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Positron acceleration via laser-augmented blowouts in two-column plasma structures
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We propose a setup for positron acceleration consisting of an electron driver and a laser pulse creating a
twofold plasma column structure. The resulting wakefield is capable of accelerating positron bunches over long
distances even when the evolution of the driver is considered. The scheme is studied by means of particle-in-cell
simulations. Further, the analytical expression for the accelerating and focusing fields are obtained, showing the
equilibrium lines along which the witness bunch is accelerated.
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I. INTRODUCTION

The efficient acceleration of positrons is of great inter-
est for fundamental physics, especially for electron-positron
colliders [1]. In the field of accelerator physics, laser-plasma
based schemes have specifically grown in interest over the last
few decades, as the higher achievable field strengths compared
to conventional accelerators allow for higher energies over
shorter acceleration distances.

Acceleration in a plasma wakefield can be accomplished
either with a driving laser pulse [2,3] or a driving particle
bunch [4]. For the laser-driven setup, a so-called bubble can be
excited for a normalized laser vector potential a0 > 1, while
for the electron-bunch driven setup a sufficiently narrow and
high-density bunch has to be used. In both cases, the driver
pushes out electrons in the direction transverse to its propaga-
tion, leaving behind an electronic cavity (“bubble”). Electrons
can be injected into the back part of the bubble via several
mechanisms, such as self-injection [5], ionization injection
[6], or density down-ramp injection [7]. For appropriately
chosen laser-plasma parameters, the excited bubble exhibits
uniform accelerating fields that propagate with a velocity
close to the speed of light c, which allows for the acceleration
of monoenergetic electron bunches [8]. Utilizing more com-
plicated setups such as Trojan horse injection [9], emittances
in the order of nm rad and energy spreads in the 0.1% range
were achieved. Currently realizable in the case of homoge-
neous plasma are electron bunches of up to 8 GeV [10].

In the case of positrons, wakefield acceleration proves to
be a more difficult challenge: The accelerating and focusing
region for positrons in nonlinear wakefields is comparatively
small. Thus, more advanced setups are necessary. One of the
proposed setups utilizes doughnut-shaped electron bunches
as drivers [11]. Other setups use drive bunches consisting
of positrons or hollow plasma targets [12–14]. While these
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schemes improve on the extent of the accelerating region,
some still pose problems either in experimental feasibility or
stability.

In a recent work [15], Diederichs et al. have proposed a
setup using a laser-ionized plasma column of finite radius
that is penetrated by an electron driver. Such columns have
been shown to be experimentally realizable for radii in the
range of several tens of micrometers and peak densities of ca.
1017 cm−3 [16,17]. Due to the column’s finite radius, the field
structure is different from the case of wakefields in a homo-
geneous plasma. As observed there, the finite plasma column
benefits the acceleration of Gaussian positron bunches. What
remains critical, however, is the evolution of the electron
driver which commonly leads to negative effects when ac-
celerating positrons. A follow-up study of beam loading in
this regime which incorporated an algorithm for optimizing
the bunch profile was presented in Ref. [18]. The stability of
an electron beam propagating in a premade plasma column
was further investigated in Ref. [19]. Still, in experiments the
effects of beam evolution are likely to negatively influence the
efficient acceleration over long distances.

In this paper, we present a laser-augmented blowout (LAB)
scheme for the acceleration of positrons over distances of tens
of centimeters. An electron drive bunch ionizes a narrow col-
umn of hydrogen gas and excites a wakefield. A separate laser
pulse ionizes a wider column behind the driver. This creates a
region beneficial for the acceleration of positron rings (Fig. 1).
This ring bunch geometry further has the advantage that it
will avoid beamstrahlung similarly to flat beams proposed
for high-energy colliders such as CLIC and is still suitable
for acceleration in plasma much as round bunches [20]. We
will first present our scheme in terms of particle-in-cell (PIC)
simulations. Further, the accelerating and focusing fields are
derived analytically. The field structure exhibits equilibrium
lines along which the positron ring is located. Finally, the
emittance and the energy spectrum of the witness bunch are
studied. Matching the positron ring according to the setup
parameters yields a reduction of the emittance growth.
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FIG. 1. Three-dimensional rendering of the LAB scheme. The
electron driver (orange) pushes the electrons (blue) out in the trans-
verse direction and the second column is ionized by the laser pulse
(magenta). The positron ring (red) is located in the vicinity of the
region with the highest electron density

II. SETUP

For our simulations we use the quasistatic PIC code QV3D

[21]. In our presented example (Fig. 2), our simulation box has
dimensions 16 × 20 × 20k−3

p with grid size hx = hy = hz =
0.05k−1

p , where kp = 2π/λp is the plasma wave number (λp =
75 × 10−4 cm).

The box is filled with initially unionized hydrogen gas with
a density of n0 = 2 × 1017 cm−3. A Gaussian-shaped electron
driver with dimensions σz = 12 μm (z being the direction
of propagation) and σx = σy = 2.4 μm performs the initial
ionization. It has a peak density of 20n0 and the initial mo-
mentum of the electrons is pz = 104mec with 5% longitudinal
spread (me being the electron rest mass). The driver excites a
wakefield whose fields exhibit a different structure compared
to the case of homogeneous plasma (we will see this in the
analytic theory later on in more detail).

A short (τ0 = 4.5 fs) circularly polarized laser pulse with
wavelength λL = 400 nm ionizes a second, wider column. We

consider acceleration up to 2 × 104T0. As the laser evolves
a lot over this scale, we choose a focal spot size of w0 =
125 μm which gives us a Rayleigh length in the cm range. The
normalized laser vector potential is a0 = 0.025 throughout the
simulations which is sufficient for the ionization of the second
column. Such laser pulses could be created at the LWS-20
laser which has 16 TW peak power and 70–75 mJ pulse energy
[22]. Different radii may also be used: Presented in Fig. 2 we
exemplarily show the setup for a pulse with w0 = 17 μm for
better visibility of the parameters used in the analytic discus-
sion. Such a small focal spot would, however, come at the cost
of a much shorter Rayleigh length. Therefore, we will stay
with w0 = 125 μm throughout the following simulations. The
pulse length may also be increased, but the front of the second
column becomes increasingly curved due to this. Choosing
a shorter laser pulse also comes with the indirect advantage
that, due to the optical parametric chirped pulse amplification
(OPCPA) front ends typically used by such setups, unwanted
ionization by a prepulse is reduced. The laser pulse is de-
scribed using the envelope model; the description of tunnel
ionization is according to Refs. [23,24]. Refraction of the laser
pulse over time is incorporated in the simulations; further
phenomena that could influence the stability of the scheme
are discussed later.

We observe that, in the region right behind the electron
driver, fields reminiscent of typical blowout structures in ho-
mogeneous plasma can be seen. Since only a narrow part
of the total gas in the simulation box is ionized, the fields
extend over a greater distance leading to a slightly modified
blowout structure. Specifically in the region from ξ = 5k−1

p

to ξ = 7k−1
p , the diagonal white lines in the structure of the

focusing force Er − Bϕ prove to be beneficial for positron
acceleration. Further, a look at the accelerating field Ez shows
that along these lines, the positrons will experience nearly
a maximum accelerating field from the subsequent blowout
structure.

Thus, we place the positron ring accordingly (cf. Fig. 1).
Its density is varied in the range of 1n0-80n0 for the different
performed simulations. Its initial radius is 6 μm with a thick-
ness of 1 μm and the positrons have an initial momentum
of pz = 104mec. Such positron rings could be created in a

(a) (b) (c)

FIG. 2. PIC simulation results for the LAB scheme with an exemplary w0 = 17 μm laser pulse (the later setup uses a focal spot size of
w0 = 125 μm). (a) The electron density (clipped at n = 10n0 for better visibility) shows the forklike structure. The values r1 and r2 denote
the radii used in the analytical derivation of the fields. As seen in (b), this location of the positrons coincides with the equilibrium line for the
focusing force as well as the area where the accelerating gradient of Ez is the largest (c). The magenta/black dots denote the position of the
positron ring.
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similar fashion to hollow electron bunches via the utilization
of Laguerre-Gaussian laser pulses [25,26].

As we will now also analytically verify, this location corre-
sponds to an equilibrium line where the radial electric field Er

vanishes and, at the same time, the highest accelerating field
for that transverse position is reached. A strongly mismatched
positron beam would lead to the loss of positrons and worse
emittance.

III. ANALYTICAL MODEL

To obtain the structure of the electromagnetic fields of the
LAB scheme analytically, we proceed in a similar fashion to
the approach in Ref. [27] using the following plasma setup in
the quasistatic approximation,

ρe(0, r) =
{−1, r1 < r < r2,

0, else, (1)

ρi(ξ, r) =
{

1, r < r2,

0, else, (2)

where ξ = t − z denotes the comoving coordinate and r1, r2

indicate the column radii (compare Fig. 2). The position ξ = 0
corresponds to the point where the laser pulse ionizes the
plasma ring r1 < r < r2, and we neglect the contribution of
electrons ionized and expelled by the electron driver (assum-
ing they are expelled to r > r2). Ions are considered immobile,
but plasma electrons begin to converge to the axis r due to
the action of the radial electric field Er from the ion column,
which can be calculated as

Er (ξ, r) = 1

r

∫ r

0
[ρi(ξ, r′) + ρe(ξ, r′)]r′dr′. (3)

Here, we assume that the motion of the electrons is predomi-
nantly radial and neglect the influence of the longitudinal field
Ez on them, so they do not generate longitudinal current jz and
azimuthal magnetic field Bϕ . We also assume that the motion
is nonrelativistic and that electron trajectories never cross, so
the motion of the electron with the initial coordinate r0 is
always affected only by the Coulomb field of the electrons

with initial coordinates smaller than r0, and we get

d2r

dξ 2
= −Er = − r

2
+ r2

0 − r2
1

2r
, (4)

where the first term is the Coulomb attraction from the ions,
and the second term is the Coulomb repulsion from the inner
electrons. If we further assume that |r − r0| � r0 and r0 � r1,
we obtain

r = r0 − r2
1

2r0
(1 − cos ξ ). (5)

All electrons oscillate with the same period equal to the
plasma wavelength in this solution. As the oscillation ampli-
tude decreases with r0, trajectory crossing never happens for
this solution. Let us now assume that this solution is valid for
all electrons with initial coordinates in the interval [r1, r2], i.e.,
for a given ξ all electrons are located between

rmin = r1

2
(1 + cos ξ ), rmax = r2 − r2

1

2r2
(1 − cos ξ ). (6)

Knowing all trajectories allows us to calculate the density
distribution and thus the transverse electric field

Er (ξ, r) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

r
2 , r < rmin(ξ ),
r
2 − r2

0 (ξ,r)−r2
1

2r , rmin < r < rmax,

r
2 − r2

2 −r2
1

2r , rmax(ξ ) < r < r2,
r2

1
2r , r > r2.

(7)

Here, we introduced

r0(ξ, r) =
r +

√
r2 + 2r2

1 (1 − cos ξ )

2
, (8)

which is the electron’s initial coordinate r0 expressed through
its current radial coordinate r. For r < rmin we observe the
electric field typical for long ion channels [28,29]. Outside
of the plasma column width, r > r2, we see that Er ∝ r−1,
which will be valid until electrons expelled from r < r1 begin
to contribute to Er .

In turn, the accelerating field is calculated from the
Panofsky-Wenzel theorem [30], ∂Ez/∂r = ∂Er/∂ξ ,

Ez =

⎧⎪⎨
⎪⎩

Ez,0(ξ ) − r2
1 sin ξ

4 ln
[ r2rmax

r1rmin

]
, r < rmin(ξ ),

Ez,0(ξ ) − r2
1 sin ξ

4 ln
[ r2rmax

r0(ξ,r)r

]
, rmin(ξ ) < r < rmax(ξ ),

Ez,0(ξ ), r > rmax(ξ ),

(9)

where Ez,0 is the additional longitudinal field created by the
electrons expelled by the driver. For simplicity, we assume
that Ez,0 = 0. These fields now allow us to calculate the afore-
mentioned equilibrium lines along which the positron ring
will be located. First, we find the line where Er = 0. Using
Eq. (7), we obtain

req = r1
1 + cos ξ

2
√− cos ξ

. (10)

If we linearize Er along this line, we will see that it is focusing
for positrons, thus making it possible to confine positrons in

the transverse direction along this line. By putting our solution
for req into the expression for Ez, we get

Ez,eq = − r2
1 sin ξ

4
ln

[ −4 cos ξ

1 − cos2 ξ

r2
2

r2
1

− 2 cos ξ

1 + cos ξ

]
. (11)

This distribution is symmetrical around ξ = π . As we can
see from the equations above, the equilibrium line itself does
not depend on r2, but Ez,eq does. If we want to achieve the
highest possible accelerating gradient, it is therefore benefi-
cial to increase r2. However, the scaling Ez,eq ∝ ln(r2/r1) is
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FIG. 3. Comparison of the analytical expression and the simu-
lations results for the structure of Er for the smaller focal spot size
laser from Fig. 2. The dashed lines denote the lines rmin and rmax from
Eq. (6) that parametrize the borders of the different field regions and
the dashed-dotted line denotes the equilibrium line req along which
the positron ring can be accelerated from Eq. (10).

comparatively weak, and it is valid only until r2 does not reach
the radius at which the electrons expelled by the driver are.

IV. SIMULATION RESULTS

A comparison of our analytical result with the simulation
can be seen in Fig. 3. The analytical structure qualita-
tively agrees very well with the numerical result: Along the
dashed-dotted equilibrium line req(ξ ) the positron ring can
be accelerated. According to Eq. (9), the value of Ez is con-
stant between 0 and rmin, but then begins to decrease with r.
However, as req stays fairly close to rmin, the acceleration of
positrons is achieved in almost a maximum possible field. The
field structure in the simulations is not symmetric, however,
because of the limit of applicability of the assumptions we
made, as the real oscillation period of electrons depends on
their initial radial position.

For the beam quality, we consider the normalized rms emit-
tance εx = √〈x2〉〈p2

x〉 − 〈xpx〉2/mec (and accordingly also in
the y direction). Here, x denotes the displacement of the par-
ticles in the x direction and px the corresponding momentum
component. The operator 〈·〉 is the second central moment of
the particle distribution. As shown in Fig. 4, the emittance
increases over the course of the simulation. In the beginning,
both εx and εy grow similarly. After roughly 104T0, the differ-
ence in their slope becomes more pronounced, most likely due
to the presence of plasma instabilities. Towards the end, the
slope flattens and a “saturation point” of around εx ≈ 36 μm,
εy ≈ 27 μm is reached.

In separate simulations we displace the positron ring by
one grid cell in the transverse and in the longitudinal direc-
tion. We observe that the transverse shift only marginally
affects the final emittance of the witness beam, while the
setup is more sensitive for the longitudinal displacement. A
much stronger mismatching of the positron beam size with
the plasma setup leads, as mentioned earlier, to the defocusing

FIG. 4. The evolution of the normalized rms emittance (top) for a
positron ring with 1n0. The emittance starts to increase but reaches a
plateau towards the simulation end. The bottom frame shows the final
energy spectrum of the accelerated positron bunch after 2 × 104T0.

and loss of positrons and subsequently to higher emittance.
It needs to be stressed, however, that the emittance values
obtained for these ring bunches are generally not comparable
with different geometries such as Gaussian bunches.

The accelerating and focusing fields that are prominent at
the position of the ring are shown in Fig. 5. We observe an
accelerating gradient of Ez ≈ 38 GV/m. The structure typical
for the accelerating field Ez of the wakefield can be observed.
Adjusting the density and the dimensions of the positron beam
leads to flattening of the accelerating field in the surrounding
region.

FIG. 5. Lineout plots for the accelerating electric field (top) and
the transverse force (bottom), both for the cases with witness beam
(here, 10n0) and without. The lineouts are taken at the initial position
of the position ring (further denoted by the dashed lines). The insets
show the larger-scale behavior of the fields.
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In total, we accelerate roughly 15 pC of positrons in the
case of a ring with an initial density 10n0 (with ndriver ≈
670 pC). For our presented simulation, the mean positron en-
ergy is in the range of 10 GeV after acceleration over a length
of 24 cm. As we observe in Fig. 4, the final energy spread of
the accelerated positrons is around 1.7%. Increasing the initial
density of the positron ring, we are able to accelerate ca. 60 pC
with the same setup. For even higher initial densities, the beam
loading leads to a loss of additional charge, and the emittance
and the energy spectrum deteriorate accordingly.

Regarding the stability of the LAB scheme, several factors
need to be discussed, the first being dephasing. Dephasing
between the laser pulse and the witness bunch could severely
limit the acceleration length that can be achieved. Laser
refraction was—as mentioned in the section regarding the
setup—considered for all simulations. These results are in
good agreement with analytical estimates: The laser group
velocity is vgr ≈ 1 − n0/(2ncr ), where ncr = πmc2/(e2λ2

L ) is
the critical density corresponding to the laser wavelength. For
a typical 800-nm laser this would mean that over the course
of the acceleration length Lacc ≈ 24 cm the laser would go
back by 1.8k−1

p relative to the accelerated positron bunch
propagating with vz ≈ c. The entire field structure would
move backwards accordingly, and the equilibrium position for
transverse focusing would become closer to the central axis.
Additionally, the curvature of the ionization front increases
over time. Together these two effects will lead to increased
emittance and destruction of the ring structure after some
time. As visible from our simulations, halving the laser wave-
length to be 400 nm significantly improves on the slippage and
thereby the stability of the positron ring. Second, ionization
defocusing of the laser pulse can become important due to the
transverse plasma density profile. According to the derivation
by Gibbon [31], this is the case when

n0

ncr
>

λL

πzR
, (12)

where zR is the Rayleigh length. With our parameter set this
would indeed be the case, but since the LAB scheme does not
rely on significantly high-field strengths or very small spot
sizes (for our simulations we use w0 = 125 μm), ionization
defocusing does not negatively impact the acceleration mech-
anism to a noticeable extent. We only require the laser to be
strong enough for the ionization of the second column which

has a large radius, namely r2 � r1. Further, we have shown
in Eq. (11) that larger r2 are even beneficial for this setup.
Another possible concern for this regime could be the erosion
of the electron driver head due to its propagation through
unionized gas. The rate with which the ionization front is slip-
ping back over time i.a. depends on the species of gas being
ionized as well as the Lorentz factor of the bunch [32]. If, for
longer acceleration lengths, mitigation of erosion would be
necessary, the work by An et al. [33] presents several options
for how to achieve this. This, among other things, includes
decreasing the drive beam emittance or using lower ionization
threshold gas. Lastly, in order to estimate the impact of the
relative position between electron driver and laser pulse, we
considered several simulations where the delay was increased
or decreased with respect to the values presented in this paper
(not shown here). From this it is clear that the delay between
driver and laser does not matter too much, as the fields created
by the initial bubble are not particularly important for the
positron dynamics.

V. CONCLUSION

In conclusion, we have shown that the laser-augmented
blowout (LAB) scheme allows for the acceleration of positron
rings over tens of centimeters despite the driving beam’s
evolution and laser refraction. The focusing fields were an-
alytically shown to have an equilibrium line along which
the positron ring can be placed. This location coincides with
the maximum accelerating field for that transverse position.
Emittance growth is also limited when the witness beam is
properly matched to the wakefield setup. Future work could
further investigate the stability of the scheme as well as the
creation and injection of the positron ring.
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