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Fast reconstruction of multiphase microstructures based on statistical descriptors
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In this paper, we propose a hierarchical simulated annealing of erosion method (HSAE) to improve the
computational efficiency of multiphase microstructure reconstruction, whose computational efficiency can be
improved by an order of magnitude. Reconstruction of the two-dimensional (2D) and three-dimensional (3D)
multiphase microstructures (pore, grain, and clay) based on simulated annealing (SA) and HSAE are performed.
In the reconstruction of multiphase microstructure with HSAE and SA, three independent two-point correlation
functions are chosen as the morphological information descriptors. The two-point cluster function which contains
significant high-order statistical information is used to verify the reconstruction results. From the analysis of 2D
reconstruction, it can find that the proposed HSAE technique not only improves the quality of reconstruction, but
also improves the computational efficiency. The reconstructions of our proposed method are still imperfect. This
is because the used two-point correlation functions contain insufficient information. For the 3D reconstruction,
the two-point correlation functions of the 3D generation are in excellent agreement with those of the original 2D
image, which illustrates that our proposed method is effective for the reconstruction of 3D microstructure. The
comparison of the energy vs computational time between the SA and HSAE methods shows that our presented
method is an order of magnitude faster than the SA method. That is because only some of the pixels in the overall
hierarchy need to be considered for sampling.
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I. INTRODUCTION

The physical properties of porous material (such as
mechanical properties, capillary properties, electrical con-
ductivity, and permeability) are closely related to their
three-dimensional (3D) structure, which is composed of a
solid material skeleton and many crowded micropores [1–11].
It is of great significance to understand and model the internal
structure of porous material [12–15]. There are two methods
of reproducing the 3D microstructure of a porous material.
The first method is based on instruments such as the scanning
electron microscope (SEM) and computed tomography (CT),
and the focused ion beam (FIB). This method can directly
and accurately obtain the real 3D data of porous material, but
in many cases only the two-dimensional (2D) section of the
porous material can be obtained. Therefore, it is of great value
to reconstruct the 3D microstructure of porous material from
a 2D image in such case.

In the past few decades, a variety of reconstruction meth-
ods have been developed using the limited morphological
information contained in 2D images [16–40]. A widely used
reconstruction method is based on statistical feature functions.
Two common methods based on statistical reconstruction have
been actively adopted: the Gaussian random field method
(GRF) [25–27] and the simulated annealing method (SA)
[28–38]. The first method is based on the conditioning and
truncation of Gaussian random fields: Based on the given
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two-point correlation function, the field correlation function
is first constructed. Then, the Gaussian random field, whose
horizontal cutting results are correlated with the target
two-point correlation function, is generated from the field cor-
relation function. Although a variety of microstructures can
be generated with a two-point correlation function using this
method, it is difficult to extend to other correlation functions
and anisotropic multiphase media.

The simulated annealing method (also called the Yeong-
Torquato procedure) is treated as an energy minimization
problem, whereby one tries to minimize the energy between
the reference and reconstructed microstructure. This method
is model independent and can flexibly combine multiple sta-
tistical descriptors to more effectively describe the spatial
characteristics of random porous structures. In addition, this
algorithm is a global optimization algorithm that minimizes
the statistical feature difference between the reconstructed
image and the original 2D image to generate the optimal
structure.

This method has strong flexibility and universality, but due
to its randomness, this approach is time consuming for the
convergence of the objective function. In order to improve the
convergence rate, several methods in the SA reconstruction
framework [30,39,40] have been presented to improve the
performance of this method. Tang et al. [39] proposed a pixel
selection rule to speed up the reconstruction process, where
the selection probability of a pixel is determined by its number
of different phase neighbors (DPNs). Jiao et al. [30] proposed
the “surface optimization” rule to improve the reconstruction
speed, where pixels are divided into a low-energy subset and
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a high-energy subset. Only pixels in the high-energy subset
are selected. Alexander et al. [24] proposed a hierarchical
simulated annealing (HSA) method to reduce the compu-
tational cost so that more complex synthesis problems can
be attempted using this method on large multiscale images.
Although HSA can improve the reconstruction speed, it can
magnify the reconstruction error of coarse scale during the
synthesis process. With the process of the synthesis, the error
of the final reconstruction is continuously enlarged. All these
methods are mainly aimed at the reconstruction of a two-phase
microstructure. For the reconstruction of a multiphase mi-
crostructure, the hierarchical simulated annealing of erosion
method (HSAE) is proposed to improve the computational
efficiency.

The rest of this paper is arranged as follows: The de-
scription of the two-point correlation function for multiphase
microstructure is given in Sec. II. In Sec. III, our presented
method is briefly outlined. In Sec. IV, the reconstruction of
2D structures and 3D structures based on the reference 2D
images is performed, where the unconstrained two-point clus-
ter function C2(r) is computed and compared to illustrate the
advantage of our proposed method. It is noted that the pre-
sented method can reconstruct more accurate microstructure
from the reference 2D image. Finally, remarks are concluded
in Sec. V.

II. TWO-POINT CORRELATION FUNCTION
OF MULTIPHASE MICROSTRUCTURE

The two-point correlation function (TPCF) is acquired by
throwing numbers of random vectors on the microstructure,
examining the number fraction of the beginning and ending
of each vector (�r) lying in a particular phase (Fig. 1). For a
three-phase microstructure, there exist three phases (phase 1,
phase 2, and phase 3) with the volume fraction of each phase
defined as follows:

Vk

Vtotal
= vk, k ∈ [1, 2, 3], (1)

FIG. 1. Schematic illustration of different correlation functions.

where V1, V2, and V3 are the volumes of three phases, re-
spectively, and v1, v2, and v3 are their corresponding volume
fractions. Obviously,

3∑
k=1

Vk = Vtotal and
3∑

k=1

vk = 1. (2)

If N points are randomly thrown into a given microstruc-
ture and the number of points falling into phase k is Nk , then
the one-point probability function Pk can define the volume
fraction through the following relation as N (the total number)
is increased to infinity:

Pk = Nk

N

∣∣∣∣
N→∞

= vk . (3)

Now, randomly throw the vectors in a three-phase mi-
crostructure as shown in Fig. 1. Depending on the head and
the tail of these vectors falling within phase 1 or phase
2 or phase 3, there will be nine different probabilities,
P11, P12, P13, P21, P22, P23, P31, P32, P33, defined as follows:

Pkl (�r) = Nkl

N

∣∣∣∣
N→∞

{�r = −→rl − −→rk , (−→rl ∈ ∅l ) ∩ (−→rk ∈ ∅k )},

(4)

where Nkl is the number of vectors with the head in phase k
and the tail in phase l . Equation (4) defines a joint probability
distribution function to describe the occurrence of events con-
structed by two points as the head and tail of a vector when it
is randomly thrown into a microstructure N number of times.
The two-point probability function can be defined based on
two other probability functions such that

Pkl (�r) = P{(−→rl ∈ ∅l )|(−→rk ∈ ∅k )}P{(−→rk ∈ ∅k )}. (5)

The first term on the right-hand side of Eq. (5) is a condi-
tional probability function. Note that for very long distances
�r → ∞, the probability of the head point does not affect the
tail point and the two points become irrelevant or statistically
independent. The conditional probability function is reduced
to a one-point function,

P(−→rk ∈ ∅k ) = P{(�r → ∞), (−→rk ∈ ∅k )|(−→rl ∈ ∅l )}. (6)

The two-point correlation function will then be reduced to

Pkl (�r) = P(−→rl ∈ ∅l )P(−→rk ∈ ∅k ), (7)

or

Pkl (∞) = vkvl . (8)

For the periodic boundary condition of the microstructure,
the two-point correlation function is satisfied by the following
relationship:

Pkl (�r) = Plk (�r). (9)

Due to normality conditions, a three-phase microstructure
is satisfied by the following equations:

3∑
k=1

3∑
l=1

Pkl (�r) = 1, (10)
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3∑
l=1

Pkl (�r) = vk, (11)

3∑
k=1

Pkl (�r) = vl . (12)

Satisfying all three conditions for a three-phase microstruc-
ture [k, l ∈ (1−3)], three nonlinear correlation equations can
be obtained as follows:

P11 + P12 + P13 = v1, (13)

P21 + P22 + P23 = v2, (14)

P31 + P32 + P33 = v3. (15)

Because the probability functions are symmetric
(Pkl = Plk ), the nine probability functions will be reduced
to six independent functions, P11, P12, P13, P22, P23, P33.
In the reconstruction of three-phase microstructure, only
three independent probabilities need to be considered as
independent variables. In this paper, P11, P12, and P22

are chosen as the three probability parameters. The other
probability functions can be obtained through Eqs. (13)–(15).
In all reconstructed systems, the sampling is performed in
the X and Y directions in a porous medium. This sampling
procedure is more accurate than that by random sampling
(throwing random points into the system), because the former
exhaustively incorporates the information of each pixel in the
entire system.

III. RECONSTRUCTION METHOD

A. Simulated annealing

In the procedure of multiphase reconstruction, the modified
Yeong-Torquato technique (SA method) is utilized, where
some energy function E (x) is needed. The two-point proba-
bility function which contains numbers of properties of the
microstructure is chosen to express the structural informa-
tion. The energy function E (x) is expressed as the sum of
squared differences between the reference structure and the
reconstructed structure:

E (x) =
∑

r

[(P11(x) − P11)2 + (P12(x) − P12)2

+ (P22(x) − P22)2], (16)

where P11, P12, P22, and P11(x), P12(x), P22(x) are respec-
tively expressed as the selected two-point probability function
of the reference structure and the reconstructed structure.

The microstructure reconstruction, whose aim is to mini-
mize the energy function E (x), can be viewed as the optimized
problem. To evolve the digitized system toward the reference
medium [or, in other words, minimizing E (x)], the states
of two arbitrarily selected pixels of different phases are in-
terchanged. After the interchange is performed, the energy
E ′ of the new state and the energy difference �E = E ′ − E
between two successive states of the system are calculated.
Then the new state is accepted with probability P(�E ) via

(a) (b)

FIG. 2. The synthesis rule of reference image and the refinement
rule of a reconstructed image. (a) is the synthesis rule of the reference
image; (b) is the refinement rule of the reconstructed image.

the Metropolis method as

P(�E ) =
{

1, �E � 0
exp

(−�E
T

)
, �E > 0

, (17)

where T is the “temperature.” The decreased rate of T is
controlled by a cooling schedule which controls the system
to evolve to the desired state as quickly as possible without
falling into any local energy minimum. The algorithm is ter-
minated when the number of consecutive unsuccessful phase
interchanges is greater than a large number 2 × 105 � 0 or T
is lower than 1.0 × 10−38.

B. Hierarchical annealing of erosion method

To solve the problem of slow convergence in multiphase
reconstruction problems, a hierarchical annealing method is
proposed. The hierarchical annealing method is initiated from
reconstructing a coarse-scale image, which is then continu-
ously refined until the desired size has been achieved. At
each scale, the reconstruction is performed as an independent
simulated annealing problem.

The hierarchical annealing method has two key parts: the
synthesis of the reference image and the refinement of the
reconstructed image shown in Fig. 2. Figure 2(a) shows the
schematic of the process for synthesizing coarse reference
images from the original high-resolution image, in which x(s)

i j
represents an image at scale s where increasing s signifies
progressively coarser scales, and x(s)

i j denotes the pixel value of
x(s) at position i j. Let {i1 j1, i2 j2, i3 j3, i4 j4} be the indices of
the children of x(s+1)

i j at scale s. For a given three-phase struc-

ture, the coarser-scale representation x(s+1)
i j can be obtained

from the finer-scale image x(s) using the following rule:

x(s+1)
i j = xs

(2i)(2 j), where i ∈
(

0, 1, . . . ,
width

2

)
and

j ∈
(

0, 1, . . . ,
height

2

)
. (18)
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(a) (b)

FIG. 3. Black pixels represent structural elements. (a) shows the
2D structural elements; (b) shows the 3D structural elements.

The width and height are the width and height of finer-scale
image x(s). The coarsening of the original high-resolution
target image will introduce errors in the coarse images. The
coarsening will cause some information about the microstruc-
ture to be lost (leading to inaccurate reconstruction), where
the lost information is located at the intersection of different
phases.

Another key part of the hierarchical annealing method is
the refinement of images during reconstruction. The recon-
struction, starting with the coarsest scale, is performed using

SA. Once a final solution of the coarsest scale is achieved,
each pixel is decomposed into four new pixels (children pix-
els). The refinement rules are defined as follows:

i f x(s)
i j ∈ {0, 128, 255}, then x(s−1)

ik jk
= x(s)

i j (k ∈ 1, 2, 3, 4).
(19)

This process is repeated until the reconstruction of zero
scale is completed.

In order to avoid the information loss of the synthesized
fine structure from the reconstructed structure of coarse scale,
the hierarchical simulated annealing of erosion method is
proposed. The key idea of our proposed method is that the
reconstructed structure of coarse scale is first synthesized as
the fine structure; then the fine structure is corroded by struc-
tural elements. The structural elements used for 2D and 3D
reconstruction in this paper are shown in Fig. 3. The synthe-
sized fine structure loses some information compared with the
reference image, where the lost information is also located at
the intersection of different phases. The corrosion operation
can make the intersection region of different phases in the
synthesized fine structure as an unstable state to participate
in the reconstruction, which can revise the error of the recon-
structed structure. Since the nonerosion pixels as the frozen
state are not allowed to be swapped, the number of pixels to
be swapped is reduced. Our proposed method can improve
the computational efficiency of multiphase microstructure

FIG. 4. The general scheme of hierarchical simulated annealing of erosion method (HSAE) and the comparison of its results against
simulated annealing (SA) reconstructions based on the two-point correction functions. In the scheme, N refers to the image width and height
in pixels, s is the hierarchical layer, and the gray pixels (the value is 200) are nonfrozen states. The final results for HSAE and SA are the best
reconstructions for these methods among five replicas.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

FIG. 5. (a) is the original image at a full resolution of 256 × 256. Its corresponding coarser scales are (b) 128 × 128 and (c) 64 × 64. (d)
is the result of SA reconstruction. The results of the HSAE reconstruction are (e) 64 × 64, (g) 128 × 128, and (i) 256 × 256. The erosion
structure as the initial structure of scale 1 and scale 0 are (f) 128 × 128 and (h) 256 × 256.

reconstruction. In the process of hierarchical reconstruction,
each scale is treated as a separate annealing procedure. For
the coarsest structure and the finer structure reconstruction,
the temperature is chosen so that the probability p for �E � 0
respectively equals 0.5 and 0.1. For all scale reconstruction, T
is decreased according to the following cooling scheme:

T (k) = T (k − 1)λ, (20)

where k is the time step and λ is a tuning factor (λ = 0.99
for all reconstructions presented here). The periodic boundary
condition was applied for statistical function calculation.

IV. DISCUSSION AND RESULTS

In this section, the 2D reconstructions of three-phase struc-
tures are first performed on SA and HSAE, respectively.
Then the reconstruction method is applied to perform the
3D reconstruction of the sandstone sample. For each three-
phase microstructure, five stochastic reconstructions were

performed for both the SA and HSAE methods to investigate
its variability. Two metrics are used to evaluate the accu-
racy of the SA method and the HSAE method: (1) the final
reconstruction energy; (2) the error based on the two-point
clustering function. The final reconstruction energy is a direct
measure of the effectiveness of the stochastic reconstruc-
tion process, showing how easily the system can reach the
ground state. The two-point clustering function with impor-
tant higher-order statistical information is a measure of both
pore connectivity and accuracy.

A. SA and HSAE performed on the 2D reconstruction
of three-phase structure

In this paper, two random images with size 256 × 256
are performed on the 2D reconstruction of the three-phase
structure, shown in Figs. 4 and 5. The hierarchical reconstruc-
tion of three-phase microstructures, in which each reference
structure is rescaled by the coarsening rule of Eq. (18), has
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TABLE I. Statistics for the best reconstructions using HSAE and SA methods for each of the original 2D images.

Three-phase ring Sandstone

The best replica for the sample SA HSAE SA HSAE

Final energy [according to Eq. (16)] 1.58 × 10–4 1.09 × 10–5 3.56 × 10–6 2.85 × 10–6

Cluster error (pore phase) 8.51 × 10–5 6.7 × 10–6 0.000323 0.000268
Computation time (s) 679 114 268 94

three hierarchical levels. The general scheme of our proposed
method is shown in Fig. 4. Similar to SA, a random mixture
of pixels for the coarsest scale s is first generated accord-
ing to the ration of the white, gray, and black phases of
the reference structure. After T is lower than 1.0 × 10−38 or
2 × 105 consecutive unsuccessful permutations are reached,
the reconstruction of the coarsest scale s is completed. Each
pixel of the reconstruction is decomposed into four new pixels
to move to the next hierarchical level, which is then corroded

as the initial structure of the s-1 level (the corroded struc-
ture is then randomly changed to the white, gray, or black
phase based on the next scale reference structure). Because
each scale is treated as a separate annealing procedure, for
the reconstruction of the second level s = 1 and the final
level s = 0, the initial temperature is chosen so that the
probability p equals 0.1 for �E � 0 and the annealing is
completed until the same criteria as for the SA method are
reached.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

FIG. 6. (a) is the original image at a full resolution of 128 × 128. Its corresponding coarser scales are (b) 64 × 64 and (c) 32 × 32. (d) is
the result of SA reconstruction. The results of the HSAE reconstruction are (e) 32 × 32 × 32, (g) 64 × 64 × 64, and (i) 128 × 128 × 128. The
erosion structure as the initial structure of scale 1 and scale 0 are (f) 64 × 64 × 64 and (h) 128 × 128 × 128.
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(a) (b)

(c)

FIG. 7. Comparison diagrams of the two-point correlation function (TPCF) for the original and the reconstructed images. (a) is the two-
point correlation function P11 for the clay phase; (b) is the two-point (clay-pore) correlation function P12; (c) is the two-point correlation
function P22 for the pore phase.

The best reconstructions of two random images based on
the SA and HSAE methods are displayed in Figs. 4 and 5. The
comparisons of the metrics for the reconstructions are shown
in Table I. As can be seen from Table I, the HSAE reconstruc-
tions exceed the SA reconstructions in terms of the metrics
used. After annealing termination, the final reconstruction
energy of the HSAE method is lower, and according to the
clustering function, the overall connectivity and accuracy of
the HSAE method are approximately orders of magnitude
better than the SA reconstruction. Because only some of the
pixels are needed to participate in the finer-scale reconstruc-
tion, the reconstruction time of our proposed method is faster
than that of the SA reconstruction. From Table I, it can be
seen that the proposed method can not only improve the re-
construction speed but also the reconstruction accuracy. The
C2(r) function of pore phase for the reconstruction of the
scale s = 2 and the scale s = 1 shown in Figs. 4 and 5 is also
compared to the corresponding reference microstructure. The
errors for the reconstruction of the scale s = 2 and the scale
s = 1 with the HSAE method are 5.17 × 10−5 and 1.26 ×
10−4 shown in Fig. 4 and 7.64 × 10−6 and 1.14 × 10−5

shown in Fig. 5, which illustrates that the HSAE method also
can accurately reconstruct the microstructure of the coarse
scale.

B. Rreconstruction of the 3D microstructure

The 2D reconstructions for three-phase microstructure
have been performed, which demonstrates that our pro-
posed method can generate more accurate microstructures
than the SA method. A three-phase reservoir sandstone,
whose corresponding coarser-scale representations are shown
in Figs. 6(a)–6(c), is considered for reconstructing its corre-
sponding 3D structure using the method introduced above.
The three constituents of reservoir sandstone are clay (phase
1), pore (phase 2), and grain (phase 3), and three independent
two-point correlation functions (P11, P12, and P22) are chosen
for the reconstruction of three-phase microstructure.

The proposed reconstruction method, starting with a coarse
initialization structure (32 × 32 × 32), is shown in Fig. 6.
For the finer-scale reconstruction shown in Fig. 6, only the
corroded structural pixels (red pixels) that are present on the
interface between different pixel regions participate in the
finer-scale reconstruction. The finally reconstructed structures
shown in Figs. 6(d) and 6(i), which exhibit the phase distri-
bution for the computer-generated three-phase microstructure
with a 4.8% volume fraction of clay, 32.5% of pore, and
62.7% of grain, own 128 × 128 × 128 pixels. The three in-
dependent two-point correlation functions are compared with
the original reservoir sandstone image shown in Fig. 7. The
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FIG. 8. Energy vs computational time (on a HP 348 G7 computer
with 1.60 GHz Intel core i5 class machine): the comparison of 3D
reconstruction for HSAE and SA methods.

results show that the method adopted here can reproduce
microstructures with the same statistical information based on
two-point statistics in a 3D microstructure.

The main advantage of the proposed method is the
reduction of the computational time in the process of recon-
struction. The comparison of the reconstruction energy vs
computational time between the SA and HSAE methods is
shown in Fig. 8, where the energy of the hierarchical anneal-
ing decreases rapidly and the final reconstruction energy of
our proposed method is converged lower than that of sim-
ulated annealing. The energy curve of our proposed method
has sharp peaks, which is because the fine-scale initial struc-
ture is first synthesized from the reconstructed coarse-scale
structure and then eroded by structural elements, resulting in
local configurations in the high-energy states. Since these high
energies are due to local errors or inconsistencies, they can
be easily corrected, and the energy drops immediately as the
sampling algorithm progresses. As can be seen from Fig. 8,
the final reconstruction time of the HSAE method is an order
of magnitude faster than that of the SA method.

V. CONCLUSION

In this paper, a hierarchical annealing of erosion method is
proposed to reconstruct the three-phase microstructure, which
can improve the computational efficiency of reconstruction.
In the reconstruction of three-phase microstructure, the two-
point correlation function is chosen as the morphological
descriptor and three independent two-point correlation func-
tions are needed.

In this work, the 2D reconstructions of sandstones are
carried out first. Experimental results show that the phase dis-
tribution of the reconstructed image for our proposed method
is more similar to that of the original image than SA re-
construction. By comparing the two-point clustering function
between the reconstructed image and the reference image,
it is shown that the proposed method can generate more
morphological information similar to the original image and
improve the accuracy of reconstruction. Next, the 3D recon-
struction of a three-phase microstructure is performed, where
the two-point correlation functions of the reconstruction 3D
microstructure are in excellent agreement with that of the
original 2D image. This illustrates that our proposed method
is effective for the reconstruction of 3D microstructure. The
energy and computational time of the SA method and the
HSAE method are compared, which shows that our method
is an order of magnitude faster than the SA method. That is
because only some of the pixels are needed to be considered
for sampling in our proposed method.
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