the probed surface area. The
six-neighborhood random-walk code sees the surface area
at any solid-adjacent fluid site as a discrete collection of
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FIG. 8. Spectral profiles of (a) experimental acquisitions and
(b) NMR-LBM simulations on chalk at 43 MHz; tE = 100 μs and
tE = 1000 μs.

orthogonal boundary voxel areas. Conversely, in NMR-LBM
surface relaxation in any such fluid voxel is a superposi-
tion of attenuations induced by each lattice stream directed
to, and reflected from, the neighboring solid matrix sites,
including corners between them: Up to 26 simultaneous con-
tributions to magnetization attenuation are thus theoretically
possible (Fig. 1). Due to its incorporation of lattice weights,
streams reflected from more distant boundary contacts within
the Cartesian lattice (||ei|| = √

2, “diagonal” or ||ei|| = √
3,

“double-diagonal”) inherently effect a weaker relaxation at
the parent voxel. This is due to the distance-based weights
derived for a discrete lattice superimposed on a continuum
spherically symmetrical probability distribution function in
free space. Therefore, NMR-LBM probes the lattice area as a
discretization of a spatially continuous field, while RW treats
it as being strictly discrete and corrects for over-relaxation at
the corners with a constant correction factor. Considering that
the specific correction factor for chalk is not known, that RW
returns a faster decay in spherical pores (Fig. 5), and that the
chalk simulation domain is not strongly aspherical (Fig. 9),
the observation of a shorter modal transverse relaxation time
in RW simulations as compared to NMR-LBM is consistent.

B. Structural heterogeneity

Consider first that the chalk sample in the simulation is a
cubic phase field of side length 24.32 μm, corresponding to
3803 nano-CT voxels. This resolution is required to calculate
the NMR response at the resolved pore scale. The sample

FIG. 9. Clockwise from top right: Two-dimensional xy plane
slices through the 3803 transverse magnetization density map taken
during along a CPMG sequence at 4, 159, and 318 echoes at tE =
100 μs; 2D xy slice through the chalk tomogram at the same z
coordinate. Chalk solid matrix is illustrated in white and void is
in black.

visually captures the characteristic microstructure and a rep-
resentative elementary volume (REV) is assumed, where this
REV represents matrix porosity. We tested this assumption
by acquiring a micro-CT image with voxel size of 688 nm,
a cross section of subsection of which is depicted in Fig. 10.
The simulation domain based on the nano-CT image of the
matrix porosity region corresponds to about 353 micro-CT
voxels. Larger pores or grains with microporosity may give
rise to a broader distribution of relaxation times as observed
experimentally and can be observed visually from the micro-
CT images. Note that the MICP-based pore size distribution
would not be affected by the occurrence of these larger pores
as they are not themselves forming a percolating network.
Furthermore, the larger heterogeneity in material distributions
and a small fraction of larger pores would give rise to an
increase in dephasing for larger echo times which is not
sampled in the numerical simulations due to the simulation
domain not incorporating any of the larger pores. Further-
more, mineral inclusions which are not seen in the simulation
domain but exist in the experimental sample generate gradi-
ents across smaller pores which contribute to faster coherence
loss in the pore network fraction in the vicinity of such mineral
inclusions.

C. Signal processing

A second possible source of mismatch between experimen-
tal measurement and numerical simulation of T2 distributions
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FIG. 10. Cross section through a subsection of a micro-CT tomo-
gram of the chalk sample at a resolution of ε = 688 nm with a field
of view of 12002 voxels, illustrating both the predominant matrix
porosity, and larger-scale “vugs” as well as larger-scale solid grains.

is the absence of experimental noise in the simulated data.
Experimental noise is mimicked by distorting simulated Sxy(t )
decay data with white Gaussian noise (μ = 0, SNR = 300)
incorporating a signal-to-noise ratio of 300 and a mean
offset of 0 prior to inversion. Acknowledging the sensi-
tivity of multiexponential approximations of ill-conditioned
criteria to the choice of regularization specifics, the same
Tikhonov-stabilized inversion algorithm was utilized for all
inversions; the T2 inversion axis contains 200 logarithmically
spaced points between 5 μs and 1 s. The inverted spectra
are subjected to normalization, which limits useful compar-
ison criteria to the placement of spectral maxima in the
frequency domain and the general spectral shape, as measured
by a weighted logarithmic mean over the chosen Laplace
subdomain.

D. Idealizing assumptions

An additional source of mismatch for the magnitude of the
echo time effect between experiment and simulations are the
physical assumptions implicitly made in both NMR-LBM and
RW simulation algorithms. While any simulated experiment
could not account for all aspects of the experimental physics,
we highlight (1) imperfections in the applied magnetic field
pulses and (2) heterogeneities in the field produced by the
main coil of the NMR tool as the dominant experimental
imperfections not incorporated in the simulations.

The echo time effect observed in the simulated data, though
weak, exhibits a relaxation time trend consistent with NMR
theory—specifically, that sparser echo spacing results in less
efficient refocusing of dephasing spins under self-diffusion
over a time interval and resulting in a faster coherence loss
[23,35,36]. The random-walk results from simulations on the

same chalk system, utilizing the same idealizing assumption
of hard RF pulses, likewise exhibited a weak relaxation time
shift in comparison to experiment. Ignoring the above sources
of experimental error, this suggests that the magnetization
evolution in the chalk system is dominated by surface inter-
actions; the magnetic heterogeneity of the environment has
a much smaller contribution to magnetization loss. Qualita-
tively, magnetization density maps in Fig. 9 exhibit curvature
shaped primarily by the morphology of the constraining solid
matrix, exhibiting the steepest magnetization gradients along
directions normal to the pore walls, suggesting surface relax-
ation as the dominant driver of magnetization evolution in
chalk.

Concerning the comparison at 43-MHz frequency, though
the absolute placement of spectral modes differs between
simulation and experiment, their relative shift as a function
of echo spacing is close to a factor of 2 in both simulated and
experimental data. Note the fact that the T2 surface relaxivity
for chalk is left unchanged when switching to a higher flux
density. Acknowledging that a stronger external field would
result in an increased surface relaxivity parameter for T2, the
longer relaxation times reported by the simulation in absence
of any relaxivity adjustment are consistent.

VII. CONCLUSION

An NMR simulation framework utilizing the lattice
Boltzmann method to resolve the macroscopic Bloch-Torrey
equations has been implemented and validated. The incor-
poration of tomogram-scale magnetization exchange with 26
neighbors avoids the limitations of models with diffusionally
closed computational voxels, enabling NMR simulations on
complex media at fine resolution. Excellent agreement be-
tween simulations and analytical solutions is demonstrated.
At low field strength of 2 MHz, the numerical approach
accurately reproduces experimentally observed spectral peak
modes at short echo times. The experimentally observed ef-
fects of echo time variation are reproduced to a lesser extent
due to idealizing physical assumptions of the model system
and experimental procedures. Results provided by similarly
ideal random-walk simulations display a similar order of
these effects. At higher field of 43 MHz, good agreement
is observed between simulated T2 relaxation time measures
and those derived from experimental acquisitions. Magneti-
zation evolution modes of the chalk sample exhibit a strong
sensitivity to the morphology of the pore structure, and a
small contribution from the internal field inhomogeneities is
observed through minor shifts in relaxation time by varied
echo spacing. The latter is corroborated through visual in-
spection of magnetization ground mode curvature on images
of the whole system’s magnetization density facilitated by
NMR-LBM. The method’s computational implementation al-
lows straightforward extension to arbitrary NMR pulse and
acquisition configurations. Parallel implementation enables
analysis of large sample domains on HPC clusters. In fu-
ture work we plan to utilize the LBM framework for the
analysis of diffusion-relaxation eigenmodes of complex sys-
tems and include the analysis of NMR responses under flow
conditions.
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