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Exact law for compressible pressure-anisotropic magnetohydrodynamic turbulence:
Toward linking energy cascade and instabilities
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We derive an exact law for compressible pressure-anisotropic magnetohydrodynamic turbulence. For a
gyrotropic pressure tensor, we study the double-adiabatic case and show the presence of new flux and source
terms in the exact law, reminiscent of the plasma instability conditions due to pressure anisotropy. The Hall
term is shown to bring ion-scale corrections to the exact law without affecting explicitly the pressure terms. In
the pressure isotropy limit we recover all known results obtained for isothermal and polytropic closures. The
incompressible limit of the gyrotropic system leads to a generalization of the Politano and Pouquet’s law where
a new incompressible source term is revealed and reflects exchanges of the magnetic and kinetic energies with
the no-longer-conserved internal energy. We highlight the possibilities offered by the new laws to investigate
potential links between turbulence cascade and instabilities widely observed in laboratory and astrophysical
plasmas.

DOI: 10.1103/PhysRevE.105.055111

I. INTRODUCTION

In recent years there has been a growing interest in deriving
von Kármán–Howarth–Monin (vKHM) [1–3] equations that
describe turbulent energy cascade in magnetized plasmas.
Those equations present the double advantage of being fully
nonlinear and of linking the turbulent energy cascade (or
dissipation) rate to measurable fields [4–10]. The cascade rate
is used to estimate energy dissipation from spacecraft data
taken in the solar wind (SW) and the planetary plasma en-
vironments [11–16]. Efforts were thus put in generalizing the
laws to more realistic conditions met in those plasmas at the
cost of increasing complexity. Two main lines of research are
pursued: one aiming at extending the range of the described
scales, from magnetohydrodynamics (MHD), to Hall-MHD
and two-fluids [17–24]; the second by incorporating density
fluctuations described within isothermal or polytropic clo-
sures [25–34] or gravitational effects to study star formation
in the interstellar medium [35,36].

Despite these important improvements, a key missing in-
gredient that none of the existing models can describe is the
presence of pressure anisotropy (with respect to the back-
ground magnetic field B0). Indeed, while the existing laws
do consider the presence of a background magnetic field,
which allows one to study energy transfers along the parallel
and perpendicular directions to B0 [37–41], they however all
assume a scalar pressure, which is unrealistic to describe most
of the magnetized collisionless astrophysical (or laboratory)
plasmas where ion and electron pressure anisotropies are fre-
quently reported from particle measurements [42–47].

In order to include pressure anisotropy in fluid modeling of
magnetized plasmas, Chew et al. [48] introduced the double-
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adiabatic closure (known also as CGL). One of the main
changes to the dynamics of the plasma brought up by pressure
anisotropy in CGL-MHD equations is the presence of instabil-
ities, which in the linear limit coincide with the firehose when
β‖
2 [1 − ap] > 1 and the mirror when β‖ap + 1 <

β‖a2
p

6 (β‖ is
the ratio of the parallel thermal to the magnetic pressure, ap =
T⊥/T‖ is the ratio between the proton perpendicular and paral-
lel temperatures [49–51]). These instabilities (or their kinetic
counterparts) were shown to constrain part of the dynamics
of the SW [45,46] and are thought to operate in laboratory
devices [52], clusters of galaxies [53], and black holes’ ac-
cretion disks [54]. However, the interplay between turbulence
and instabilities remains an unsettled question although some
hints were already reported. These include driving of sub-
ion-scale turbulence [47,55,56], influencing the scaling of
the high-frequency magnetic energy spectra in the SW [45],
or linking unstable plasmas to high-energy cascade rates as
measured in the near-Earth space [41,57], which remains to
date not fully understood.

It is the goal of this paper to fill the existing gap by
providing a self-consistent (fluid) theoretical framework to
investigate the potential coupling between plasma turbulence
and instabilities.

II. THEORETICAL MODEL

We use the classical MHD equations but assume a (sym-
metric) pressure tensor rather than a scalar one,

∂tρ = −∇ · (ρv), (1)

∂t (ρv) = ∇ · (ρvAvA − ρvv − P∗) + dk + f, (2)

∂t (ρvA) = ∇ · (ρvAv − ρvvA) + ρv∇ · vA

− 1
2ρvA∇ · v + dm, (3)
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where ρ is the mass density, v the velocity field, vA = B√
μ0ρ

the Alfvén velocity with B the magnetic field, and P∗ =
P + PM is the total pressure tensor, i.e., the sum of the pres-

sure tensor P and the magnetic pressure tensor PM = PMI =
(ρvA

2/2)I (I is the identity 3 × 3 matrix), dk the kinetic
viscous dissipation, dm the magnetic diffusivity, and f a sta-
tionary homogeneous external force assumed to act on the
largest scales.

Since we want to derive the exact law for the total energy
of the system, Eqs. (1)–(3) are complemented by that of the
(specific) internal energy u, which reads

∂t u = −∇ · (uv) + u∇ · v − P

ρ
: ∇v, (4)

since P and P∗ are symmetrical tensors, i.e., Pi j = Pji, the

dual product between two such tensors P and A obeys P :

A = Pi jAi j = PjiAi j . Equation (4), valid for any symmetric
pressure tensor when the heat flux is neglected, can be de-
rived from thermodynamical considerations [58] or from the
moments of the Vlasov-Maxwell equations [50]. For a scalar

pressure, i.e., P = PI , we recover the equation of the internal
energy used in Ref. [34].

Equations (1)–(4) will be used in the following section to
derive the exact law of interest.

III. GENERAL EXACT LAW FOR COMPRESSIBLE
PRESSURE-ANISOTROPIC MHD TURBULENCE

Following the standard approach used in statistical theories
of fully developed turbulence [4–6,9], we define the spatial
increment (or scale) � connecting two points x and x′ as x′ =
x + � and introduce the notations, ξ (x) ≡ ξ , its conjugate
(i.e., taken at the position x′) ξ (x′) ≡ ξ ′, and the incremental
quantity δξ ≡ ξ ′ − ξ . These definitions impose that ∂xξ

′ =
∂x′ξ = 0, while the hypothesis of space homogeneity implies
the relations 〈∇′·〉 = ∇� · 〈 〉 and 〈∇·〉 = −∇� · 〈 〉, where ∇�

denotes the derivative operator along the increment vector �

and 〈 〉 an ensemble average.

We consider the mean correlation function of the total en-
ergy Rtot = (R + R′)/2 with R = 〈ρv · v′/2 + ρvA · vA

′/2 +
ρu′〉 = Rk + RB + Ru a correlation function taken at the point
x and R′ its conjugate. We remark that if x = x′, Rtot = E =
〈ρv2/2 + ρvA

2/2 + ρu〉, i.e., the mean total energy of the
system.

Using the property ∂t 〈〉 = 〈∂t 〉, Eqs. (1)–(4) written at the
independent positions x then x′ and multiplied by the appro-
priate variables [e.g., Eq. (2) multiplied by v′] and the space
homogeneity assumption (see Ref. [34] for more details), we
obtain the temporal evolution of the kinetic, Rk , the magnetic,
RB, and the internal energy, Ru, correlators:

2∂t Rk = −∇� · 〈ρv · v′δv + ρvA · v′vA − ρv · v′
Av′

A〉

+∇� ·
〈
P∗ · v′ − ρ

ρ ′ P
′∗ · v

〉
+ 〈ρv · v′∇′ · v′〉

−
〈

ρ

ρ ′ v · P′∗ · ∇′ρ ′

ρ ′ + 2ρv · v′
A∇′ · v′

A

〉
+ F + Dk,

(5)

2∂t RB = −∇� · 〈ρvA · v′
Aδv + ρv · v′

AvA〉
−∇� · 〈ρvA · v′v′

A〉 + 〈
1
2ρvA · v′

A(∇′ · v′ − ∇ · v)
〉

+〈ρv · v′
A∇ · vA − ρvA · v′∇′ · v′

A〉 + Dm, (6)

∂t Ru = −∇� · 〈ρu′δv〉 +
〈
ρu′∇′ · v′ − ρ

ρ ′ P
′ : ∇′v′

〉
, (7)

where the terms depending on the forcing, the kinetic, and
magnetic dissipation are regrouped respectively in F , Dk , and
Dm. Then the temporal evolution of Rtot is the sum of the re-
lations (5)–(7) and of their conjugates (written at position x′).
By recognizing the developed form of the structure functions
〈δ(ρv) · δvδv〉, 〈δ(ρvA) · δvAδv〉, 〈δ(ρvA) · δvδvA〉, 〈δ(ρv) ·
δvAδvA〉, 〈δρδuδv〉, 〈δρδ(P/ρ) · δv〉, and 〈δρδ(PM/ρ) · δv〉,
the final expression for the temporal evolution of the total
energy correlator reads

4∂t Rtot = ∇� ·
〈

[δ(ρv) · δv + δ(ρvA) · δvA + 2δρδu]δv − [δ(ρvA) · δv + δ(ρv) · δvA]δvA − δρδ

(
P∗
ρ

)
· δv

〉

+
〈(

ρv · δv + 1

2
ρvA · δvA − 1

2
vA · δ(ρvA) + 2ρδu

)
∇′ · v′ − 2ρδ

(
P

ρ

)
: ∇′v′

〉

+
〈(

−ρ ′v′ · δv − 1

2
ρ ′v′

A · δvA + 1

2
δ(ρvA) · v′

A − 2ρ ′δu

)
∇ · v + 2ρ ′δ

(
P

ρ

)
: ∇v

〉

+〈[−2ρv · δvA − ρvA · δv + δ(ρv) · vA]∇′ · v′
A + [2ρ ′v′ · δvA + ρ ′v′

A · δv − δ(ρv) · v′
A]∇ · vA〉

+
〈[

δρ
P∗
ρ

· v − ρδ

(
P∗
ρ

)
· v

]
· ∇′ρ ′

ρ ′ +
[
ρ ′δ

(
P∗
ρ

)
· v′ − δρ

P′∗
ρ ′ · v′

]
· ∇ρ

ρ

〉
+ F + F ′ + Dk + D′

k + Dm + D′
m.

(8)

From this relation and following the usual assumptions used in fully developed homogeneous turbulence, namely infinite
kinetic and magnetic Reynolds numbers, stationary state, balance between forcing (at the largest scales), and dissipation (at the
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smallest ones) [5,6,25], we obtain the following exact law valid in the inertial range:

−4εMHD = ∇� · FMHD + SMHD + S ′MHD,

with

FMHD =
〈

[δ(ρv) · δv + δ(ρvA) · δvA + 2δρδu]δv − [δ(ρvA) · δv + δ(ρv) · δvA]δvA − δρδ

(
P∗
ρ

)
· δv

〉
,

SMHD =
〈(

ρv · δv + 1

2
ρvA · δvA − 1

2
vA · δ(ρvA) + 2ρδu

)
∇′ · v′ − 2ρδ

(
P

ρ

)
: ∇′v′

〉

+ 〈[−2ρv · δvA − ρvA · δv + δ(ρv) · vA]∇′ · v′
A〉 +

〈[
δρ

P∗
ρ

· v − ρδ

(
P∗
ρ

)
· v

]
· ∇′ρ ′

ρ ′

〉
,

S ′MHD = conjugate(SMHD), (9)

where εMHD is the classical mean energy dissipation rate by unit mass assumed to be equal to the injection rate due to the forcing,
i.e., F + F ′ 
 4εMHD, and to the cascade rate in the inertial range due to nonlinearities. The exact law (9) is the first main result
of this paper. It is valid for any MHD flow with a (symmetric) pressure tensor when the heat flux is neglected.

As in other compressible exact laws, we can recognize the terms introduced by Ref. [29]: FMHD is the flux terms (increment
derivative ∇� · 〈 〉), and SMHD and its conjugate S ′MHD are generally known as source terms (see below about the physical
meaning of this terminology) where terms in 〈∇ · v〉 reflect the role of velocity dilatation, terms in 〈∇ · vA〉 involve the
(compressible) Alfvén speed dilatation, and terms in 〈∇ρ〉 contain density dilatation. Note that some hybrid and the β-dependent

terms introduced in Ref. [29] are hidden in the new structure function 〈δρδ( P∗
ρ

) · δv〉 and the terms in 〈∇ρ〉.

A. Extension to pressure anisotropic Hall-MHD

The extension of the previous MHD model to Hall-MHD flows can be readily obtained by noticing that the only change to
the original model is to introduce the Hall term in Eq. (3), while the internal energy equation remains unchanged. Therefore, the
changes to the exact law (9) will occur through the sole terms that depend on the current density, which were already derived in
Ref. [30] for compressible isothermal MHD, without impacting pressure terms. The final exact law for Hall-MHD thus writes

−4εHMHD = −4εMHD + 2di∇� · 〈
ρJc × vA × δvA − δ(Jc × vA) × ρvA

〉
− di

2
〈(δρv′

A · vA)∇ · Jc − (δρv′
A · vA)∇′ · J′

c〉 + di〈(δρJc · v′
A)∇ · vA − (δρJ′

c · vA)∇′ · v′
A〉. (10)

where εMHD is given by Eq. (9), di is the ion inertial length, and J = ρJc is the current density in Alfvénic units.

B. In the isotropic pressure case

When considering a (total) scalar pressure P = PI the MHD exact law (9) takes the form

−4εMHD = ∇� · FMHD + SMHD + S ′MHD,

with

FMHD =
〈
[δ(ρv) · δv + δ(ρvA) · δvA + 2δρδu]δv − [δ(ρvA) · δv + δ(ρv) · δvA]δvA − δρδ

(
P∗
ρ

)
δv

〉
,

SMHD =
〈[

ρv · δv + 1

2
ρvA · δvA − 1

2
vA · δ(ρvA) + 2ρδu − 2ρδ

(
P

ρ

)]
∇′ · v′

〉

+ 〈[−2ρv · δvA − ρvA · δv + δ(ρv) · vA]∇′ · v′
A〉 +

〈[
δρ

P∗
ρ

· v − ρδ

(
P∗
ρ

)
· v

]
· ∇′ρ ′

ρ ′

〉
,

S ′MHD = conjugate(SMHD). (11)

One can notice in relation (11) the presence of a new flux term that was not recognized as such in the previous models derived

for scalar pressure [26,29,34]: ∇� · 〈−δρδ( P∗
ρ

) · δv〉 = ∇� · 〈−δρδ( P∗
ρ

)δv〉. Using the first law of thermodynamics ρ2∇u = P∇ρ,

one can write the term in ∇′ρ ′ of SMHD of Eq. (11) as (the same holds for its conjugate)〈[
δ(ρ)

P∗
ρ

v − ρδ

(
P∗
ρ

)
v
]

· ∇′ρ ′

ρ ′

〉
=

〈[
δ

(
ρ2

P

)
P∗
ρ

v − δ
(P∗

P

)
ρv

]
· ∇′u′

〉
=

〈
P∗
ρ

v · ∇′ρ ′ − P′
∗

P′ ∇′ · (ρu′v)

〉
. (12)
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It is worth noting that the β-dependent term introduced by Ref. [29] is hidden in this line since P∗/P = 1 + PM/P = 1 + β−1.
After some other manipulations, we recover the general exact law for isentropic flows derived in Ref. [34]:

−4εMHD = ∇� · 〈δ(ρv) · δvδv + δ(ρvA) · δvAδv + 2δρδuδv − δ(ρvA) · δvδvA − δ(ρv) · δvAδvA〉

+∇� ·
〈(

1 + ρ ′

ρ

)
(P + PM )v′ −

(
1 + ρ

ρ ′

)
(P′ + P′

M )v + ρ ′uv′ − ρu′v
〉

+
〈
(∇′ · v′)

[
ρv · δv + ρvA · δvA − 1

2
ρ ′vA

′ · vA − 1

2
ρvA · vA

′ + 2ρ

(
δu − P′

ρ ′

)]〉

+
〈
(∇ · v)

[
−ρ ′v′ · δv − ρ ′vA

′ · δvA − 1

2
ρvA · vA

′ − 1

2
ρ ′vA

′ · vA − 2ρ ′
(

δu + P

ρ

)]〉
−〈(∇′ · vA

′)(2ρv · δvA − ρ ′v′ · vA + ρvA · v′) − (∇ · vA)(2ρ ′v′ · δvA + ρv · vA
′ − ρ ′vA

′ · v)〉

−
〈

P′
M

P′ ∇′ · (ρu′v) + PM

P
∇ · (ρ ′uv′)

〉
. (13)

It is worth recalling that this exact law is an extension of all scalar pressure models such as the isothermal and polytropic, which
can be obtained by introducing the adequate state equation in relation (13) (i.e., specifying the relation between the pressure P
and the density ρ) that are compatible with the isentropic hypothesis [34].

IV. COMPRESSIBLE MHD EXACT LAW WITH A GYROTROPIC PRESSURE

The gyrotropic exact law can be readily obtained from relation (9) by imposing the pressure tensor decomposition P = P⊥I +
(P‖ − P⊥)bb, with b = vA/|vA| the magnetic field direction [50]. These definitions yield the following form of the total pressure,

P∗ = (P⊥ + PM )I + (P‖ − P⊥)bb. Using the tensor pressure equation, one can define the internal energy density as ρu = 1
2 P :

I = 1
2 P‖ + P⊥ [50,58]. To highlight the terms in the exact law (9) that can be linked to known (linear) plasma instabilities [50],

we further introduce the parameters β‖ = P‖
PM

and ap = P⊥
P‖

= T⊥/T‖. Injecting these relations in Eq. (9) yields the new gyrotropic-
MHD exact law, which is the second main result of this paper:

−4εGYR = ∇� · FGYR + SGYR + S ′GYR,

with

FGYR = 〈δ(ρv) · δvδv + δ(ρvA) · δvAδv − δ(ρvA) · δvδvA − δ(ρv) · δvAδvA〉

+
〈
δρδ

(
vA

2

2
(β‖[1 + ap] − 1)

)
δv − δρδ

(
β‖
2

[1 − ap]vAvA

)
· δv

〉
,

SGYR =
〈[

ρv · δv + 1

2
ρvA · δvA − 1

2
vA · δ(ρvA) + ρδ

(
vA

2β‖
2

)]
∇′ · v′ − ρδ(β‖[1 − ap]vAvA) : ∇′v′

〉
+〈[−2ρv · δvA − ρvA · δv + δ(ρv) · vA]∇′ · v′

A〉

+
〈[

(δρ)
vA

2

2
[apβ‖ + 1]v − ρδ

(
vA

2

2
[apβ‖ + 1]

)
v
]

· ∇′ρ ′

ρ ′

〉

+
〈[

(δρ)
β‖
2

[1 − ap]vAvA · v − ρδ

(
β‖
2

[1 − ap]vAvA

)
· v

]
· ∇′ρ ′

ρ ′

〉
,

S ′GYR = conjugate(SGYR). (14)

Equation (14) shows the presence of new terms brought
in by pressure anisotropy, which reveals how the turbulent
cascade can be connected to the plasma instability conditions.
For instance, the terms proportional to 1 − ap will have either
a positive or negative contribution to the cascade rate depend-
ing on the stability condition ap > 1 or ap < 1. In the case of
a positive (respectively negative) contribution to the cascade
rate, pressure anisotropy can be seen as a source of “free
energy” (respectively a sink) that can reinforce (respectively
diminish) the turbulence cascade. Furthermore, if the pressure

anisotropy terms dominate the cascade, then the instability
would impact both the value of the energy cascade rate and
its “sense” (direct versus inverse). Equation (14), which can
be used on simulation and spacecraft data, may thus pro-
vide a solid theoretical explanation of the results reported in
Refs. [39,41] and to the overall prominent role of the instabili-
ties (not necessarily linear) in controlling part of the dynamics
in astrophysical plasmas [45,46,56,59].

In relation (14) the parameters β‖ and ap that depend on the
pressure components P‖ and P⊥ are not yet determined since
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this relation derives from the internal energy equation (4),
which constrains the sum of the two pressure components
but not the individual ones. The latter can be determined by
further introducing any closure equation compatible with the

definition of the internal energy ρu = 1
2 P : I for each pressure

component as done in the CGL-MHD theory.
We note finally that the Hall correction derived in Sec. III A

remains valid with this gyrotropic version of the exact law.

A. Exact law for the CGL-MHD system

The CGL-MHD closure equations written in their conservative form [50] read

d

dt

(
P‖B2

ρ3

)
= 0 and

d

dt

(
P⊥
ρB

)
= 0, (15)

where d/dt is the total time derivative. Equations (15) lead to the integrated form of the pressures and, consequently, to the
forms of the parameters β‖ = 2C‖ ρ

vA
4 and ap = Cp

|vA|3
ρ1/2 , where the constants C‖ and Cp guarantee the homogeneity. Injecting

these integrated relations in Eq. (14) yields the new CGL-MHD exact law, which is the third result of this paper:

−4εCGL = ∇� · FCGL + SCGL + S ′CGL,

with

FCGL = 〈δ(ρv) · δvδv + δ(ρvA) · δvAδv − δ(ρvA) · δvδvA − δ(ρv) · δvAδvA〉

+
〈
δρδ

[
vA

2

2

(
2C‖

ρ

vA
4

[
1 + Cp

|vA|3
ρ1/2

]
− 1

)]
δv − δρδ

(
C‖

ρ

vA
4

[
1 − Cp

|vA|3
ρ1/2

]
vAvA

)
· δv

〉
,

SCGL =
〈[

ρv · δv + 1

2
ρvA · δvA − 1

2
vA · δ(ρvA) + ρδ

(C‖ρ
vA

2

)]
∇′ · v′

〉

−
〈
2ρδ

(
C‖

ρ

vA
4

[
1 − Cp

|vA|3
ρ1/2

]
vAvA

)
: ∇′v′ + [2ρv · δvA + ρvA · δv − δ(ρv) · vA]∇′ · v′

A

〉

+
〈[

(δρ)
vA

2

2

[
2CpC‖

ρ1/2

|vA| + 1

]
v − ρδ

(
vA

2

2

[
2CpC‖

ρ1/2

|vA| + 1

])
v
]

· ∇′ρ ′

ρ ′

〉

+
〈[

(δρ)C‖
ρ

vA
4

[
1 − Cp

|vA|3
ρ1/2

]
vAvA · v − ρδ

(
C‖

ρ

vA
4

[
1 − Cp

|vA|3
ρ1/2

]
vAvA

)
· v

]
· ∇′ρ ′

ρ ′

〉
,

S ′CGL = conjugate(SCGL). (16)

In the isotropic limit P‖ = P⊥ one finds the adiabatic
(monoatomic) case with a polytropic index γ = 5/3 and
ρu = 3P/2. Note that in the CGL-Hall-MHD the pressure
equations do not write in a conservative form as those of the
CGL-MHD [see Eq. (15)] [50]. This prevents us from obtain-
ing a reduced form of the exact law for the CGL-Hall-MHD
as that of the CGL-MHD. Nevertheless, the exact law (10) is
applicable to any CGL-Hall-MHD simulation data since the
closure equations of the latter are compatible with the internal
energy [Eq. (4)] used to derive the law (10) above.

B. The incompressible MHD with a gyrotropic pressure: A
generalization of the Politano and Pouquet’s law

In the incompressible limit, i.e., ρ = ρ0 and ∇ · v = 0,
Eq. (14) becomes

4εIGYR = 4εPP98 + ρ0〈δ(β‖[1 − ap]vAvA) : δ(∇v)〉, (17)

where εIGYR stands for the cascade rate of incompress-
ible gyrotropic model and −4εPP98 = ρ0∇� · 〈(δv · δv + δvA ·
δvA)δv − 2δvA · δvδvA〉 is the so-called Politano and Pou-
quet’s law [18], hereafter PP98. Interestingly, we evidence
in Eq. (17) the presence of a new source term brought in
by the anisotropy of the pressure tensor, which is written

as a contraction of two increment tensors. Equation (17) is
the fourth result of this paper. It generalizes PP98 to in-
compressible plasmas with a gyrotropic pressure and the
notion of source terms. Indeed, so far the terminology of
“source” terms introduced in Ref. [25] reflects compression
(respectively dilatation) of the plasma that can sustain (respec-
tively oppose) the cascade in the inertial range [33]. Here,
we evidence a new source term in the incompressible gy-
rotropic limit that is not tied to plasma contraction/dilatation,
but to pressure anisotropy. It reflects the exchange between
the no-longer-conserved internal energy (unlike in incom-
pressible pressure-isotropic flows [34]) with the sum of the
magnetic and kinetic energies as can be seen in Eq. (4)

where we have − P
ρ0

: ∇v �= 0. This leads us to propose the
following generalization of the notion of source: For com-
pressible isentropic flows with a gyrotropic pressure tensor,
the cascade of the kinetic and magnetic energies can be
opposed/sustained by compression/dilatation of the fluid and
by pressure anisotropy, the latter being relevant even in incom-
pressible flows. For weakly compressible plasmas (e.g., SW),
this result implies that the first-order correction to the PP98
law would not come from density fluctuations, but rather from
(incompressible) pressure anisotropy.
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Similarly to the compressible gyrotropic case discussed
above, the parameters β‖ and ap remain undetermined.
To determine the pressure components P‖ and P⊥ the
internal energy equation (4) (now with ρ = ρ0) is com-
plemented by a new equation coming from imposing the
incompressibility condition ∇ · v = 0 on the momentum
equation (2) (with ρ = ρ0, and dk = f = 0 for simplicity),
as done for incompressible isotropic hydrodynamics [6] or
Hall-MHD [60]. This yields the generalized pressure bal-
ance equation for incompressible gyrotropic pressure tensor,
namely,

∇ · ∇ · (ρvAvA − ρvv − P∗) = 0. (18)

Solving Eqs. (4) (with ρ = ρ0) and (18) allows one to close
the new incompressible gyrotropic MHD system proposed
here and to self-consistently determine P‖ and P⊥. However,
for nearly incompressible plasmas such as the SW, the exact
law (17) can be directly applied to spacecraft data when P‖
and P⊥ are accessible to measurements assuming Eq. (18) to
hold, as it has been done in all previous observational studies
that used the PP98 model (assuming a scalar pressure).

Note finally that the new model of incompressible gy-
rotropic [whose exact law is given by Eq. (17)] admits the
oblique firehose instability as a linear solution, which is the
unstable version of the known shear Alfvén mode [50].

V. CONCLUSION

We derived general exact laws for homogeneous MHD
and Hall-MHD turbulent flows that go beyond the pressure
isotropy assumption, which make them more realistic to study
strong turbulence in magnetized plasmas. By considering the
specific case of a CGL closure, we showed that the new law
involves new flux and source terms that potentially can reflect
the impact of plasma instabilities on the turbulent cascade. In
the limit of incompressible MHD with a gyrotropic pressure
we provided a generalization of the Politano and Pouquet’s
law [17] to pressure anisotropic plasmas, where a new incom-
pressible source term is revealed and highlights a fundamental
difference between pressure isotropic and anisotropic plas-
mas: Internal energy is not conserved in the latter and pressure
anisotropy can act as a source of free energy to supply the
turbulent cascade with an additional energy. This work thus
paves the road to different and more rigorous (albeit fluid)
studies of the interplay between turbulent (fluid) cascade and
plasma instabilities, both in numerical simulations and space-
craft observations when the full pressure tensor is accessible
to measurements.
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