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Long-lived mode (LLM) in rotating plasmas is studied by using a alternative dispersion relation. This work
offers a theoretical interpretation of LLM observed in experiments [Heidbrink, Phys. Rev. Lett. 57, 835 (1986);
Chapman, Nucl. Fusion 50, 045007 (2010)]. It is found that in rotating plasmas, LLM can transform from the
fishbone mode. The real frequency of LLM, independent of the characteristic frequency of energetic ions (EIs), is
proportional to the on-axis rotation frequency of bulk plasma. The key conditions to cause transition between the
fishbone mode and LLM are weak magnetic shear (for both monotonic and nonmonotonic safety factor profile)
and plasma rotation. The fishbone mode can evolve into LLM only when rotating speed is bigger than a critical
value in low shear plasmas. The critical beta of EIs to induce LLM is very low. LLM is nonresonantly excited
by EIs, and the driving sources mainly come from plasma inertia.
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I. INTRODUCTION

The fishbone (FB) mode, energetic particles (EPs) exci-
tation of internal kink mode with mode number n = 1 via
resonance, was first observed in PDX neutral-beam injection
(NBI) experiment [1]. Subsequently, the FB mode was suc-
cessfully explained by the drift kinetic theory of EPs [2–4].
Besides FB mode, another branch of low frequency mode, the
magnetic perturbation behaving long lasting saturated ideal
internal kink instability [5–11], first observed during tangen-
tial NBI heated plasmas in PBX tokamak [5], has frequency
close to on-axis toroidal rotation frequency of bulk plasmas. In
MAST NBI heated discharges, it was found that the n = 1 FB
modes usually evolve into the long-lived mode (LLM), which
can be observed in the plasmas with safety factor profile either
weakly reversed shear or broad low-shear regions [6,7]. The
results in HL-2A tokamak show that the FB mode can evolve
into LLMs in the case of monotonic safety factor profile
with weak magnetic shear in the core plasma region [12–14].
Experiments indicate that plasma rotation and weak magnetic
shear in the core plasma regions play crucial role in causing
the transition between FB mode and LLM [6–16]. Moreover,
in comparison with FB instabilities driven by energetic parti-
cles, the critical beta to drive LLM is relatively low; thus it is
easy for LLM to be excited by EPs [9].

It is well known that the resonant driving sources to ex-
cite FB instabilities mainly come from pressure gradient of
EPs (i.e., �Ph). Therefore, redistributions of energetic ions,
exerting an important influence on FB mode and LLM, tend to
flatten the pressure profile of EIs in the central region [15,16],
and FB mode may be not observed during LLM activity due
to decreasing of �Ph. Experiments show that, during LLM
activity, NBI ions are redistributed but not significantly lost
[15,16]. Dramatically decreasing of EP lost during LLM ac-
tivity maybe related to lack of resonance between energetic
particles and perturbations, which is the necessary condition

for LLM to have long lasting saturation. Thus the resonant
excitation source from �Ph is weakened; instead, the nonres-
onant excitation from plasma inertia is dominant, indicating
that LLM, a branch of nonresonant MHD mode, may have
zero frequency in static plasmas.

On many tokamaks, such as HL-2A, MAST and TCV,
when FB mode evolves into LLM, the frequency depends on
plasma rotation [5–10]. For instance, the results in HL-2A
NBI heated experiments [9], where the frequency of LLM is
10.5 kHZ, are in exact agreement with the toroidal rotation
frequency at the location of minor radius r = 0.2 cm (i.e.,
near the position of the magnetic axis, see Fig. 3 in Ref. [9]).
Meanwhile the lines shown in Fig. 1(a) are a time evolution of
the mode frequency (solid line) and on-axis toroidal rotation
frequency (dashed line) in HL-2A shot 21787. Similar results
were also observed in MAST neutral beam injection heated
experiments. The lines shown in Fig. 1(b) are a temporal
evolution of the mode frequency of LLM (solid line) and
central plasma rotation frequency (dashed line) in MAST shot
21781 with major radius R0 = 0.9 m between t = 0.256 s and
0.32 s [6–8]. It can be learnt from the experimental results in
Fig. 1 that the frequency of LLM is in good agreement with
toroidal rotation frequency of bulk plasmas near magnetic
axis, implying that the real frequency of LLM is almost zero
in static plasmas. The numerical simulation of the FB mode in
static plasmas shows that the real frequency of the FB mode
can evolve to a value being approximately close to zero [17].
In addition, the long-lived mode is also explained as a branch
of a nonresonant FB mode excited by energetic ions but with
a local interchangelike mode structure [18].

This paper is organized as follows. In Sec. II, the new
dispersion relation to study the FB mode and the correspond-
ing analytical results are given. The numerical results are
presented in Sec. III, and the main results are summarized in
Sec. IV.
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FIG. 1. Temporal evolution of mode frequency of LLM (solid
line) and central toroidal rotation frequency (dashed line) in HL-2A
discharge 21787 (a) and in MAST shot 21781 (b).

II. THE DISPERSION RELATION IN ROTATING PLASMAS

In rotating plasmas, the inertial term is modified by rotation
due to the contribution of centrifugal force and Coriolis force.
When both centrifugal and Coriolis forces are taken into ac-
count, the equation of motion in ideal plasmas can be written
as [19]

ρ
∂δ

⇀

v

∂t
= δ

⇀

J × ⇀

B + ⇀

J × δ
⇀

B − ∇δpc − ∇ • δ
⇀
⇀

ph +ρ
⇀

ac. (1)

The last term on the RHS of Eq. (1) is the contribution from

plasma rotation, and the expression
⇀

ac = 2δ
⇀

v × ⇀

� − δρ
⇀

V 0 •
∇ ⇀

V 0/ρ−δ
⇀

v • ∇ ⇀

V 0 − ⇀

V 0 • ∇δ
⇀

v is the effective inertial force
acceleration generated by Coriolis and centrifugal forces. The
variables ρ and � are mass density of plasma and rotation
frequency, respectively. The variable δ

⇀

v is perturbed velocity
of plasmas, δρ = −�ρ · ξ is plasma perturbed density and
V0 is equilibrium flow. The first two terms and the third one
on the RHS of Eq. (1) are current and bulk plasma pressure
perturbations, respectively. The latter is δpc = −ξ · �Peq −
�Peq� · ξ with � being the ratio of specific heat and Peq

being the equilibrium pressure of thermal particles. The fourth
term on the RHS of Eq. (1) is the kinetic pressure of EIs

which is written as δ
⇀
⇀

ph = δph⊥
⇀⇀

I + (δph// − δph⊥)
⇀

b
⇀

b. Here
⇀⇀

I is unit tensor and
⇀

b = ⇀

B/|B| is unit vector along equilibrium
magnetic field. The perpendicular and parallel components
of pressure δph⊥, δph// are given in Refs. [2,20]. The radial
profiles of rotation �(

	

r ) and plasma density ρ(
	

r ) are, re-
spectively, assumed to be �(r) = �0g(r) and ρ(r) = ρ0 f (r)
with g(r) = [1 − [(r − r�)/a]2]σ� and f (r) = [1 − (r/a)2]σρ .
Here, ρ0 and �0 are the values of �(0) and ρ(0) and r� is the
peak position of rotation profile. The density profile of en-
ergetic ions is assumed to be n0h(r)∼exp[−σ 2(r − rh)2] and
a slowing-down energy distribution of EIs is used [2,3]. The
pitch angle distribution of EIs is h(α)∼exp[−(α − α0)2/�2]
with pitch angle α = μB/E (μ is the magnetic moment and
E is the energy of EIs). The variable � denotes the half
width of pitch angle distribution and α0 = μB0/E is the peak
position of h(α). A steplike trial function (i.e., the perturbed
plasma displacement) inside q = 1 (or qmin) surface is used
to establish the dispersion relation. Assuming circular cross
sections, through straightforward manipulation of Eq. (1) in
toroidal geometry (see the appendix), a dispersion relation

including both monotonic (positive shear) and nonmonotonic
(negative shear) safety factor profile can be written as follows:

i
ω − �0

ωA

[(
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2ŝωA
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ω+ω−

)l(
1 + g1�0

ω − �0

)

+i
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(
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ω − �0

)]
f1 = δŴc + δŴk, (2)

δŴk = βhR

2rsI

∫ √
α2

√
α1

h(α2)dα

∫ 1

r̂1

r̂d r̂
dn0h

dr̂
KK2

×
[

1− K2

qKc

(
1+ (ω − �0)r̂

qKcωds
ln

(
1 − qKcωds

(ω − �0)r̂

))]
,

(3)

δŴc = 3π (1 − q0/ min)ε2(13/144 − β2
ps

)
, (4)

where the normalized minor radius
	

r = r/rs, and rs is the
position of inertial layer. The integer l set to be l = 0 and
l = 1 denotes the case of monotonic safety factor profile (i.e.,
positive magnetic shear) and a nonmonotonic one but with
qmin slightly bigger than unity (i.e., negative magnetic shear),
respectively. For the former, the magnetic shear at the location
of inertial layer is ŝ = rsq′

s while for the latter, the magnetic
shear at the qmin position is ŝ = r2

s q′′
s instead of depending

on dq/dr thanks to the derivatives of safety factor profile at
this position is zero. The safety factor profiles in the case of
monotonic and nonmonotonic distribution are assumed to be,
respectively,

q = q0 + (1 − q0)r̂2, (5)

q = qmin + αq(1 − r̂2)2, (6)

for the monotonic q profile in Eq. (5), q0 = q(0) represents
the safety factor value on the magnetic axis whereas
for the nonmonotonic q profile in Eq. (6), qmin denotes
a minimum safety factor value at rs where q′(rs) = 0
and δq = q(rs) − 1 � 1 which causes qmin to be slightly
above 1. αq is a constant to describe the shear of q profile.

ω± =
√

ω−�0
ωA

± r2
s q′′

sδq, βps = −( R0
rs

)2β0(Cp + C�
2�2

0R0a
β0V 2

A
),

I = ∫ √
α2√
α1

h(α2)dα
∫ 1

r̂1
Kn0hr̂dr̂, β = 2μ0 p

B2 is a beta of plasmas
with β0 = β(0), Eq. (4) is given in Ref. [21]. ε = rs/R0 is
the inverse aspect ratio and R0 is the major radius. βh is
the beta of EIs, K2 = 2E/K−1 (K and E are the complete
elliptic integrals). Kc = 2E/K − 1 + 4s(E/K − 1 + k2) with
argument k2 = (1/α−1 + ε

	

r ))/(2ε
	

r ). Equation (3) denotes
resonant excitation from �Ph while the LHS of Eq. (2) shows
the nonresonant one from plasma inertia. In the competition
between resonant and nonresonant excitation, the latter wins,
e.g., in the case of the low shear case, the LHS of Eq. (2)
being dominant, can result in LLM. βh in Eq. (3) is defined
as the ratio of pressure of energetic ion to magnetic pressure.
The variable ωds in Eq. (3) is the toroidal precessional
frequency of energetic ions at the location of inertial layer.
This frequency is proportional to beam energy Eb, and can be
written as

ωds = Eb

mrsω0R0
, (7)

where ω0 is the cyclotron frequency. For the resonant mode,
such as the FB instability, the real frequency of the mode,
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being strongly dependent on ωds, is directly proportional to
beam energy Eb. On the contrary, for the LLM, the real fre-
quency of LLM hardly depends on beam energy due to the fact
that the nonresonant excitation is dominant. The coefficients
C1, C2, Cp and C� in Eq. (2) are, respectively, given as follows:

C1 = 2g1 − 2

f1

∫ 1

0
r̂d r̂ f (r̂)g(r̂),

C2 = 1

2 f1

∫ 1

0
dr̂r̂2g2(r̂) f ′(r̂),

Cp = f1 +
(
1 − r̂2

0

)
f1 − 1

r̂2
0 (σρ + 1)

,

C� = f1g2
1 − 2

∫ 1

0
dr̂r̂ f (r̂)g2(r̂),

where f1 = f (1), g1 = g(1) and A′ = dA/d
	

r denotes the
derivatives of f and g.

Equation (2) is the dispersion relation to study the FB mode
and the LLM. By solving this nonlinear algebra equation of
ω(= ωr + iγ ), the features of the mode and the transition
conditions between the FB mode and LLM can be obtained.
In Sec. III, the numerical solutions of Eq. (2) are presented.
However, in this section, in order to well understand the phys-
ical mechanism of LLM, it is valuable to give an analytical
solution of Eq. (2) where the conditions C2 � C1 and for
toroidal rotation g1 � 1 are satisfied. Thus the terms of g1

and C2 in Eq. (2) can be neglected. Meanwhile the variables
in the brackets of Eq. (3),

	

r = 1, Kc being independent of
	

r
are assumed. Besides, in the case of low shear, Kc = K2 in
Eq. (3), and for convenience, the analytical solutions of Eq. (2)
are only given in the case of δŴc = 0 and positive shear, i.e.,
l = 0 in Eq. (2). It is thus that Eqs. (2) and (3) are reduced to
the following:

i
ω − �0

ωA

[
1 + i

C1�0

ŝ2ωA

]
f1 = δŴk, (7a)

δŴk = −
[
ω − �0

ωds
ln

(
1 − K2ωds

ω − �0

)]
βhR

2rsI

×
∫ √

α2

√
α1

h(α2)dα

∫ 1

r̂1

r̂d r̂
dn0h

dr̂

K

q2
. (7b)

By substituting Eq. (7b) into Eq. (7a), the analytical solu-
tion can be obtained as follows:

ωr =�0 + Kcωds

2

[
exp(−X )−cos

η

βh

][
cosh(X )−cos

η

βh

]−1

,

(8)

γ = −Kcωds

2

[
cosh(X ) − cos

η

βh

]−1

sin
η

βh
, (9)

where, η = 2Iεωds f1

I ′ωA
, X = ηC1�0

ŝ2ωAβh
, I ′ = ∫ √

α2√
α1

h(α2)dα∫ 1
r̂1

r̂d r̂ dn0h
dr̂

K
q2 . In Eqs. (8) and (9), the terms including �0

are the nonresonant contributions from plasma rotation
while other terms are resonant contributions from �Ph.
The requirement of X � 1 indicates that the nonresonant
excitation is dominant. Equation (9) shows that, without

rotation, the analytical growth rate can be reduced as
γ = −Kcωds[2tg(0.5η/βh)]−1 and the critical βh to drive the
FB mode can be obtained by letting γ = 0, and βh,crit = η/π .
Moreover, when βh is sufficiently large, the growth rate
γ ∝ βh, is a linear function of βh, which can be checked in
Sec. III A. But in the case of X � 1, a nonresonant mode can
be driven by EIs and the critical βh is

βh,crit = ηC1�0

ŝ2ωAX
. (10)

Since X � 1, the critical βh to drive the mode must be very
low. Moreover, the real frequency of the mode is close to �0

and the growth rate is low, which exhibits the LLM activity
observed in experiments [5–10]. Here weak magnetic shear
is one of the most important conditions to cause X � 1 to
be satisfied. Besides, plasma rotation and the flat EI density
profile (i.e., I ′ � 1) are another requirement to trigger LLM.
But for the latter, according to Eq. (9), it is unfavorable for
much too flattened EI density profile to drive LLM, and a
sufficiently large gradient of EIs is necessary.

Equation (8) shows that, without rotation (i.e., X = 0), the
mode has real frequency ωr ∝ ωds and is typical of the FB
mode. However, when X � 1, for instance, low shear, the
mode is LLM. By letting the second term in Eq. (8) equal to
τ , an infinitesimal quantity, an equation relating to critical �0

causing the FB mode to transform into LLM can be obtained
as follows:

τe2X + (1 − 2τ ) cos(η/βh)eX − (1 − τ ) = 0. (11)

In general, βh∼O(η) and cos(βh/η)∼0.5. By solving
Eq. (11) and taking the limit as τ approaches zero of X , this
gives the dependence of �0 on ŝ as follows:

�0

ŝ2
= ωA ln 2

|C1| . (12)

Equation (12) is the critical �0 causing the FB mode to
transform into or from LLM in low shear plasmas.

III. THE NUMERICAL RESULTS

In this section, the numerical solutions of Eq. (2) are pre-
sented under the conditions of positive magnetic shear and the
negative one, respectively. Since the LLM was observed in
both monotonic and nonmonotonic q profile plasmas [6,7,12–
14], it is necessary to discuss the transition between the FB
mode and LLM for different safety factor profiles, for in-
stance, in plasmas with positive (i.e., monotonic q profile)
and negative (i.e., nonmonotonic q profile) magnetic shear.
In Sec. III A, the features of the LLM and the FB mode for
the former are discussed while those for the latter are given in
Sec. III B.

HL-2A is a medium size tokamak with minor radius a =
40 cm and major radius R0 = 165 cm, the toroidal magnetic
field is B0 = 1.3 T, the on-axis electron density is ne = 2.5 ×
1019 m-3 during near-axis NBI heating, the temperature of
thermal particles Ti = Te = 1.5 keV [22]. The beam energy
Eb = 40 keV. The on-axis Alfven frequency is ωA = 3.4 ×
106 rad/s. Figure 2(a) shows safety factor profiles inside q =
1 (or qmin) surface with the q = 1 (or qmin) flux surface being
at rs = a/2 [12], and Fig. 2(b) is EI density profiles (blue

055208-3



WEICHAO XIE PHYSICAL REVIEW E 105, 055208 (2022)

0 0.25 0.5 0.75 1
0.9

1

1.1

r/rs

q

(a)

q = q0 + (1− q0)r̂2

q = qmin + αq(1− r̂2)2

r̂ = r/rs

0 0.2 0.4 0.6 0.8 1
0

0.2
0.4
0.6
0.8

1

r/a

n̂
0
h
,g

(r̂
)

(b)

EIden
profile

rotating
profiler̂h=0.16

σ=2.8 σΩ=30

EX
F it

FIG. 2. (a) Safety factor profile inside q = 1 (qmin) surface, the
dashed (solid) line denotes positive (negative) magnetic shear. (b)
The profiles of EI density (blue lines) and rotation (red line). The
dashed line is experimental EI density profile given by ONETWO
and the solid blue one is plotted by n0h(r)∼exp[−σ 2(r − rh )2] with
σ = 2.8,

	

rh = 0.16. The dotted line denotes the position of q = 1
(qmin) flux surface.

lines) and plasma rotation profile (red line). The on-axis safety
factor is set as q0 = 0.96 for positive magnetic shear and
qmin = 1.03, αq = 0.06 for negative one. The weak and strong
magnetic shear can be realized by adjusting q0 and αq. In
Fig. 2(a), the dashed and solid lines are plotted by using
Eqs. (5) and (6), respectively. In Fig. 2(b), the dashed blue
line is the experimental EI density profile calculated with
ONETWO code and the solid blue one is plotted by n0h(r). The
solid red line is the plasma rotation profile plotted by g(r)
with

	

r� = 0.5, σ� = 30. In the case of toroidal rotation, it
is necessary to set

	

r� = 0.

A. The long-lived mode in weak magnetic shear plasmas
with monotonic q profile

In this section, we first discuss the transition between the
FB mode and LLM with the monotonic q profile (i.e., the
positive magnetic shear) by solving Eq. (2). According to
Eq. (5), the magnetic shear at the position of q = 1 flux
surface is defined by ŝ = rsq′

s. Figure 3 is real frequency (a)
and growth rate (b) of LLM (red lines) and the FB mode
(blue lines) as functions of βh for different beam energy with
�0 = 2 × 104 rad/s,

	

r� = 0, σ� = 7 and σρ = 2. The mag-
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FIG. 3. Real frequencies (a) and growth rates (b) of LLM (red
lines) and the FB mode (blue ones) as functions of βh for different
beam energy (Eb) with �0 = 2 × 104 rad/s,

	

r� = 0, σ� = 7, σρ = 2,
σ = 2.8 and

	

rh = 0.16. The magnetic shear ŝ = 0.072 for LLM and
ŝ = 0.81 for FB. The circles are theory results while other lines are
the numerical results by solving Eq. (2). The solid red and blue lines
denote beam energy Eb = 40 keV whereas the dashed red and blue
ones represent Eb = 60 keV.

netic shear ŝ = 0.072 for LLM and ŝ = 0.81 for the FB mode.
The solid lines denote the case of Eb = 40 keV whereas the
dashed lines represent that of Eb = 60 keV. The circles are
theoretical calculations by using Eqs. (8) and (9) while other
lines are numerical results given by solving Eq. (2). The blue
lines show that the FB mode can be excited by EIs when βh

exceeds a threshold. The real frequency of FB is proportional
to beam energy Eb and the growth rate increases with βh. The
red lines show an interesting result. In the case of weak mag-
netic shear, the mode, similar to the FB mode, can be driven
by energetic ions when βh exceeds a threshold. The growth
rate of the mode increases with βh. Especially, it is interesting
that the real frequency of the mode, almost independent of
beam energy, is equal to �0, the on-axis toroidal rotation
frequency, which is highly similar to the features of LLM
observed in experiments [5–10]. This result implies that LLM
is a nonresonant mode driven by EIs due to zero frequency
in static plasmas. Although the resonant excitation from �Ph

of EIs for LLM is not dominant any more, the critical βh to
drive LLM shows that, without EIs, the mode is stable and
difficult to be observed in experiment. By comparing with the
FB mode, LLM is easier to be excited by EIs than the FB
mode due to sufficiently low critical βh. The solid red lines and
circles in Fig. 3(b) show that the growth rates of LLM given by
theory are different from those of numerical calculations. The
differences mainly result from the neglected terms in Eq. (2).
By comparing the red lines with blue ones in Fig. 3, it can
be learnt that LLM instability only occur under the condition
of weak magnetic shear and the mode is characterized by
zero real frequency in static plasmas. On the contrary, in the
case of strong magnetic shear, the mode behaves as the FB
instabilities with mode frequency being related to the toroidal
precessional frequency of EIs. Thus different magnetic shear
is used to discuss the problems in this section.

An analytical solution predicts a critical rotation frequency
to cause the FB mode to evolve into LLM in low shear
plasmas. Moreover, the mode frequency of LLM is strongly
dependent on rotation frequency. Consequently, it is worth-
while discussing the influence of toroidal rotation on the mode
in weak magnetic shear plasmas, so as to understand the phys-
ical mechanism cuasing the transition between the FB mode
and LLM. The lines in Fig. 4 are real frequency (a) and growth
rate (b) of the mode as functions of �0 for different beam
energy with ŝ = 0.072,

	

r� = 0, σ� = 7. The solid and dashed
lines represent beam energy Eb = 40 and 60 (keV), respec-
tively. The dotted lines are theory calculations using Eqs. (8)
and (9). It can be seen from Fig. 4(a) that, in rotating and weak
magnetic shear plasmas, the real frequency of the mode first
decreases with �0, when toroidal rotation frequency exceeds a
threshold (say 8 krad/s), and linearly increases with �0. When
�0 > 8 krad/s, the real frequency of the mode is equal to the
on-axis toroidal rotation frequency, moreover independent of
beam energy, which is in good agreement with the LLM ob-
served in experiments [5–10]. Also, the measured frequency
of LLM at the location of minor radius r = 0.2 cm in HL-2A
is around 10.5 kHz (i.e., 66 krad/s, given by the dashed pink
line in Fig. 3(c) in Ref. [9]) which agrees well with that in
Fig. 4(a). On the other hand, Fig. 4(a) also shows that, in static
plasmas, e.g., �0 = 0, the mode is typical of the FB mode due
to the real frequency of the mode being proportional to beam
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FIG. 4. Real frequencies (a) and growth rates (b) of the mode
as functions of toroidal rotation frequency with ŝ = 0.072,

	

r� = 0,
σ� = 7, σρ = 2, βh = 0.004, Eb = 40 keV for solid lines and Eb =
60 keV for dashed lines. The dotted lines denote theory calculation
with the same parameters as the red lines while other lines are the
numerical results by solving Eq. (2). The solid red and dotted lines
denote beam energy Eb = 40 keV whereas the dashed blue ones
represent Eb = 60 keV.

energy. Since LLM rotates with plasma, it must appear static
in the plasma frame, implying that LLM fails to resonate with
energetic ions. Consequently, it is difficult for LLM to cause
significant EIs loss, which agrees well with the experiments
[15,16]. Figure 4(b) shows that the growth rate of the mode
monotonically decreases with �0 and the growth rate of LLM
is much less than that of the FB mode. Figure 4 also indicates
that the transition between the FB mode and LLM only occurs
in rotating and weak magnetic shear plasmas. The minimum
ωr value in Fig. 4(a) shows that the critical �0 to trigger
transition is around 8 krad/s, which is almost independent of
beam energy and agrees with Eq. (12). In the case of strong
magnetic shear, for instance, ŝ = 0.81 (not plotted in Fig. 4),
the real frequency of the mode, being proportional to Eb,
monotonically increases with �0, indicating that the FB mode
is difficult to evolve into LLM whatever the speed of plasma
rotation is. Similar discussions will be done in the case of
nonmonotonic q profile in Sec. III B, for example, the results
in Fig. 7.

Besides rotation, magnetic shear is another important con-
dition to cause transitions between the FB mode and LLM.
The influences of magnetic shear in the case of the monotonic
safety factor profile on the modes are given in Fig. 5, where
the dashed, dash-dotted, and solid lines denotes beam energy
Eb = 40, 60 and 80 (keV), respectively. The lines in Fig. 5(a)
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FIG. 5. Real frequencies (a) and growth rates (b) of the mode
as functions of local magnetic shear with σ� = 7,

	

r� = 0, βh =
0.004, σρ = 2, �0 = 2 × 104 rad/s. The dashed, dash-dotted, and
solid lines denote the cases of Eb = 40, 60 and 80 (keV), respectively.
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FIG. 6. Real frequencies (a) and growth rates (b) of LLM (red
lines) and the FB mode (blue ones) as functions of βh for different
beam energy with �0 = 2 × 104 rad/s,

	

r� = 0, σ� = 7, σρ = 2 and
qmin = 1.03. The magnetic shear ŝ = 0.056 for LLM and ŝ = 1.28
for the FB mode. The solid red and blue lines denote beam en-
ergy Eb = 40 keV whereas the dashed red and blue ones represent
Eb = 80 keV.

show that, in the low shear region, for instance ŝ<0.1, real
frequencies of the modes are almost equal to the toroidal
rotation frequency of bulk plasmas. On the contrary, in the
high shear region, e.g., ŝ > 0.1, real frequency of the mode
increase with magnetic shear and are proportional to beam
energy Eb. The mode, in low shear plasmas, exhibits features
of LLM while in strong shear plasmas, shows that of the FB
mode. It can be concluded that weak shear is the necessary
condition to trigger LLM, which agrees with experiments and
theory.

B. The long-lived mode in weak magnetic shear plasmas
with nonmonotonic q profile

Besides the LLM observed in positive magnetic shear plas-
mas, in MAST weakly reversed shear plasmas, LLM was
also observed under the condition of nonmonotonic q profile
with a minimum at rs (the minimum q value position) where
q′(rs) = 0 and q(rs) is slightly above one [6–8]. By using
the q profile of Eq. (6) or the solid line in Fig. 2(a), the
LLM in reversed shear plasmas can be studied by numeri-
cally solving Eq. (2). However, considering dq/dr = 0 at the
location of q = qmin (i.e., the inertial layer), the safety factor
profile must be expanded to the second order at the position of
q = qmin flux surface (see the Appendix). Moreover, the value
of d2q/dr2 is proportional to that of dq/dr inside q = qmin

magnetic flux surface. Therefore the local magnetic shear can
be defined by ŝ = r2

s q′′
s . The strong and weak magnetic shear

can, respectively, be realized by changing the values of αq in
Eq. (6).

The results shown in Fig. 6 are, in reversed shear plasmas,
the real frequencies (a) and growth rates (b) of LLM (red
lines) and the FB mode (blue ones) as functions of βh for
different beam energy with qmin = 1.03, �0 = 2 × 104 rad/s,
	

r� = 0, σ� = 7. The local magnetic shear ŝ = 0.056 for LLM
and ŝ = 1.28 for the FB mode. The solid and dashed lines
represent beam energy Eb = 40 and 80 (keV), respectively.
The red lines in Fig. 6(a) show that, LLM in weakly reversed
shear plasmas, similar to that in positive ones, is character-
ized by frequency close to on-axis toroidal rotation frequency.
Moreover the real frequency of LLM, almost independent of
Eb, stays unchanged with increasing βh and is roughly equal
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FIG. 7. Real frequencies (a) and growth rates (b) of the modes as
functions of �0 with

	

r� = 0, σ� = 7, qmin qmin = 1.03, βh = 0.004,
the red and blue lines represent ŝ = 0.056 and ŝ = 1.28, respectively.
The solid red and solid blue lines denote beam energy Eb = 40 keV
whereas the dashed red and dashed blue ones represent Eb = 80 keV.

to 2 × 104 rad/s. The blue lines in Fig. 6(a) indicate that, in
strong magnetic shear plasmas, when βh is big enough, the
real frequency of the mode is proportional to Eb and the mode
behaves as the FB-like instability. The red lines in Fig. 6(b)
show that LLM can only be excited by EIs when βh exceeds a
threshold. Similar to those in Fig. 3, the motivation of different
magnetic shear being employed to discuss the problem is that,
in the case of nonmonotonic q profile, LLM bursts can only
occur under the condition of weakly reversed magnetic shear.

Shown in Fig. 7 is real frequency and growth rate of the
modes as functions of �0 in reversed magnetic shear plasmas.
The red lines represent LLM with ŝ = 0.056 (i.e., weak mag-
netic shear) while the blue lines do the FB mode with ŝ = 1.28
(i.e., strong magnetic shear). Figure 7(a) shows that, in weakly
reversed shear plasmas, similar to the counterparts in Fig. 4,
LLM occurs when rotation frequency exceeds a threshold
(e.g., 8 krad/s); moreover the mode frequency of LLM, being
almost independent of beam energy, is equal to �0, which is
similar to the experimental observations in MAST [5–7]. But
in strong shear plasmas (blue lines), the real frequency of the
mode, being proportional to Eb, linearly increases with �0,
and the mode exhibits the FB activities. It can be seen from the
blue lines that the real frequency of the FB mode is related to
the characteristic frequency of EIs, and the transition between
the FB mode and LLM is difficult in strong magnetic shear
plasmas. Therefore, the different magnetic shear is used to
discuss the possibility of transition between the FB mode and
LLM. Figure 7(b) also shows that the growth rate of LLM is
much less than that of the FB.

Especially, the red lines in Fig. 7(a) show that, in the case of
nonmonotonic q profile, the real frequency of the mode even
at �0 = 0, much different from the counterparts in Fig. 4(a),
hardly depends on Eb, which indicates that in weakly reversed
shear plasmas, the FB mode (or internal kink mode) can be
nonresonantly excited by energetic ions and the nonresonant
excitation source mainly comes from the inertial term, for
example, the first term in the square brackets of Eq. (2).

Figure 8 gives the dependence of real frequency (a) and
growth rate (b) of the mode on magnetic shear ŝ with qmin =
1.03, �0 = 2 × 104 rad/s. The results are similar to those
shown in Fig. 5. For low shear regions, e.g., ŝ < 0.1, the
real frequency of the mode is approximately equal to toroidal
rotation frequency on the magnetic axis, and the mode exhibits
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FIG. 8. Real frequencies (a) and growth rates (b) of the mode as
functions of local magnetic shear with σ� = 7,

	

r� = 0, βh = 0.004,
qmin = 1.03, σρ = 2, �0 = 2 × 104 rad/s. The solid and dashed lines
denote beam energy Eb = 40 and 80 (keV), respectively.

the features of the LLM. On the contrary, when the magnetic
shear is sufficiently large, the real frequency of the mode is
proportional to beam energy Eb, and the mode behaves as
FB-like instabilities. Consequently, in rotating plasmas with
a nonmonotonic safety factor profile, the FB mode can also
evolve into the LLM only if the magnetic shear inside q =
qmin flux surface is sufficiently weak.

IV. CONCLUSIONS

LLMs driven by energetic ions in rotating plasmas are
studied by using a new dispersion relation. It is found that, in
low shear and rotating plasmas, LLM can be nonresonantly in-
duced by energetic ions when βh is bigger than a critical value,
and the real frequency of LLM, independent of the energy of
NBI ions, is proportional to the toroidal rotation frequency of
bulk plasma on magnetic axis. The key conditions to induce
LLM are weak magnetic shear and plasma rotation; moreover
LLM activity cannot occur without EIs. The FB mode, only
in weak magnetic shear plasmas, usually transforms into LLM
when plasma rotation frequency is bigger than a critical value.
The modified inertial term from plasma rotation plays a cru-
cial role in causing the FB mode to transform into LLM which
is a branch of nonresonant MHD mode.
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APPENDIX: THE DISPERSION RELATION IN TOROIDAL
ROTATING PLASMAS

The perturbed displacement of plasma is taken as
⇀

ξ =
(ξr

⇀

er + ξθ

⇀

eθ )e−iω1t . Thus, the relation between perturbed ve-

locity and displacement of plasma is δ
⇀

v = −iω1

⇀

ξ with ω1 =
ω − �0. By substituting the perturbed velocity into Eq. (1),

an inner product of Eq. (1) with
⇀

ξ
∗

is taken and integrates
over plasma volume inside the q = 1 surface. Eq. (1) can be
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rewritten as follows:

−
∫

d3xρω2
1

⇀

ξ •
⇀

ξ
∗
−

∫
d3xρ

⇀

ac •
⇀

ξ
∗

=
∫

d3x(δ
⇀

J × ⇀

B + ⇀

J × δ
⇀

B − ∇δpc) •
⇀

ξ
∗
−

∫
d3x(∇ • δ

⇀
⇀

ph) •
⇀

ξ
∗
, (A1)

where
⇀

ac = −2iω1

⇀

ξ × ⇀

� + ∇ρ •
⇀

ξ
⇀

V 0 • ∇ ⇀

V 0/ρ + iω1

⇀

ξ • ∇ ⇀

V 0 + iω1

⇀

V 0 • ∇
⇀

ξ with
⇀

V 0 = ⇀

� × ⇀

R. The perturbed pressure of bulk

plasmas is δpc = −ξ · �Peq − �Peq� · ξ with Peq being the equilibrium pressure. The perturbed current density is δ
⇀

J = ∇ ×
δ

⇀

B/μ0, the perturbed magnetic field is δ
⇀

B = ∇ × (�ξ × ⇀

B), the pressure of energetic ions is δph// = ∫
δ fhmv2

//d3v, δph⊥ =∫
δ fhμBd3v. The distribution function of energetic ions δ fh is given in Ref. [20]. Meanwhile, it is easy to find that the effective

inertial force acceleration ac in Eq. (1) is self-adjoint. By substituting these perturbed variables into Eq. (A1), the following
dispersion relation in toroidal geometry can be obtained:

δI + δWMHD + δWk = 0, (A2)

where, the kinetic energy due to plasma inertia δI, the perturbed potential energy δWMHD from bulk plasma, and the perturbed
potential energy δWk from energetic ions are given as follows:

δI = −1

2

∫
ρd3x[ω2

1|
⇀

ξ |2 + ⇀

ac •
⇀

ξ
∗
], (A3)

δWMHD = 1

2

∫
d3x(∇δpc − δ

⇀

J × ⇀

B − ⇀

J × δ
⇀

B) •
⇀

ξ
∗

= 1

2

∫
d3x[|δ⇀

B|2 − ⇀

J//(
⇀

ξ⊥ ×
⇀

b) • δ
⇀

B⊥ − 2(
⇀

ξ⊥ • ∇peq )(
⇀

ξ⊥ • ⇀

κ )

+ B2(∇ •
⇀

ξ⊥ + 2
⇀

ξ⊥ • ⇀

κ )2 + �peq(∇ •
⇀

ξ )2], (A4)

δWk = 1

2

∫
d3x(∇ • δ

⇀

⇀

ph) •
⇀

ξ
∗

= 29/2π3mh

∫
R0rdr

∫
d

μB

E

∫ ∞

0
dEE5/2Kb

J̄∗
0 QJ̄0

ωd − ω1
, (A5)

where,Kb = 1
2π

∮
dθ√

1−μB/E
, Q = ω1

∂F0h
∂E − 1

ω0r
∂F0h
∂r ,J0 = μB

2E ∇ •
⇀

ξ⊥ − (1− 3μB
2E )

⇀

ξ⊥ • ⇀

κ with
⇀

κ =
⇀

b • ∇
⇀

b = −⇀

eR/R0being the cur-

vature of the magnetic field line and the vector along the major radius is
⇀

eR = ⇀

er cos θ − ⇀

eθ sin θ . J̄0 = ∮ J0dl
v//

/
∮

dl
v//

, the

parallel velocity of energetic ions is v//∼
√

1−μB/E = √
2αεr̂

√
k2 − sin2θ/2 with argument k2 = (1/α−1 + ε

	

r ))/(2ε
	

r ). For

trapped particles, the turning point θb, determined by letting v// = 0, is sin(θb/2) = k. When the relation ∇ •
⇀

ξ⊥ = −2
⇀

ξ⊥ • ⇀

κ

is used, the variable J0 can be reduced to J0 = ( μB
2E − 1)

⇀

ξ⊥ • ⇀

κ . The steplike trial function inside q = 1 (qmin) can be written as
⇀

ξ⊥ = ξ0(
⇀

er + i
⇀

eθ ). The averaged toroidal precessional frequency of energetic ions is ωd = ωdsqKcÊ/r̂ with Ê = E/Eb and E is
energy of energetic ions. The equilibrium distribution function of energetic ions is F0h(r, α, E ) = n0h(r)h(α)E -3/2. In Eq. (A5),
the variables Kb and the averaged J0 can be reduced in the following manner, respectively:

Kb = 1

π

∫ θb

0

dθ√
1 − α + αε cos θ

= 1

π
√

2αεr̂

∫ θb

0

dθ√
k2 − sin2(θ/2)

let sin(θ/2) = k cos φ
1

π
√

2αεr̂

∫ 0

π/2

−2k sin φ

k sin φ

dφ

cos(θ/2)

= 1

π

√
2

αεr̂

∫ π/2

0

dφ√
1 − k2sin2φ

= 1

π

√
2

αεr̂
K(k2),

J̄0 =
∮

J0dl

v//

/∮
dl

v//

=
∫ θb

0

(μB/2E − 1)
⇀

ξ⊥ • ⇀

κdθ√
1 − μB/E

/∫ θb

0

dθ√
1 − μB/E

= 1

πKb

∫ θb

0

(μB/2E − 1)
⇀

ξ⊥ • ⇀

κdθ√
1 − μB/E

= −1

2πKb

∫ θb

0

[√
1 − μB/E + 1√

1 − μB/E

]
⇀

ξ⊥ • ⇀

κdθ ≈ −1

2πKb

∫ θb

0

⇀

ξ⊥ • ⇀

κdθ√
1 − μB/E

= ξ0

2πR0Kb

∫ θb

0

cos θdθ√
1 − μB/E

= ξ0

2πR0Kb

√
2αεr̂

∫ θb

0

cos θdθ√
k2 − sin2θ/2

= ξ0

2πR0Kb

√
2αεr̂

∫ 0

π/2

1 − 2sin2(θ/2)

k sin φ
· −2k sin φ

cos(θ/2)
dφ

= ξ0

2R0K(k2)

∫ 0

π/2

2k2cos2φ − 1√
1 − k2cos2φ

dφ = ξ0

2R0

2E − K

K
,

where K and E are the first and second complete elliptical integrals, respectively. It should be mentioned that in the above
equations, the poloidal angle θ denotes the usual geometrical variable. By substituting these variables, for instance, Kb, J̄0 and
ωd , into Eq. (A5) and neglecting the terms being directly proportional to ε(= rs/R0), the kinetic contribution from energetic
ions, i.e., Eq. (3) in Sec. II can be obtained after integrating over energy from zero to infinity. The MHD contribution from bulk
plasmas, i.e., Eq. (A4) is given in Ref. [21] in detail.
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When the toroidal rotation is taken into account, the plasma density is a function of minor radius r and poloidal angle θ , i.e.,
ρ = ρ(r, θ ) which can be written as follows:

ρ(r, θ ) = ρ(r) + ρ(r)mi�
2(r)R2

0

2kT (r)
· r

R0
cos θ, (A6)

where T (r) = T0u(r) is plasma temperature profile and k is Boltzman constant. The modified inertial term Eq. (A3) can be
reduced in the following manner:

δI = −1

2

∫
ρd3x

[
ω2

1|
⇀

ξ |
2
− 2iω1

⇀

ξ × ⇀

� + ∇ρ •
⇀

ξ
⇀

V 0 • ∇ ⇀

V 0/ρ + iω1

⇀

ξ • ∇ ⇀

V 0 + iω1

⇀

V 0 • ∇
⇀

ξ

]
•

⇀

ξ
∗

= −ω1

2

∫
ρd3x

[
ω1|

⇀

ξ |
2
−

(
ξrdρ

ω1ρdr
+ ξθdρ

ω1ρrdθ

)
V 2

0

R
⇀

eR + i

(
ξr

dV0

dr
⇀

eϕ + ξθ

dV0

rdθ

⇀

eϕ

)
+ V0

R

⇀

ξ

]
•

⇀

ξ
∗

= −ω1

2

∫
ρd3x

[
ω1|

⇀

ξ |
2
−

(
ξrdρ

ω1ρdr
+ ξθdρ

ω1ρrdθ

)
�2R0

(
1 + r

R0
cos θ

)
⇀

eR •
⇀

ξ
∗
+ �|

⇀

ξ |
2
]
, (A7)

note, in Eq. (A7), ρ = ρ(r, θ ), and the term
⇀

ξ × ⇀

� is neglected due to (
⇀

ξ × ⇀

�) •
⇀

ξ
∗

= 0 for toroidal rotation. Considering

the condition ∇ •
⇀

ξ = 0, i.e., the displacement is incompressible, the poloidal perturbed displacement can be taken as ξθ =
id (rξr )/dr. By substituting Eq. (A6) into Eq. (A7), which can be further reduced in the following manner:

δI = − ω1

2

∫ rs

0
dr

∫ 2π

0
rdθ

[
ρ(r, θ )ω1

(
ξ 2

r +
∣∣∣∣drξr

dr

∣∣∣∣
2)

−
(

ξrd (r, θ )

ω1dr
+ ξθd (r, θ )

ω1rdθ

)
�2R0

×
(
ξ ∗

r cos θ − ξ ∗
θ sin θ + r

R0
(ξ ∗

r cos2θ − ξ ∗
θ cos θ sin θ )

)
+ ρ(r, θ )�

(
ξ 2

r +
∣∣∣∣drξr

dr

∣∣∣∣
2)]

= − ω1

2

∫ rs

0
dr

∫ 2π

0
rdθ

[(
ρ(r) + ρ(r)mi�

2(r)R0

2kT (r)
r cos θ

)
ω1

(
rdξr

dr

)2

− �2R0

(
ξr

ω1

(
dρ(r)

dr
+ d

dr

rρ(r)mi�
2(r)R0

2kT (r)
cos θ

)
− ξθ

ω1

ρ(r)mi�
2(r)R0

2kT (r)
sin θ

)
(ξ ∗

r cos θ − ξ ∗
θ sin θ

+ r(ξ ∗
r cos2θ − ξ ∗

θ cos θ sin θ )/R0) +
(

ρ(r) + ρ(r)mi�
2(r)R2

0

2kT (r)
· r

R0
cos θ

)
�

(
ξ 2

r +
∣∣∣∣drξr

dr

∣∣∣∣
2)]

= − πω1

2

∫ rs

0
rdr

[
2ρ(r)ω1

(
rdξr

dr

)2

− ξ 2
r �2

ω1

((
r

dρ(r)

dr
+ d

dr

rρ(r)mi�
2(r)R2

0

2kT (r)

)

+
(

ξ 2
r +

∣∣∣∣drξr

dr

∣∣∣∣
2)

ρ(r)mi�
2(r)R2

0

2kT (r)ξ 2
r

)
+ 2ρ(r)�

(
ξ 2

r +
∣∣∣∣drξr

dr

∣∣∣∣
2)]

= − πρ0ω1

2

∫ rs

0
rdr[2 f (r)

(
ω1 + �0g(r) − �2

0

ω1

mi�
2
0R2

0

4kT0

g4(r)

u(r)

)(
rdξr

dr

)2

+ 2 f (r)

[
2�0g(r)

− �2
0

ω1

mi�
2
0R2

0

2kT0

g4(r)

u(r)

]
rξr

dξr

dr
+ ξ 2

r

(
4�0 f (r)g(r) − �2

0

ω1
rg2(r)

df (r)

dr

− �2
0

ω1

mi�
2
0R2

0

2kT0
g2(r)

d

dr

f (r)g2(r)r

u(r)
− 2�2

0

ω1

mi�
2
0R2

0

2kT0

f (r)g4(r)

u(r)

)]
. (A8)

The perturbed plasma displacement in the radial direction ξr in Eq. (A8) satisfies Euler equation,

d

dx

[[
3ω2

1 − ω2
A(q − 1)2

]dξr

dx

]
= 0, (A9)

with x = (r − rs)/rs. Within the inertial layer, i.e., at the location of r = rs, the safety factor profile q(r) should be expanded to
the second order in x as

q(r) = q(rs) + rsq
′(rs)x + r2

s q′′(rs)

2
x2. (A10)
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For monotonic q profile, By retaining the first two terms in Eq. (A10) (i.e., q = 1 + rsq′(rs)x) and substituting them into
Eq. (A9), the solution of Eq. (A9) is then a hyperbolic tangent function which can be written as

ξr = ξ0

2

[
1 − 2

π
artg

(
x

�

)]
, (A11)

with � = √
3R0ω1/(iq′

sVA). When the width of inertial layer (or �) is sufficiently small, Eq. (11) can be expanded to a linear
function of x (or r − rs) in the vicinity of q = 1 flux surface, i.e., the perturbed displacement of plasma in the inertial layer can be
replaced by ξr = 0.5ξ0[1−2(r − rs)/(π�)]. Considering the plasma displacement ξr being constant inside q = 1 surface, thus
the following steplike function of ξr can be used to calculate the perturbed kinetic energy from inertial layer:

ξr =

⎧⎪⎨
⎪⎩

ξ0, r < rs − �
2

ξ0[1 − (r − rs)/�],

0, rs + �
2 < r < a

rs − �
2 < r < rs + �

2
and

dξr

dr
=

⎧⎪⎨
⎪⎩

0, r < rs − �
2

− ξ0

�
, rs − �

2 < r < rs + �
2

0, rs + �
2 < r < a

. (A12)

Therefore, by substituting Eq. (A12) into Eq. (A8), the modified inertial term, Eq. (A8) is then reduced as follows:

δI = − πρ0ω1ξ
2
0

�2

∫ rs+�/2

rs−�/2
dr f (r)

(
ω1 + �0g(r) − �2

0

ω1

y

2

g4(r)

u(r)

)
r3

+ πρ0ω1
ξ 2

0

�

∫ rs+�/2

rs−�/2
dr f (r)

(
2�0g(r) − �2

0

ω1
y

g4(r)

u(r)

)
r2 − ξ 2

0
πρ0ω1

2

∫ rs

0
rdr

×
(

4�0 f (r)g(r) − �2
0

ω1
rg2(r)

df (r)

dr
− �2

0

ω1
yg2(r)

d

dr

f (r)g2(r)r

u(r)
− 2�2

0

ω1
y

f (r)g4(r)

u(r)

)

= − πρ0ω1ξ
2
0

�2

(
ω1 + �0g1 − �2

0

ω1

yg4
1

2u1

)
f1

∫ +�/2

−�/2
dx(rs + x)3

+ πρ0ω1
ξ 2

0

�

(
2�0g1 − �2

0

ω1

yg4
1

u1

)
f1

∫ +�/2

−�/2
dx(rs + x)2 − 2πρ0ω1�0r2

s ξ
2
0

∫ 1

0
r̂d r̂ f (r̂)g(r̂)

+ ξ 2
0
πρ0ω1r2

s

2

�2
0

ω1

∫ 1

0
r̂d r̂

(
r̂g2(r̂)

df (r̂)

dr̂
+ yg2(r)

d

dr̂

f (r̂)g2(r̂)r̂

u(r̂)
+ 2y

f (r̂)g4(r̂)

u(r̂)

)

= − πρ0ω1ξ
2
0 r3

s

�

(
ω1 + �0g1 − �2

0

ω1

yg4
1

2u1

)
f1 + πρ0ω1ξ

2
0 r2

s

(
2�0g1 − �2

0

ω1

yg4
1

u1

)
f1 − 2πρ0ξ

2
0 r2

s �0ω1

×
∫ 1

0
r̂d r̂ f (r̂)g(r̂) + ξ 2

0
πρ0ω1r2

s

2

�2
0

ω1

∫ 1

0
r̂d r̂

(
r̂g2(r̂)

df (r̂)

dr̂
+yg2(r)

d

dr̂

f (r̂)g2(r̂)r̂

u(r̂)
+ 2y

f (r̂)g4(r̂)

u(r̂)

)

= − πρ0ω1ξ
2
0 r3

s

�
ω1

(
1 + g1�0

ω1
− �2

0

ω2
1

yg4
1

2u1

)
f1 + πρ0ξ

2
0 r2

s ω1�0

(
C1 + C2�0

ω1
− yg4

1�0

u1ω1

)
f1. (A13)

By substituting � into Eq. (A13), the normalized inertial term can be rewritten as

δÎ =
[
−i

ω1

ωA

(
1 + �0g1

ω1
− yg4

1

2u1

�2
0

ω2
1

)
+ ω1�0

ω2
Aŝ2

(
C1 + C2�0

ω1
− yg4

1

u1

�0

ω1

)]
f1, (A14)

with y = mi�
2
0R2

0
2kT0

. In general, the additional pressure generated by plasma rotation is much less than plasma pressure in tokamak
plasmas, and thus we can neglect the terms with y in Eq. (A14) which is the modified inertial term for monotonic q profile.
However, for the nonmonotonic safety factor profile, q(r) should be expanded to the second order in r (or x) due to q′(rs) = 0.
Equation (A9) can be then rewritten as follows:

d

dx

{[
3ω2 −

(VA

R0
(δq + q′′

sx
2/2)

)2]dξr

dx

}
= 0, (A15)

the solution of Eq. (A15) is

ξr = ξ0

2

[
1 − 2

π

�+
�+ + i�−

arctg

(
x

�−

)
− 1

π

�−
�+ + i�−

ln
1 + x/�+
1 − x/�+

]
, (A16)

with �− = 1
i

√
2(

√
3R0ω−δqVA )

q′′
sVA

and �+ = 1
i

√
2(

√
3R0ω+δqVA )

q′′
sVA

. It is easy to see that in Eq. (A16), the radial displacement ξr goes to
ξ0 (or zero) when x goes to -� (or +�), thus Eq. (A16) is also a steplike function and can be taken the form of Eq. (A12).

055208-9



WEICHAO XIE PHYSICAL REVIEW E 105, 055208 (2022)

However, the derivatives of ξr at the location of minimum q value (i.e., x = 0) is different and can be written as

dξr

dr

∣∣∣∣
r=rs

= −ξ0

π

�+ − i�−
�+�−

. (A17)

By substituting ξr = ξ0 and Eq. (A17) into Eq. (A8), the normalized inertial term under the condition of nonmonotonic safety
factor profile can be written as

δÎ =
[
−i

ω1√
2ŝω2

A

ω+ − iω−
ω+ω−

(
1 + g1�0

ω1

)
+ �0

ŝ2ω2
A

(C1ω1 + C2�0)

]
f1, (A18)

where ŝ = rsq′′
s .
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