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The impact of magnetic field (MF) on the parallel resistivity η‖ is studied for strongly magnetized plasmas
with the electron thermal gyroradius ρthe smaller than the Debye length λD but much larger than the Landau
length λL . Two previous papers [P. Ghendrih et al., Phys. Lett. A 119, 354 (1987); S. D. Baalrud and T. Lafleur,
Phys. Plasmas 28, 102107 (2021)] found η‖ to increase monotonically with MF. Unfortunately, both works used
predetermined electron distribution functions and are thus not self-consistent. In this paper, we analyze the MF
dependence of η‖ self-consistently by solving the electron magnetized kinetic equation in a Lorentz gaslike
approximation. It is found η‖ decreases monotonically with MF, with λD in the usual Coulomb logarithm ln � =
ln(λD/λL ) being replaced by ρthe. The underlying physics is that the electrons affected only by the collisions
with impact parameters between λL and ρthe carry almost all the parallel current.
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I. INTRODUCTION

Resistivity [1], as a basic physical quantity, plays an
important role in plasma physics related to space physics,
astrophysics, and fusion physics. It describes the generation of
electric currents [2], determines the efficiency of ohmic heat-
ing [3], and can induce many instabilities, such as the resistive
tearing mode [4,5], resistive drift instability [6,7], resistive
ballooning mode [8,9], etc. Therefore, accurate knowledge
of its value is of great significance. For strongly magnetized
plasmas with the electron thermal gyroradius ρthe smaller than
the Debye screening length λD, such as tokamak plasmas
[10,11], ultracold neutral plasmas [12,13], and astrophysical
plasmas [14,15], the resistivity should have a dependence on
the magnetic field (MF) which drastically affects the electrons
involved collisions with impact parameters p larger than ρthe

[16,17]. Ghendrih et al. [18] calculated the MF dependence
of the parallel resistivity η‖ by means of the rate of entropy
production using the electron distribution function (EDF) per-
tinent to the Lorentz gas in the vanishing magnetic field limit
and then extending it to a shifted Maxwellian EDF. In both
cases, they found the ratio of η‖ to its value without MF
was 1 + ln(λD/ρthe)/(2 ln �) for λL < ρthe < λD and 3/2 for
ρthe < λL, with ln � = ln(λD/λL ) being the usual Coulomb
logarithm and λL the Landau length, showing a monotonic
increase of η‖ with the MF. Baalrud and Lafleur [19] found
η‖ to increase by a factor of 3/2 as well for ρthe < λL through
calculating the ion friction force due to collisions with elec-
trons with a shifted Maxwellian distribution. The above two
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works both used the predetermined EDFs and are thus not
self-consistent. A self-consistent study is conducted for the
impact of MF on η‖ in this paper. Contrary to previous results,
η‖ is found to decrease monotonically with the MF, which is
expected to have a notable impact on various plasma physics
problems associated with η‖, particularly on the resistive in-
stabilities and transport phenomena.

The rest of the paper is organized as follows: In Sec. II, the
physical model adopted in this paper is described. In Sec. III,
the electron magnetized kinetic equation in the steady state in
the presence of a static and uniform electric field along the
MF is solved. Good agreement is achieved between the EDFs
obtained analytically and numerically. Section IV is devoted
to the research of the MF influence on η‖ through calculating
the parallel current. Finally, a brief conclusion is given in
Sec. V.

II. PHYSICAL MODEL

We are concerned with a simple homogeneous plasma
composed of electrons and one type of ions immersed in
static and uniform electromagnetic fields E = E êz and B =
Bêz with êz being the unit vector in the z direction. The
mass, charge, number density, temperature, thermal veloc-
ity, and gyrofrequency of the electrons are me, −e, ne, Te,
vthe ≡ √

kBTe/me with kB being the Boltzmann constant, and
�e ≡ eB/me, respectively, and those of the ions are mi, Ze,
ni, Ti, vthi ≡ √

kBTi/mi, and �i ≡ ZeB/mi, respectively. The
MF strength is first assumed to satisfy λL � ρthe < λD < ρthi,
where ρthe ≡ vthe/�e, λD =

√
ε0kBTeTi/[nee2(ZTe + Ti )] with

ε0 being the permittivity of the vacuum, and ρthi ≡ vthi/�i is
the ion thermal gyroradius. This implies that the MF influence
on the electron dynamics has to be taken into account during
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the collision process while its influence on the ion dynamics is
ignorable. For simplicity, the electrons are supposed to collide
only with background ions and not with other electrons. Since
the current is mainly carried by the electrons, we can ignore

the ion response to E and take its velocity distribution function
fi to be Maxwellian. Under these conditions, the evolution of
the EDF fe is governed by a magnetized Fokker-Planck (FP)
equation [17,20],

∂ fe

∂t
− eE

me

∂ fe

∂vez
= − ∂

∂ve
· [〈	Ve〉 fe] + 1

2

∂2

∂ve∂ve
: [〈	Ve	Ve〉 fe], (1)

where ve is the electron velocity and vez is its z component. 〈	Ve〉 and 〈	Ve	Ve〉 are the first- and second-order magnetized
FP coefficients, respectively. In the static screening approximation, they are given by [16]

〈	Ve〉 = 


{(
1 + me

mi

)
ln

(ρthe

λL

) ∂

∂ve

[
1

ve
erf

(
ve√
2vthi

)]
+ 1

2
ln

(
λD

ρthe

)[(
∂

∂vez
− mevez

miv
2
thi

)
D(vez )

]
êz

}
, (2)

〈	Ve	Ve〉 = 


{
ln

(ρthe

λL

) ∂2

∂ve∂ve

[(
v2

thi
∂

∂ve
+ v2

e + v2
thi

ve

)
erf

(
ve√
2vthi

)]
+ ln

(
λD

ρthe

)
D(vez )êzêz

}
, (3)

where 
 ≡ Z2e4ni/(4πε2
0m2

e ) and

D(vez ) ≡ 2v2
thi

v2
ez

(
− ∂

∂vez
+ 1

vez

)
erf

(
vez√
2vthi

)
, (4)

with erf (x) being the error function, It can be seen that ex-
cept 〈	Vez〉 and 〈	Vez	Vez〉, the only change of the other
components of 〈	Ve〉 and 〈	Ve	Ve〉 compared to the no
MF case is a replacement of λD in ln � by ρthe. 〈	Vez〉
and 〈	Vez	Vez〉 have contributions from the collisions with
ρthe < p < λD, and depend sensitively on vez. In Figs. 1 and
2, we plot how the ratios R f ≡ 〈	Vez〉/〈	vez〉 and Rd ≡
〈	Vez	Vez〉/〈	vez	vez〉 of 〈	Vez〉 and 〈	Vez	Vez〉 to their
values 〈	vez〉 and 〈	vez	vez〉 without MF vary with |vez|,
respectively, for different ion to electron mass ratios mi/me

and α ≡ ln(λD/ρthe)/ ln �. As can be seen, for the electron
perpendicular velocity ve⊥ equal to vthe, both R f and Rd are
much greater than unity in the vicinity of |vez| = vthi, indicat-
ing that the MF substantially enhances the electron parallel
velocity friction and diffusion [16,21]. In addition, both R f

FIG. 1. The variation of R f ≡ 〈	Vez〉/〈	vez〉 with |vez| for Ti =
Te, ve⊥ = vthe, and (a) mi/me = 1836, α = 0.1, (b) mi/me = 1836,
α = 0.2, (c) mi/me = 3672, α = 0.1, and (d) mi/me = 3672, α =
0.2. The inset shows R f in the region 11 < |vez|/vthi < 30.

and Rd increase remarkably with mi/me in this case. The most
striking is the anomaly of R f in the sense that its value be-
comes close to 900 when ve⊥ = vthe and |vez| = vthi even for
mi/me = 1836 and α = 0.1. R f and Rd decrease with |vez|.
When |vez| 	 vthi, the contributions from the collisions with
ρthe < p < λD become smaller and smaller and can be com-
pletely ignored as |vez| far exceeds a critical value vc. Then
both R f and Rd reduce to 1 − α as can be seen clearly from
the enlarged view of the back segments of the curves in Figs. 1
and 2. vc can be roughly estimated by comparing the two
terms in the braces on the right-hand side (RHS) of Eq. (2) and
determined by the relation α′∂D(vc)/∂vc = −2vc/v

3
e , which

gives vc = (3α′v3
e v

2
thi )

1/5 with α′ ≡ α/(1 − α).
To further simplify the model, the ion is assumed to be im-

mobile in collisions with p < ρthe while its motion is allowed
for in collisions with ρthe < p < λD to retain the feature of
large R f and Rd in the vicinity of |vez| = vthi. We call it
a Lorentz gaslike approximation. In this approximation, the
first terms in the braces on the RHSs of Eqs. (2) and (3) are,

respectively, reduced to − ln( ρthe

λL
) ve
v3

e
and ln( ρthe

λL
) v2

e I−veve

v3
e

with

FIG. 2. The variation of Rd ≡ 〈	Vez	Vez〉/〈	vez	vez〉 with
|vez| with the same parameter settings as in Fig. 1 for the four cases.
The inset shows Rd in the region 4 < |vez|/vthi < 15.
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I being the unit tensor. Equation (1) thus becomes

∂ fe

∂t
− eE

me

∂ fe

∂vez

= 


2

{
ln

(ρthe

λL

) ∂

∂ve
·
[
v2

e I − veve

v3
e

· ∂ fe

∂ve

]

+ ln

(
λD

ρthe

)
∂

∂vez

[
D(vez )

(
∂

∂vez
+ mevez

miv
2
thi

)
fe

]}
. (5)

III. SOLVING THE ELECTRON MAGNETIZED KINETIC
EQUATION ANALYTICALLY AND NUMERICALLY

η‖ is defined by the parallel Ohm’s law η‖ ≡ E/Jz, where
Jz ≡ −e

∫
vez fe d3ve is the parallel current. To calculate η‖,

fe has to be determined first by solving Eq. (5). Despite its
simple appearance, Eq. (5) is rather tricky to solve. We will
seek for an approximate solution in the following. fe can
be viewed as composed of an equilibrium part fe0 of the
Maxwellian distribution with Te = Ti and a perturbed part fe1

induced by E, fe = fe0 + fe1. E is assumed to be very small so
fe1 � fe0 in general. Neglecting the nonlinear term involving
the product of E and ∂ fe1/∂vez in Eq. (5), for the steady state
∂ fe1/∂t = 0 we have

−β
∂ fe0

∂vez
= ∂

∂ve
·
[
v2

e I − veve

v3
e

· ∂ fe1

∂ve

]

+ α′ ∂

∂vez

[
D(vez )

(
∂

∂vez
+ vez

v2
the

)
fe1

]
, (6)

where β ≡ 2eE/[me
 ln(ρthe/λL )]. Considering that the sec-
ond term on the RHS of the above equation plays a leading
role for |vez| � vc but is trivial for |vez| 	 vc, we split the
whole vez space into two regions according to the magnitude
of |vez|: region I for 0 < |vez| < v′

c and region II for |vez| > v′
c.

v′
c is different from vc and will be given later. In region I, the

second term on the RHS of Eq. (6) is dominant. To deal with
the possible situation of large derivatives of fe1 with respect to
vez for |vez| close to v′

c caused by the rapid variation of D(vez )
with vez, it is also necessary to retain the part proportional to

∂2 fe1/∂v2
ez in the first term. So we have

−β
∂ fe0

∂vez
= 1

ve⊥

∂2 f I
e1

∂v2
ez

+ α′ ∂

∂vez

[
D(vez )

(
∂

∂vez
+ vez

v2
the

)
f I
e1

]
. (7)

Integrating the above equation over vez twice yields

f I
e1 = − βve⊥ξ−1(ve⊥, vez )

×
∫ vez

0

fe0(ve⊥, v′
ez ) + CI(ve⊥)

1 + α′ve⊥D(v′
ez )

ξ (ve⊥, v′
ez )dv′

ez, (8)

where ξ (ve⊥, vez ) ≡ exp[
∫ vez

0 γ (ve⊥, v′
ez )dv′

ez], γ (ve⊥, vez ) ≡
α′ve⊥vezD(vez )/{v2

the[1 + α′ve⊥D(vez )]}, and CI(ve⊥) is a
function to be determined of ve⊥. In region II, the first term
on the RHS of Eq. (6) becomes dominant. In this case, it
is more suitable to use the spherical coordinates (ve, θ, φ)
in velocity space with θ and φ being the polar and az-
imuthal angles, respectively. Considering the large value of
ve∂D(ve cos θ )/∂θ for |vez| close to v′

c, the part proportional to
∂[D(ve cos θ )∂ fe1/∂θ ]/∂θ in the second term is kept as well.
We thus have

−β cos θ
∂ fe0

∂ve
= 1

v3
e sin θ

∂

∂θ

[
sin θ

∂ f II
e1

∂θ

]

+ α′ sin θ

v2
e

∂

∂θ

[
sin θD(ve cos θ )

∂ f II
e1

∂θ

]
. (9)

Multiplying both sides of the above equation by sin θ , taking
sin2 θ to be 1 in the second term on the RHS since this
term is important only when θ ∼ π/2, and integrating the
equation over θ twice yields

f II
e1 = − βv3

e fe0(ve)

2v2
the

∫ vez

0

1

1 + α′veD(v′
ez )

dv′
ez

+ CII
+(−)(ve), (10)

where C+(−)
II (ve) are functions to be determined of ve with C+

II
for vez > v′

c and C−
II for vez < −v′

c. Continuities of fe1 and
∂ fe1/∂vez at vez = ±v′

c require

CI
1 =

(
v2

e⊥
2v2

the

− 1

)
fe0(ve⊥), C+

II = −C−
II = 0, (11)

from which it follows that

fe1 =
⎧⎨
⎩

−βve⊥ξ−1(ve⊥, vez )
∫ vez

0
v2

e⊥ fe0(ve⊥ )/(2v2
the )+ fe0(ve⊥,v′

ez )− fe0(ve⊥ )
1+α′ve⊥D(v′

ez ) ξ (ve⊥, v′
ez )dv′

ez for |vez| < v′
c,

− βv3
e fe0(ve )
2v2

the

∫ vez

0
1

1+α′veD(v′
ez ) dv′

ez for |vez| > v′
c.

(12)

v′
c remains to be determined. One can readily verify by using

fe1 in the above equation that α′veD(v′
c) > 1 is required to

ensure the magnitude of the extra terms of Eq. (6) relative to
Eq. (7) smaller than |β∂ fe0/∂vez|. Similarly, α′veD(v′

c) < 1
is required to ensure the magnitude of the extra terms of
Eq. (6) relative to Eq. (9) smaller than |β∂ fe0/∂vez|. Con-
sequently, α′veD(v′

c) = 1, which gives v′
c = (2α′vev

2
thi )

1/3.

From Eq. (12), we have

∂ fe1

∂θ
= βv4

e sin θ fe0

2v2
the[1 + α′veD(ve cos θ )]

(13)

for both regions I and II by retaining only the dominant terms.
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FIG. 3. Contour map of ∂ f̂e1/∂θ in the quasisteady state obtained
numerically and the black contour lines from the theoretical result in
Eq. (13) with mi/me = 3672 and α = 0.2.

To verify the theoretical results, Eq. (5) is solved numeri-
cally. Since fe is axially symmetric, the numerical calculation
is carried out in the two-dimensional (ve, θ ) velocity space.
The calculation domain is chosen to be (0.2vthe < ve <

5vthe, 0 � θ � π ) to encompass the 99.8% contribution to Jz.
The lower ve truncation is introduced to avoid the huge waste
of computing resources due to the small time step required
by high collision frequency at small ve. mi/me is taken to
be 3672 for a deuterium plasma and α is taken to be 0.2.
fe, ve, t , and E are normalized by ne/(2πv2

the)3/2, vthe, ν−1
ei ,

and Ec, respectively, where νei ≡ √
2
 ln �/(3

√
πv3

the) [22]
is the electron-ion collision frequency and Ec ≡ νeimevthe/e.
The normalized quantities are labeled by the hat (ˆ) symbol
in the following. f̂e evolves under the action of Ê from the
initial state f̂e0 = exp(−v̂2

e /2), and reaches a quasisteady state
after a few collision times. For the avoidance of the electron
runaway to get a better comparison with the above-obtained
linear theoretical results, a small value of Ê = 10−4 is taken.
Figure 3 shows the contour map of ∂ f̂e1/∂θ in the quasis-
teady state obtained numerically and the black contour lines
from the theoretical result in Eq. (13) with mi/me = 3672
and α = 0.2. A good agreement between the numerical and
theoretical results is achieved. A remarkable feature in Fig. 3
is the sharp decrease of ∂ f̂e1/∂θ as v̂ez approaches 0. To see
this more clearly, the change of ∂ f̂e1/∂θ with θ is plotted in
Fig. 4 for the two cases v̂e = 1 and v̂e = 2. The theoretical re-
sults represented by the solid curves and the numerical results
by the dashed curves are in good agreement. In both cases,
∂ f̂e1/∂θ exhibits a nonmonotonic change with θ in the range
0 < θ < π/2 and has a minimum at θ = π/2. This is quite
different from the no MF case represented by the dotted curves
in which ∂ f̂e1/∂θ changes sinusoidally with θ and reaches a
maximum at θ = π/2. The physics underlying this behavior
is the large electron parallel velocity friction and diffusion
around vez = 0 for ρthe � λD, reflected in the second term in
the denominator on the RHS of Eq. (13). Compared to the
v̂e = 1 case, the large parallel velocity friction and diffusion

FIG. 4. Change of ∂ f̂e1/∂θ with θ for the two cases v̂e = 1 and
v̂e = 2 with mi/me = 3672 and α = 0.2. The solid curves represent
the theoretical results and the dashed curves the numerical results.
The results without MF multiplied by 1/(1 − α) are shown for com-
parison by the dotted curves. The dashed black vertical line indicates
the position of θ = π/2.

appear in a more narrow θ range for the v̂e = 2 case, leading
to its steeper downtrend of ∂ f̂e1/∂θ around θ = π/2.

IV. MF INFLUENCE ON η‖

In spherical coordinates, Jz is given by

Jz = − 2πe
∫ ∞

0
dve

∫ π

0
dθ v3

e sin θ cos θ fe1

=πe
∫ ∞

0
dve

∫ π

0
dθ v3

e sin2 θ
∂ fe1

∂θ
, (14)

FIG. 5. Comparison of fe1 in Eq. (12) for mi/me = 3672, α =
0.2, and ve = 2.5vthe with its value f n

e1 without MF. The red curve
represents f̂e1, the green curve f̂ n

e1, and the blue curve f̂ n
e1/(1 − α).
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TABLE I. Plasma parameters of three strongly magnetized environments. Columns list ne, kBTe, B, ln �, ln(ρthe/λL ), and the relative
correction of η‖ due to the MF given by −α.

ne (cm−3) kBTe (eV) B (T) ln � ln(ρthe/λL ) −α

White dwarf atmospheres [26] 1016 5 104 6.0 0.6 −90%
Ultracold neutral plasmas [27] 107 4 × 10−4 0.01 2.2 0.3 −86%
Tokamak scrape-off layer plasmas (Alcator C-Mod) [10] 1013 30 5 12.2 10.9 −10%

where integration over θ by parts is performed in the second
step. Substituting Eq. (13) into the above equation and carry-
ing out the integrals over θ and ve yields

Jz = 16βenev
3
the√

2π
, (15)

from which we finally arrive at

η‖ =
√

2πE

16βenev
3
the

= Ze2√me ln(ρthe/λL )

64
√

2πε2
0 (kBTe)3/2

. (16)

It can be seen that the only difference from the conventional
parallel resistivity [23] is the replacement of λD in ln � by
ρthe. To explain the MF dependence of η‖, we compare fe1

in Eq. (12) for mi/me = 3672, α = 0.2, and ve = 2.5vthe with
its value f n

e1 without MF in Fig. 5. It can be seen from the
enlarged view of the curves around θ = π/2 that for θ very
close to π/2 corresponding to |vez| ∼ 0, fe1 is much smaller
than f n

e1 due to the MF-induced large electron parallel velocity
friction and diffusion. For θ deviating slightly from π/2, fe1

becomes larger than f n
e1 and is about 1/(1 − α) times of f n

e1
when |vez| 	 v′

c as a result of the vanishing of the effects of
collisions with ρthe < p < λD. The large difference between
fe1 and f n

e1 indicates that it is incorrect to calculate the MF
dependence of η‖ by employing f n

e1. An explanation of η‖
dependence on MF can be provided based on the feature of
fe1. For very small |vez|, although fe1 � f n

e1, this kind of
influence is not important to η‖ since the correlated velocity
region hardly contributes to Jz even in the no MF case. For
the velocity region |vez| 	 v′

c which contributes almost all Jz,
fe1 ≈ f n

e1/(1 − α). Therefore, Jz is about 1/(1 − α) times of
its value without MF, indicating η‖ becomes 1 − α times of
the no MF case.

For even stronger MF satisfying λL � ρthe < ρthi < λD,
both the MF influence on the electron and ion dynamics has to
be taken into account during the collision process. It is found
that all the procedures and results described above apply to
this case except that D(vez ) is changed to

D(vez ) ≡α′
1

α′
2v2

thi

v2
ez

(
− ∂

∂vez
+ 1

vez

)
erf

(
vez√
2vthi

)

+ α′
2

α′

√
2

π

vthi

�2
i ln(λD/ρthi )

∫ ρ−1
thi

λ−1
D

dk
∫ 1

−1
dx

× k|x|(1 − x2) exp

(
− (kvezx + �i )2

2k2v2
thix

2

)
, (17)

with α′
1 ≡ ln(ρthi/ρthe)/ ln(ρthe/λL ) and α′

2 ≡
ln(λD/ρthi )/ ln(ρthe/λL ). η‖ is still given by Eq. (16).

As can be seen, the electron-ion collisions with ρthe < p <

λD make no contribution to η‖. Since the electron-electron
collisions with ρthe < p < λD are also negligible [24] in the
evolution of fe without considering reflections [25], we can
conclude that collisions with ρthe < p < λD are trivial for
obtaining a MF-dependent η‖. The result that λD in ln � in
the expression of η‖ without MF should be replaced by ρthe

when ρthe < λD is thus universal in spite that it is obtained in a
Lorentz gaslike approximation in this paper. Then the relative
correction of η‖ due to the MF is −α in this case. Table I
presents the plasma parameters including ln �, ln(ρthe/λL ),
and −α of three strongly magnetized environments. We note
that the MF influence on η‖ is significant in the white dwarf
atmospheres and the ultracold neutral plasmas with the rel-
ative corrections close to 90%. In view of the small values
of ln(ρthe/λL ) in these two circumstances, η‖ should be cal-
culated in a more accurate manner beyond the logarithmic
accuracy, which is beyond the scope of this paper. For the
Alcator C-Mod tokamak scrape-off layer plasmas, the relative
correction is about 10%. In the future, as the MF of tokamaks
increases, its influence on η‖ may become more pronounced.

V. CONCLUSION

In conclusion, by solving the electron magnetized kinetic
equation theoretically and numerically in a Lorentz gaslike
approximation, a monotonic decrease of η‖ with the MF has
been found with ln(λD/λL ) in its expression without MF being
replaced by ln(ρthe/λL ) when ρthe < λD. This result is uni-
versal and of great significance for the research of η‖-related
physical processes.
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