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Efficient treatment of low-frequency response and decoherence in a real-time evolution scheme
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In this paper, we present an improved real-time current-based approach for calculating the frequency-
dependent dielectric function of a bulk periodic system, which can achieve a unified treatment of longitudinal and
transverse macroscopic geometries on the same footing, and an improvement to make the approach of calculating
dielectric function more robust for the avoidance of numerical divergencies at low frequency near zero in some
specific cases. The validity of the improved approach implementation is verified by calculating the dielectric
function of bulk periodic system in the ground in the longitudinal geometry, enabling the improved approach
to be extended to excited bulk periodic systems in the transverse geometry. Further, a phenomenological
description of decoherence has been incorporated within the framework of time-dependent density-functional
theory (TDDFT). It is concluded that the decoherence model can suppress the numerical divergence of low
frequency and grows the excitonic feature of silicon, although it adopts the approximate time-dependent
exchange-correlation potential. Thus, the use of the decoherence TDDFT model opens pathways for handling
the decoherence effects within the framework of TDDFT.
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I. INTRODUCTION

The frequency-dependent dielectric function is typically
required for characterizing the optical properties of the bulk
periodic system. TDDFT has been used extensively for calcu-
lating the frequency-dependent dielectric function of various
bulk periodic systems, including metals [1–3], semiconduc-
tors [4–8], and insulators [1,9–14], both in its frequency and in
its real-time form. From the theoretical point of view [15–17],
the approaches for calculating the longitudinal macroscopic
dielectric function can be divided into two classes, namely,
the density-based and the current-based approach, and each
one has its own set of advantages and disadvantages. We
note that, in some specific cases, formal equivalence of the
two approaches does not guarantee numerical equivalence in
practical calculations. Generally speaking, compared with the
density-based approaches, the current-based approaches are
more general but more susceptible to numerical issues and
instabilities.

As explained in Ref. [1], a real-time current-based ap-
proach has been derived by Bertsch et al., in which the
entire frequency-dependent dielectric function can be calcu-
lated from a single real-time evolution of the system perturbed
by an impulsive external vector potential field Aext (t ) =
A0θ (t ), where θ (t ) is the Heaviside step function, corre-
sponding to the impulsive external electric field, Eext (t ) =
−(1/c)[dAext (t )/dt] = −(1/c)A0δ(t ). Apart from the sig-
nificant increase of computational efficiency, a numerical
advantage of the approach of Bertsch et al. combined with
TDDFT is that it avoids the explicit calculation of the ex-
tra more complicated exchange-correlation kernel involved in
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most of the approaches to linear response in TDDFT [18],
and hence it is suitable for bulk periodic systems where the
underlying static density is extended.

We note that there are several calculations of the dielectric
function employing the approach derived by Bertsch et al. in
either the longitudinal or transverse geometry [1,4,10–12,19–
26]. In the transverse geometry, the total vector potential
field Atot in the system Hamiltonian simply is external vec-
tor potential field Aext. In the longitudinal geometry, Atot =
Aext + Aind, where Aind is the field from the induced current
in the system. Although it has been argued [23] that as a means
to calculate dielectric functions on both geometry choices give
the same results, it should be noted that there is indeed a spu-
rious divergency at low frequency near zero in the calculated
dielectric function in some specific cases for insulators. The
divergence in the calculations of the real-time current-based
approach originates from the fact that they applied a constant
damping as postprocessing in the velocity gauge, and this
is not fairly exact, because damping in this gauge is field
dependent and cannot be simply applied at the end of the
calculations or at least not so straightforwardly.

As is well known, the predictive power of TDDFT is
subject to the accuracy of the approximations made in two
essential ingredients, namely, the time-dependent exchange-
correlation (XC) potential and the functional for the physical
observables, excluding numerical approximations that are
normally controllable. In practice, it needs approximations for
the accurate time-dependent XC potential with nonlocality in
space and time and the property of derivative discontinuity.
So far, the general applications of TDDFT do not consider
discontinuity and completely depend on adiabatic approxima-
tion, which feeds the instantaneous time-dependent density
into the known static XC potential of the static density func-
tional theory (SDFT). However, it is not clear whether the
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more accurate XC potential in SDFT is necessarily related
to the improvement described in TDDFT. Many benchmark
studies have explored the performance of calculations in
TDDFT using static XC potentials within the adiabatic ap-
proximation. Most benchmark studies are mainly limited to
the range of linear and perturbative response, where TDDFT
is an effective standard time-dependent perturbation theory.
Even with the accurate time-dependent XC potential, from a
practical viewpoint of real-time TDDFT models, there is still
a question is how to describe the effect of decoherence caused
by the electron-electron collisions, emission of photons, and
electron-phonon scattering, and so on. There are many al-
ternate methods. The possible influence of decoherence, for
example, can be included by applying a purely phenomeno-
logical approach employing damping constants [27] or the
quantum friction approach [28].

In this paper, a phenomenological description of deco-
herence has been incorporated within the framework of
TDDFT. For demonstrating the validity of the decoherence
TDDFT model, we conduct a numerical study on an im-
proved real-time current-based approach for calculating the
frequency-dependent dielectric function of a bulk periodic
system, taking diamond and silicon as the concrete examples.
In addition, it is worth noting that this paper puts forward a
unified treatment of longitudinal and transverse macroscopic
geometries on the same footing for the avoidance of numerical
divergencies at low frequency near zero in some specific cases
by introducing the polarization density P(t ).

The paper is organized as follows. In Sec. II, we provide
concepts and formulas of deriving a dielectric function and
our formalism of an improved real-time current-based ap-
proach for the dielectric function of bulk periodic system,
followed by the real-time TDDFT formalism underlying the
time evolution of the vector potential and the current density
in periodic systems with allowance for a phenomenological
description of decoherence. In Sec. III we compute the dielec-
tric functions as examples for diamond and silicon in ground
state comparing the results of our improved approach with the
experiments, followed by conclusions in Sec. IV.

II. METHOD

A. The calculation formulas of dielectric function

In the linear response regime, the dielectric permittivity
εm,n(ω) can be expressed by the conductivity σm,n(ω) [14],

εm,n(ω) = δm,n + 4π iσm,n(ω)

ω
, (1)

where m and n indicate Cartesian component (m, n = x, y, z).
In the following we outline some of the formulas utilized in
the derivation of Eq. (1). On the one hand, in the frequency
domain, ε(ω) can be strictly determined by the following
equations:

D(ω) = ε(ω)Etot (ω),

D(ω) ≡ Etot (ω) + 4πP(ω),
(2)

j(ω) = σ (ω)Etot (ω),

−iωP(ω) = j(ω),

where D(ω) is the electric displacement field, Etot (ω) is the
total electric field, and P(ω) is the polarization density. On the
other hand, in the time domain, ε(ω) can also be expressed by
the following equations:∫

dteiωt D(t ) = ε(ω)
∫

dteiωt Etot (t ),

D(t ) = −1

c

dAext (t )

dt
,

Atot (t ) = Aext (t ) + Aind(t ),

Eind(t ) = −4πP(t ),

dP(t )

dt
= j(t ),

E(t ) = −1

c

dA(t )

dt
,

d2Aind(t )

dt2 = 4πcj(t ),
∫

dteiωt j(t ) = σ (ω)
∫

dteiωt Etot (t ). (3)

In the longitudinal geometry, the total field Etot (t ) is given
by the sum of the external field Eext (t ) and the induced field
Eind(t ) in a geometry of a thin film [1,9,19,23,24]. Corre-
spondingly, the dielectric function εm,n(ω) can be expressed
in terms of the vector potential,

1

εm,n(ω)
=

∫ +∞
0 dteiωt dAtot,m (t )

dt∫ +∞
0 dteiωt dAext,n(t )

dt

= δm,n +
∫ +∞

0 dteiωt dAind,m (t )
dt∫ +∞

0 dteiωt dAext,n (t )
dt

. (4)

To extract the dielectric properties of excited matter, the
numerical pump-probe experiment is carried out [6]. Here the
Heaviside step function [1], Aprobe

ext (t ) = A0θ (t ), is applied as
a probe external vector potential, corresponding to the probe
external electric field, Eprobe

ext (t ) = −(1/c)[dAprobe
ext (t )/dt] =

−(1/c)A0δ(t ). It is assumed that the probe pulse is weak
enough to ignore all nonlinear processes involving more than
one photon, so A0 takes a small value of 1 a.u. The in-
duced vector potential Aprobe

ind (t ) is the difference between
Apump+probe

ind (t ) containing both pump and probe pulses and
Apump

ind (t ) containing the pump pulse only,

Aprobe
ind (t ) = Apump+probe

ind (t ) − Apump
ind (t ). (5)

For the case of m = n, the dielectric function can be expressed
as

1

εm,m(ω)
= 1 + 1

A0,m

∫ +∞

0
dteiωt

dAprobe
ind,m(t )

dt
. (6)

In practical application, time evolution is carried out in a
finite period T . According to the uncertainty principle �E ∼
h/T , the energy resolution of spectrum �E obtained with
a Fourier transform is interrelated to time period T . In
Aprobe

ind,m(t ), the transitions to the bound excited state show an
oscillation, which persists without any damping. Due to a
sharp cutoff of the integrand at end of the time-evolution

055303-2



EFFICIENT TREATMENT OF LOW-FREQUENCY RESPONSE … PHYSICAL REVIEW E 105, 055303 (2022)

period T in the Fourier transformation, it is accompanied
by wiggles around the excitation energy. The introduction
of damping function into the Fourier transform can elimi-
nate the wiggles to some extent [10,11,19,21,22,24,25]. Here
a simple choice of damping function is to contain a small
imaginary part iγ in frequency ω, which is equivalent to
multiplying the Fourier transform of Eq. (6) by the damping
function [24]

f (t ) = e−γ t . (7)

If the time evolution lasts long period enough, it gives a
Lorentzian line shape to the bound transitions. As a result, the
snapshot of the dielectric function εm,m(ω) of matter is given
by

1

εm,m(ω)
= 1 + 1

A0,m

∫ T

0
dteiωt−γ t

dAprobe
ind,m(t )

dt
, (8)

or

1

εm,m(ω)
= 1 + i

4πc
∫ T

0 dteiωt−γ t jprobe
m (t )

ωA0,m
. (9)

As a consequence, a finite width of the peaks at the imaginary
part of the dielectric function can be obtained, which mimics
the experimental broadening of the spectrum from a physical
point of view [25].

In the transverse geometry, there is no surface charge in
the material, and the induced polarization field does not con-
tribute to the electric field in the cell [23]. The total vector
potential field A(t ) is provided only by external vector poten-
tial field Aprobe

ext . Therefore, in the linear response regime, the
frequency-dependent dielectric function ε(ω) is given by the
current density [6,19,22,23],

εm,m(ω) = 1 − i
4πc

∫ T
0 eiωt−γ t jprobe

m (t ) dt

ωA0,m
, (10)

where the induced current density jprobe(t ) is defined as the
difference between jpump+probe(t ) containing both pump and
probe pulses and jpump(t ) containing the pump pulse only,

jprobe(t ) = jpump+probe(t ) − jpump(t ). (11)

B. The improved approach of dielectric function by introducing
polarization density

Since frequency ω is in the denominator in Eq. (10), it
is more susceptible to numerical issues and instabilities at
around ω = 0. It is noted that in some specific cases, there
are indeed numerical divergencies at vanishing frequency in
the calculated dielectric function, which causes the numeri-
cal divergencies and destroys the low-frequency behavior of
the dielectric function [6,19]. In the frequency domain, there
are several solutions to avoid numerical divergence at low
frequency [15,29–31], such as correctly including the smear-
ing by redefining the dielectric function and the conductivity
sum rule [15,29]. Further, the calculation in frequency do-
main always needs a truncated set of bands, which makes the
Thomas-Reiche-Kuhn sum rule not exactly satisfied, resulting
in some problems such as the divergence of linear polarization
response at the low-frequency limit [30,31]. In this paper, we
calculate the dielectric function in the time domain. In order

to avoid the numerical divergencies at low frequency near
zero in some specific cases, we make a small improvement
by introducing the polarization density P(t ), which uniformly
treats longitudinal and transverse macroscopic geometries on
the same footing.

In the longitudinal geometry, the dielectric function ε(ω)
is obtained as follows:

εm,m(ω) = 1 + i
4πσm,m(ω)

ω

= 1 + i
4π

∫ T
0 eiωt−γ t jm(t ) dt

ω
∫ T

0 eiωt−γ t Etot,m(t ) dt

= 1 + i
−4πc

∫ T
0 eiωt−γ t dPm (t )

dt dt

ω
(∫ T

0 eiωt−γ t dAind,m

dt dt + ∫ T
0 eiωt−γ t dAext,m

dt dt
)

= 1 + i
−4πc

∫ T
0 eiωt−γ t dPm (t )

dt dt

ω
(
A0,m + 4πc

∫ T
0 eiωt−γ t Pm(t ) dt

)

= 1 − 4πc
∫ T

0 eiωt−γ t Pm(t ) dt

A0,m + 4πc
∫ T

0 eiωt−γ t Pm(t ) dt
. (12)

In the transverse geometry, it is expressed as

εm,m(ω) = 1 + 4π iσm,m(ω)

ω

= 1 + i
4π

∫ T
0 eiωt−γ t jm(t ) dt

ω
∫ T

0 eiωt−γ t Etot,m(t ) dt

= 1 + i
−4πc

∫ T
0 eiωt−γ t dPm (t )

dt dt

ω
∫ T

0 eiωt−γ t dAtot,m

dt dt

= 1 + i
−4πc

∫ T
0 eiωt−γ t dPm (t )

dt dt

ωA0,m

= 1 − 4πc
∫ T

0 eiωt−γ t Pm(t ) dt

A0,m
. (13)

C. The improved real-time TDDFT formalism with allowance
for the decoherence

The TDDFT has proven to be the applications in the linear
response that can be treated as a perturbation and the nonlinear
and nonperturbative electron dynamics induced by an intense
laser pulses [24,32,33]. It can also describe the periodic sys-
tem by both density and the current density [34,35]. In view
of the good experience with TDDFT, we describe the electron
dynamics based on real time and real space of TDDFT.

Here we briefly recapitulate the framework of the TDDFT.
The details have been accounted for elsewhere [10–12]. The
motion of electrons is described by the time-dependent Kohn-
Sham (TDKS) equation,

ih̄
∂

∂t
ψi(r, t ) = ĤKS (r, t )ψi(r, t ), (14)

where ψi(r, t ) is the single-particle orbital and ĤKS is the
time-dependent Kohn-Sham Hamiltonian defined by

ĤKS (r, t ) = 1

2me

(
−ih̄∇ + e

c
Atot

)2
+ Vtot , (15)
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where me is the effective mass of electrons, e is an elementary
charge (e > 0), c is the scalar velocity of light in vacuum
and Atot is the total vector potential. Since we apply a time-
dependent, spatially uniform electric field E(t ), the vector
potential A(t ) is described by A(t ) = −c

∫ t dt ′E(t ′). In ad-
dition, the time-dependent total scalar potential Vtot is given
as follows:

Vtot (r, t ) = Vion(r, t ) +
∫

dr′ n(r′, t )e2

|r′ − r| + VXC (r, t ), (16)

where n(r′, t ) = 2
∑

i |ψi(r′, t )|2 is the valence electron den-
sity related to the orbital, the factor of 2 indicates that each
orbital is fully occupied, Vion is the norm-conserving pseu-
dopotentials to deal with the interaction between valence
electrons and the ionic core, considering only valence elec-
tron orbitals [36], and VXC is the XC potential, adopting the
adiabatic approximation.

In the longitudinal geometry, considering the surface
charge effect, i.e., charging the dielectric interface within a
limited distance, the induced potential Aind is generated. The
induced field Aind can also be written as Aind = AEM + AXC ,
where AEM is the full electromagnetic potential and AXC is the
macroscopic exchange-correlation field. In the present work,
all macroscopic components of the exchange-correlation con-
tribution are neglected [20]. We use the full electromagnetic
potential AEM and the scalar potential φ(r, t ) to describe the
propagation of the electromagnetic fields. They satisfy the
microscopic Maxwell equations [19,37,38]. In the Coulomb
gauge, we have the following equations:(

1

c2

∂2

∂t2
− ∇2

)
AEM(r, t ) + 1

c

∂

∂t
∇φ(r, t ) = 4π

c
j(r, t ),

(17)
where j(r, t ) is the electric current density, given by

j(r, t ) = −2e
∑

i

Re [ψ∗
i (r, t )v̂ψi(r, t )], (18)

where v̂ is the velocity operator [6,20],

v̂ = 1

ih̄
[r̂, ĤKS]. (19)

In addition, the φ(r, t ) satisfies the Poisson equation,

∇2φ(r, t ) = −4πρ(r, t ), (20)

where ρ(r, t ) is the charge density composed of ionic and
electronic contributions. Considering that the length scale of
the electron dynamics is much less than the wavelength of the
optical electric field with visible or infrared frequencies in a
crystalline solid [14], we employ dipole approximation and
apply a coarse-graining approximation of AEM , j, and φ to be
spatially uniform, leading to

d2AEM (t )

dt2
= 4πcj(t ). (21)

Here we consider a phenomenological description of de-
coherence, and accordingly the relationship between P(t ) and
j(t ) can be represented as [39]

dP(t )

dt
+ βP(t ) = j(t ), (22)

where β is characteristic relaxation rate. In order to write a
closed set of equations, Eq. (22) is expressed as follows by
an induced vector potential Aind (t ), which is related to the
polarization by P(t ) = (1/4πc)[dAind (t )/dt],

d2Aind(t )

dt2
+ β

dAind(t )

dt
= 4πcj(t ). (23)

In the present article, our simulations are carried out with
OCTOPUS code (version 10.5) [40,41] which we modified to
introduce Eq. (23). In addition, we adopt the generalized
gradient approximation (GGA) based on the Perdew-Burke-
Ernzerhof functional (PBE) in our calculation [42].

III. APPLICATIONS

In this section, taking bulk diamond and silicon crystals
as examples, we calculate the dielectric functions by the de-
coherence TDDFT model, compared with the experimental
results. Atomic units (a.u.) are used throughout unless stated
otherwise. The periodicity of diamond crystal is simulated
by using a cubic cell with lattice parameter of a = 6.74 a.u.
under the periodic boundary condition. The cubic unit cell
contains eight carbon atoms. The TDKS equation is solved
in a discretized three-dimensional space mesh, which is dis-
cretely into 20 × 20 × 20 grid points with a grid spacing of
0.34 a.u. The first Brillouin zone in the inverted space is
discretized with 8 × 8 × 8 k points. For silicon crystal, a cubic
unit cell including eight silicon atoms with a lattice parameter
of 10.26 a.u. is used to simulate the periodicity. The grid is
discretely into 30 × 30 × 30 grid points with a grid spacing
of 0.34 a.u. The number of k points is taken as 12 × 12 × 12.
Moreover, the time-dependent evolution of the Kohn-Sham
equation adopts the enforced time-reversed symmetric method
[43] with a time-dependent evolution time step of 0.01 a.u.

To investigate the dielectric function of dielectric mate-
rial, we use a weak probe pulse as the external potential.
The evolution time of probe pulse is 200 a.u. to ensure that
the spectrum with enough resolution can be acquired with a
Fourier transform. Moreover, in order to better simulate the
experimental results, in our research, we choose a suitable
damping factor γ = 0.025 in longitudinal geometry, while
the damping factor γ is chosen to be 0.015 in the transverse
geometry for diamond crystal. For silicon crystal, we choose
a damping factor γ = 0.007 in longitudinal geometry.

First, in order to verify the validity of the improvement
by introducing polarization density, we compare the results
of the dielectric function in bulk diamond at the ground
state by different numerical approaches. Figure 1 shows the
real (upper panel) and imaginary part (bottom panel) of the
frequency-dependent dielectric function ε(ω) of diamond at
ground state in longitudinal geometry through Eqs. (8), (9),
and (12), respectively. For comparison, the experimental di-
electric function of diamond is displayed with dark gray circle
in panel. In Fig. 1 it is found that the real and imaginary parts
of ε(ω) from Fourier transforming of dAind(t )/dt in Eq. (8)
and P(t ) in Eq. (9), respectively, show good agreement, while
from Fourier transforming of j(t ) in Eq. (12), the real of ε(ω)
tends to zero in the ω → 0 limit, and the peak value of real
part and imaginary part is lower.
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FIG. 1. In the longitudinal geometry, the real (upper panel) and
imaginary parts (bottom panel) of the frequency-dependent dielectric
function ε(ω) of diamond at ground state are plotted by three numer-
ical approaches. The experimental dielectric function of diamond is
displayed in a dark gray circle [44].

Also, in the transverse geometry, the real [corresponding to
Fig. 2(a)] and imaginary part [corresponding to Fig. 2(b)] of
the dielectric function ε(ω) of diamond at ground state from
two numerical approaches are plotted in Fig. 2, compared
with measured values in a dark gray circle. We find that the
real and imaginary parts of ε(ω) from Fourier transforming
of j(t ) in Eq. (10) and P(t ) in Eq. (13), respectively, show
reasonably good agreement except near ω = 0. As discussed
in Ref. [19,22], we observe divergent behavior in the ω → 0
limit of the dielectric function ε(ω) from Fourier transforming
j(t ), due to the division of Eq. (10) by frequency ω = 0. How-
ever, the small improvement by introducing the polarization
density P(t ) can well avoid the numerical divergencies at low
frequency near zero. In addition, by introducing polarization

FIG. 2. In the transverse geometry, the real (upper panel) and
imaginary parts (bottom panel) of the frequency-dependent dielec-
tric function ε(ω) of diamond at ground state are shown with two
numerical approaches, compared with measured values [44].

FIG. 3. In the longitudinal geometry, after the delta-function
distortion is applied at t = 0, the electric current density distribu-
tion corresponding to different characteristic relaxation rate β in
crystalline diamond. For convenience of observation, the illustration
shows a partial enlarged view.

density, the longitudinal and transverse macroscopic geome-
tries are treated uniformly on the same footing.

In the next section, a phenomenological relaxation is intro-
duced in the equation motion for the induced vector potential,
reflecting surface charge, within the longitudinal geometry.
The dielectric function of dielectric materials is studied with
allowance for the decoherence TDDFT model under the longi-
tudinal geometry. Taking diamond as an example, the electric
current density distribution as functions of time is given in
Fig. 3, corresponding to a different characteristic relaxation
rate β, respectively. All electric currents coincide with each
other accurately at t = 0, since the initial current is deter-
mined by the summation rule[1], and then starts to depart.
As seen from Fig. 3, we can also find that the larger β is,
the smaller the amplitude of current oscillation becomes. With
allowance for the decoherence TDDFT model, Fig. 4 further
shows the dielectric function of diamond crystal as a function
of frequency under a different characteristic relaxation rate β:
the real part in Fig. 4(a) and the imaginary part in Fig. 4(b).
It can be seen from Fig. 4 that for diamond, the dielectric
functions corresponding to the negative value of β coincide
with each other, which is consistent with the case without
considering decoherence. For the positive value of β, the peak
value of the imaginary part of the dielectric function is higher,
and the peak position is shifted to the high-energy direction
compared with the result without decoherence, which is closer
to the experimental result.

Then, considering that the silicon crystal has an excitonic
peak, i.e., the interaction of an electron in the conduction band
with the hole left behind in the valence band, we numerically
study the influence of the decoherence TDDFT model on
its dielectric function. At present, for the so-called exciton
effect, this problem has been treated by some authors [46,47]
by using the state-of-the-art methods, such as the GW ap-
proximation of electron self-energy and the Bethe-Salpeter
equation of electron-hole interaction. However, these methods
have high requirements for calculation and are not easy to
adapt to the emerging new generation of electronic materials.
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FIG. 4. In the longitudinal geometry, the real (upper panel) and
imaginary parts (bottom panel) of the frequency-dependent dielectric
function ε(ω) of diamond at ground state are plotted by a different
characteristic relaxation rate β. The experimental dielectric function
of diamond is displayed in a dark gray circle [44].

Within the framework of TDDFT, the standard method based
on the adiabatic local density approximation (ALDA) [48]
greatly underestimates the excitonic peak of a low-energy
peak in the spectrum. Improvements to the ALDA, such as
the GGA, have not fared much better. Recently, several new
methods have been proposed to accurately describe the exci-
tonic effect in the frequency domain; for example, Nazarov
et al. [7] developed the adiabatic TDDFT formalism for the
kinetic energy-dependent (MGGA) XC functionals, Sharma
et al. [49] proposed a bootstrap method of a new parameter-
free approximation for the TDDFT XC kernel which is solved
from a self-consistent procedure, Trevisanutto et al. [50] pro-
posed a static approximation to the XC kernel based on the
jellium-with-gap model, Cavo et al. [51] proposed the pure
kernel which combines the derivative discontinuity and the
polarization functional, and Berger et al. [52] presented a fully
parameter-free density-functional approach using a simple dy-
namical polarization functional. In this paper, with allowance
for the decoherence TDDFT model of real-time methods
based on the GGA, we calculated the dielectric function as
a function of frequency of silicon crystals at different β in
Fig. 5. Surprisingly, it is found that the decoherence TDDFT
model greatly improves the results of the dielectric function
of silicon crystals, and the exciton effect in silicon can be
captured to some extent in the frequency space. In particu-
lar, the excitonic peak is considerably more pronounced at
β = 0.03, but slightly underestimates the intensity of the first
excitonic peak. Moreover, for the negative value of β, the
dielectric function is close to the result without considering
decoherence, and it is also consistent with the result when
the positive value of β is relatively small, such as β = 0.01.
We also note that the divergence of the dielectric function at
low frequencies is obviously suppressed with allowance for
the decoherence TDDFT model, and the dielectric constant is
in good agreement with the empirical value. Also, real and
imaginary parts of the dielectric function look to shift towards
a lower frequency in comparison with the experimental value,

FIG. 5. In the longitudinal geometry, the real (upper panel) and
imaginary parts (bottom panel) of the frequency-dependent dielectric
function ε(ω) of silicon at ground state are plotted by a different
characteristic relaxation rate β. The experimental dielectric function
of silicon is displayed in a dark gray circle [7,45].

and the corresponding energy difference between the two
peaks of the imaginary part is consistent with the measured
value. This may be because of the well-known underestima-
tion of the bandgap energy in the GGA. Actually, we do not
expect the model and the experiment to be consistent in quan-
tity due to the influence of the exciton effects in silicon. To do
this, we would need to use the accurate time-dependent XC
potential and the correct atomic pseudopotentials with correct
bound and excited states. The present TDDFT results are
thus not meant for a quantitative comparison with experiment.
Although all the complex mechanisms are not fully accounted
for the TDDFT at the PBE level, our purpose is to clarify the
effect with allowance for a phenomenological description of
decoherence.

Finally, one should realize that within the framework of
DFT, both XC potential and XC kernel are needed to calculate
the dielectric function in frequency domain, while only XC
potential is needed in time domain. In principle, XC potential
and XC kernel are both nonlocal in time and space, so they
are very complicated. In practice, it needs approximations for
the accurate time-dependent XC potential and XC kernel with
nonlocality in space and time, and the property of derivative
discontinuity. Based on the above points, the calculation of the
dielectric function in a time domain will introduce less error
than that in a frequency domain.

IV. CONCLUSIONS

In conclusion, on the one hand, by introducing polarization
density, a small improvement of the dielectric function ap-
proach can unify the treatment of longitudinal and transverse
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macroscopic geometries on the same footing. Moreover, the
improvement makes the approach of calculating dielectric
function more robust for the avoidance of numerical diver-
gencies at low frequency near zero in some specific cases. On
the other hand, we conduct a numerical study of an improved
real-time current-based approach for calculating the dielectric
function of bulk periodic system, in which a phenomenolog-
ical description of decoherence has been incorporated within
the framework of TDDFT. Taking bulk diamond and silicon
as examples, with allowance for the decoherence, we have
verified the validity of the improvement implementation at the
level of real-time TDDFT dielectric function calculations in
the ground state by comparing with the corresponding exper-
imental result. It is concluded that the decoherence TDDFT
model can suppress the numerical divergence of low fre-

quency and grows the excitonic feature of silicon, although it
adopts the approximate time-dependent XC potential, demon-
strating the high promise of our decoherence TDDFT model
as a tool in the arsenal of TDDFT methods. These incremental
improvements are technically important and generally appli-
cable to other theories that do not necessarily rely on TDDFT.
Thus, this deserves to be investigated in future research theo-
retically.
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