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Acoustic radiation force and torque arising from wave scattering are able to translate and rotate matter
without contact. However, the existing research mainly focused on manipulating simple symmetrical geometries,
neglecting the significance of geometric features. For the nonspherical geometries, the shape of the object
strongly affects its scattering properties, and thus the radiation force and torque as well as the acoustophoretic
process. Here, we develop an analytical framework to calculate the radiation force and torque exerted on
the sound-hard or the sound-soft, axisymmetric particles excited by a user-customized transducer array based
on a conformal transformation approach, capturing the significance of the geometric features. The derivation
framework is established under the computation coordinate system (CCS), whereas the particle is assumed to
be static. For the dynamic processes, the rotation of particle is converted as the opposite rotation of transducer
array, achieved by employing a rotation transformation to tune the incident driving field in the CCS. Later, the
obtained radiation force and torque in the CCS should be transformed back to the observation coordinate system
for force and torque analysis. The radiation force and torque exerted on particles with different orientations
are validated by comparing the full three-dimensional numerical solution in different phase distributions. It is
found that the proposed method presents superior computational accuracy, high geometric adaptivity, and good
robustness to various geometric features, while the computational efficiency is more than 100 times higher than
that of the full numerical method. Furthermore, it is found that the dynamic trajectories of particles with different
geometric features are completely different, indicating that the geometric features can be a potential degree of
freedom to tune acoustophoretic process. The ability to predict the acoustophoretic process of nonspherical
particles above a user-customized transducer array has improved our understanding of the effect of shape
asymmetry, which can also be used to verify the effectiveness of acoustic tweezers in manipulating nonspherical
objects.
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I. INTRODUCTION

Acoustic waves exert acoustic radiation force and torque
on objects because of the momentum transfer that arises
from acoustic scattering effects of the wave-particle inter-
action [1–4]; these second-order force and torque, caused
by inherent nonlinearities in the governing physics [5],
have raised great interest in applications, including par-
ticle assembly [6–8], acoustophoretic printing [9,10], and
acoustic holograms [11], since they can perform biocom-
patible, contact-free, and precise manipulation. Functionally,
these contactless manipulations can be divided into two ma-
jor categories: transportation and rotation of objects. The
transportation-related processes are of critical importance in
droplet coalescence [12], chemical analysis [13], and volu-
metric display [14]. Differently, the rotational manipulation
of objects [15] can reveal hidden structural details, which
are not visible in translational manipulation. Hence, it is an
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effective tool to interrogate morphological phenotype [16] and
to operate microsurgery [17] for micro-organisms.

Single-sided transducer array [18,19] is one of the most
common and effective arrangements in containerless trans-
portation [19,20] or contactless rotation [21] of levitated
particles in the air. For Rayleigh particles, the levitated objects
can be simply regarded as spherical particles. The acoustic
radiation force on these particles can be evaluated according
to the gradient of the Gor’kov potential [22]. The scattering
contribution of Rayleigh particles is relatively small, which
allows the acoustic radiation potential due to scattering effects
to be expressed in terms of the external driving fields from
transducers. With proper spatial arrangement and operating
parameters (such as retrieval algorithm [23]) of the transduc-
ers, multiple Gor’kov potential wells or acoustic vortices can
be created to manipulate particles.

Beyond the Rayleigh regime, the scattering contribution
becomes significant. Neglecting the geometric asymmetry, a
set of analytical expressions has been derived for the radiation
force and torque based on the partial wave expansion series
[24–26]. For a single rigid sphere, the acoustic radiation force
and torque due to scattering phenomena were obtained as
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FIG. 1. Rotation transformation between the computation coordinate system (x, y, z) and the observation coordinate system (x′, y′, z′).

a surface integration of the object [1–3]. The incident and
scattered waves can be expressed by a series of partial wave
expansion in the spherical coordinate system. The analytical
expressions for the acoustic radiation force and torque are
then derived by inserting the expansion series of the incident
and scattered fields and integrating around the particle surface
[27]. The method was later extended to solve the problems
with viscoelastic boundaries [28]. Based on this method, core-
shell particles with a designed cloaking shell can be designed
to be unresponsive to acoustic radiation forces in an inviscid
fluid [29]. An obvious limitation of the above studies is they
all assumed that the manipulated object(s) are spherical, in-
dicating that the radial distance from the mass center of the
object to the locus of any point on the object surface is a con-
stant. In this way, the boundary condition can be conveniently
employed to decouple each mode in the expansion series.
Thus, the scattered wave fields are obtainable by solving a sys-
tem of linear equations. It is worth emphasizing that, in reality,
most manipulated objects have a certain degree of asymmetry
in their morphology. This simplification of the spherical shape
neglects the effect of asymmetry, which is an indispensable
factor in evaluating the radiation force and torque [30,31],
thereby the underlying acoustophoresis. In fact, exact solu-
tions can be found for only a limited class of geometries
where separation of variables is applicable. In other words,
the problem must be able to formulate in a specific coordinate
system in which the locus of points corresponding to one of
the coordinates (typically, the radial coordinate) being a con-
stant coincides with the scatterer surface. When considering a
prolate spheroidal object, the prolate spheroidal coordinates
are employed so that the particle surface can be properly
described. Consequently, the Helmholtz wave equation spec-
ified by the coordinate-independent boundary conditions is
solvable, and the radiation force and torque on a prolate
spheroidal particle are obtainable [32–34]. For other irregular
objects, an alternative to calculate the acoustic radiation force
and torque is the use of numerical techniques [31,35], while
it is limited by high computational cost. More importantly,
it is impractical or cumbersome to analyze the dynamics of

the objects, i.e., the acoustophoretic process, since we have
to continuously renew the particle positions and orientations
based on the estimated radiation force and torque.

A promising framework to analytically express the ra-
diation force and torque is the use of the conformal
transformation approach to map the physical asymmetric ge-
ometry into a sphere in a new mapping coordinate system
[36–38], in which the locus of all points corresponding to the
new radial coordinate being a constant exactly coincides with
the scatterer surface. Thus, the boundary conditions are able
to enforce easily, and the corresponding scattered fields can be
solved [39]. After the scattering field is known, the acoustic
radiation force and torque can be asymptotically obtained.
Undoubtedly, the above framework should be a viable route to
estimate the acoustic radiation force and torque on an axisym-
metric particle. However, it should be emphasized that the
derivations are established under the particle system, whose
origin and z axis is set to coincide with, respectively, the mass
center and symmetric axis of the particle (i.e., the computation
system illustrated in Fig. 1). During the acoustophoresis, the
positions and orientations of the nonspherical particles are
constantly changing under the effects of the radiation force
and torque, meaning that the particle system is a moving
coordinate system. In contrast, the transducer array (or the
observation system shown in Fig. 1) remains static. Consider
that the computational framework for the radiation force and
torque based on the conformal technique is established under
the premise that the particle is static. We need to reconsider
the physical background: the particle is fixed while the trans-
ducer array or the incident driving wave field is constantly
moving. Mathematically, this case is equivalent to the inci-
dent driving wave field at rest, whereas the particle moves.
Clearly, to predict the acoustophoretic process of nonspheri-
cal particles, skillfully and constantly translation and rotation
transformations are needed to transform the incident driving
wave between the static system (i.e., the observation system)
and the moving system (i.e., the computational system) [40].

Our present work aims to present a general analytical solu-
tion for the acoustic radiation force and torque exerted on an
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arbitrarily axisymmetric particle caused by a user-customized
transducer array. Firstly, the translation and rotation trans-
formations [40] are needed to reshape the wave function of
transducers from the observation coordinate system (OCS) to
the particle system or the computational coordinate system
(CCS). Then, the conformal transformation approach [37] is
employed to capture the effect of geometric features, which
transforms the nonspherical surface into a spherical one. The
boundary conditions are enforced, and the Helmholtz wave
equation is solved. The radiation force and torque can be
asymptotically derived by integrating the acoustic potential
field on a far-field control surface under the CCS. Similarly,
the translation and rotation transformations are employed to
map the radiation force and torque from the CCS to the OCS.
Combined with the viscous drag force and torque [41,42], the
acoustophoresis of nonspherical particles under a transducer
array can be predicted. The remainder of this paper is struc-
tured as follows: In Sec. II the mathematical formulations are
given to evaluate the radiation force and torque, thereby the
acoustophoretic process. The formulations start from the OCS
and extend to the CCS for the radiation force and torque,
while back to the OCS to predict the acoustophoresis of
nonspherical particles. In Sec. III, the computational perfor-
mance of the proposed method is examined through a set
of full three-dimensional numerical simulations in terms of
the radiation force and torque exerted on different nonspher-
ical particles. Furthermore, the acoustophoretic processes of
spherical and nonspherical particles are visualized, compared,
and discussed. Finally, some conclusions are given in Sec. IV.

II. THEORETICAL MODEL

A. Computation and observation coordinate systems

In a particle-transducer system, we define an OCS where
the origin coincides with the center of mass of the manipulated
particle, denoted as (x′, y′, z′) system, which is acceptable
as an absolute coordinate system to further discuss the dy-
namic problem since it is established under the well-known
Cartesian coordinate system. By contrast, a CCS, denoted
as (x, y, z) system, is introduced to better characterize the
axisymmetric particle. The origin of these two systems is spa-
tially coincident, while the z axis of the computation system
is defined by the symmetric axis of the particle, as shown in
Fig. 1. In this way, considering the axisymmetric physics, a
general three-dimensional geometry can be equivalently de-
scribed by a two-dimensional cross-sectional slice plane (zO f
plane) and an azimuthal coordinate variable (φ ∈ [0, 2π ]), as
depicted later (see Fig. 3). Since the boundary of any cross-
sectional slice for any specified azimuthal angle is identical,
the geometric features merely depend on the cross-sectional
slice. This property enables the conformal transformation
method to map a two-dimensional irregular cross-sectional
slice in the CCS to a new quasispherical coordinate system
[36], wherein the locus of all points of the slice boundary is
equal to a constant. Hence, the separation of variables can
be used to solve the Helmholtz wave equation subjecting to
the spherical boundary conditions in the mapping coordinate
system, and the acoustic radiation force and torque are obtain-
able analytically. Generally, the CCS does not map with the

OCS as the nonspherical particles are continuously rotating,
affected by the radiation torque. Fig. 1 illustrates the rotational
relationship between the CCS and the OCS. The CCS orien-

tationally deviates from the OCS by a rotation angle
⇀

θR =
(θx′ , θy′ , θz′ ), where θi, i = x′, y′, z′ means the particle rotates
along the i axis for an angle θi, while its sign is determined
by the right-hand rule. Mathematically, these two coordinate
systems can be connected by applying corresponding rotation
transformation matrix as

Rx(θx′ ) =
⎡⎣1 0 0

0 cos(θx′ ) −sin(θx′ )
0 sin(θx′ ) cos(θx′ )

⎤⎦,

Ry(θy′ ) =
⎡⎣ cos(θy′ ) 0 sin(θy′ )

0 1 0
−sin(θy′ ) 0 cos(θy′ )

⎤⎦,

Rz(θz′ ) =
⎡⎣cos(θz′ ) −sin(θz′ ) 0

sin(θz′ ) cos(θz′ ) 0
0 0 1

⎤⎦.

(1)

Specifically, the coordinate variables between the CCS and the
OCS can be mutually expressed using the rotation transforma-
tion matrix as

[x, y, z] = [x′, y′, z′] · Rx(−θx′ )Ry(−θy′ )Rz(−θz′ ),

[x′, y′, z′] = [x, y, z] · R−1
z (θz′ )R−1

y (θy′ )R−1
x (θx′ ). (2)

Based on Eq. (2), the coordinate variables and the derived
radiation force and torque can be conveniently transformed
between the CCS and the OCS.

B. Wave function of a single transducer

The circular piston radiator is an important example in
ultrasonics as it is about the simplest approximation that can
be made for radiation into an infinite medium from a circular
ultrasound transducer [43,44]. We consider a time-harmonic
far-field wave function of a circular piston source [44] with
respect to observation transducer coordinate system, that is,
the (xt′ , yt′ , zt′ ) system illustrated in Fig. 1, as

p̂(xt′ , yt′ , zt′ ) = P0

2 j1
(

kd
2 sin

(
arccos zt′

Rt′

))
kd
2 sin

(
arccos zt′

Rt′

) eikRt′

Rt′
, (3)

where position abbreviation Rt′ =
√

x2
t′ + y2

t′ + z2
t′ and the

power parameter P0 = −iρ0cskd2 v̂0

8 . The hat symbolˆ represents
the complex amplitude of the corresponding variable. Param-
eters ρ0 and cs are density and adiabatic speed of sound of
a homogeneous host fluid, respectively. The wave number
of fluid k = ω

cs
with angular frequency ω. The transducer is

characterized by its diameter d and complex amplitude of
the radial velocity v̂0. Function j1(·) represents the Bessel
function of the first kind.

For the problem under consideration, benefiting from the
axisymmetric property of a particle, all the derivations are
established under the CCS, which indicates that the wave
function should be transformed and reexpressed using coordi-
nate variables of the (x, y, z) system. Under the external forces
and torques, we assume that the particle has rotated at an angle
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of
⇀

θR and translated to the position of
⇀

r t = (rt,x′ , rt,y′ , rt,z′ )
relative to the OCS. A rotation transformation and a trans-
lation transformation are required to map the wave function
of Eq. (3) to the CCS (corresponding to step one in Fig. 1),
which yields

p̂(x, y, z) = P0

2 j1
(

kd
2 sin

(
arccos zt′

Rt′

))
kd
2 sin

(
arccos zt′

Rt′

) eikRt′

Rt′

[xt′ , yt′ , zt′ ] = [x, y, z] · Rx(−θx′ )Ry(−θy′ )Rz(−θz′ ) + ⇀

r t +
⇀

d t

(4)

where
⇀

d t = (dt,x′ , dt,y′ , dt,z′ ) represents the deviation of the
center of the transducer from the origin of the OCS. After
these transformations, the rotation and translation of the par-
ticle can be regarded as the rotation and translation of the
transducer (or the wave function) while the particle remains
stationary on the CCS, which is the basis of all the following
derivations.

The linearity of the problem allows us to expand the wave
function [of Eq. (4)] as a series of spherical harmonic func-
tions using the partial wave expansion [45]. To simplify the
analysis, we represent the acoustic pressure field p̂ using the
acoustic potential field φ̂, following relationship of φ̂ = p̂

ωρ0
i

under the time-harmonic background:

φ̂trans = φ̂0

∑
n,m

anmJm
n , (5)

where acoustic potential field φ̂trans is abbreviated from
φ̂trans(

⇀

r ) at a specific position
⇀

r = (r, θ, φ) under the CCS, and
function Jm

n ≡ jn(kr)Y m
n (θ, φ). jn(kr) is the spherical Bessel

function of order n at a position r and Y m
n (θ, φ) is the spherical

harmonic function of nth order and mth degree at the angu-
lar position (θ, φ). Abbreviation

∑
n,m ≡ ∑+∞

n=0

∑+∞
m=−∞. The

expansion coefficients anm, or the beam-shape coefficients,
can be obtained from the incident field using the orthogo-
nality relation of the spherical harmonic functions, which is∫ 2π

0

∫ π

0 Y m
n (θ, φ)Y m′

n′ (θ, φ)sin(θ )dθdφ = δnn′δmm′ , where δnm

is the Kronecker delta function. Then, the beam-shape co-
efficients can be evaluated by employing the orthogonality
properties on Eq. (5):

anm = 1

φ̂0 jn(kR)

∫ 2π

0

∫ π

0
φ̂trans(

⇀

R)Y m
n (θ, φ)∗sin(θ )dθdφ,

(6)

where
⇀

R describes a spherical region in which the incident
wave propagates under the CCS; the spherical region should
contain the scatterer, not sound sources (i.e., a < R < dt). The
superscript symbol ∗ means taking conjugation of the corre-

sponding variable. Here, the potential field φ̂trans(
⇀

R) = p̂(
⇀

R)
ωρ0

i,

and p̂(
⇀

R) is given in Eq. (4).

C. Wave function of a transducer array

Figure 2 illustrates the position relationship of any two
transducers in the transducer array before and after coordinate
transformation from the OCS to the CCS. Here, we choose
one transducer as the probe transducer with index i = q, and

FIG. 2. Geometric description of the position relationship of
transducers in the OCS and the CCS. The probe transducer (marked
as q) and the source transducers (marked as j) can be linked by a

relative position vector
⇀

r
( jq)

under the CCS, in which the poten-
tial field from the source transducer can be expressed in the probe
transducer system (xt,q, yt,q, zt,q ) with the help of the translation
addition theorem [Eq. (9)]. Between the OCS and the CCS, a rotation
transformation of Eq. (7) is needed to transform the relative position

vector from
⇀

r
′ ( jq)

to
⇀

r
( jq)

.

the rest are the source transducers with index i = j and j �= q.

The position vectors
⇀

r
(i)

describe the field points located in the
(xt,i, yt,i, zt,i ) transducer coordinates. The source transducers
of the index j are located by the (qth) probe transducer as
⇀

r
′( jq)

described in the OCS, while it is denoted as
⇀

r
( jq)

on

the CCS. The relative position vector
⇀

r
( jq)

assigned on the

CCS is obtainable from the known
⇀

r
′( jq)

located in the OCS
by applying a rotation transformation as

⇀

r
( jq) = ⇀

r
′( jq) · Rx(θx′ )Ry(θy′ )Rz(θz′ ). (7)

All transducers have the same diameter d , while operat-
ing under different ultrasound transducer parameters Aieiαi

(amplitude Ai and phase αi of the ultrasound transducer ex-
citation signal), i = 1, 2, · · · , Nt with the total number of
transducers Nt . Without loss of generality, we assume that the
wave function from all transducers follows Eq. (3) in their
respective transducer coordinates, while the acoustic potential
field generated by the qth transducer is formulated by Eq. (5)
under the CCS. Considering the transducer parameters, the
potential field φ̂

(q)
trans(

⇀

r ) (denoted as φ̂
(q)
trans) generated by the qth

transducer at position
⇀

r = (r, θ, φ) becomes

φ̂
(q)
trans = φ̂0

∑
n,m

a(q)
nmJm

n , (8)

where the expansion coefficients a(q)
nm = Aqeiαq anm, namely

transducer beam-shape coefficients of the qth transducer.
The potential field of other source transducers is obtain-

able with the help of the translation addition theorem [46].

As illustrated in Fig. 2, the position vector
⇀

r
( j)

of the jth
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transducer coordinates and the position vector
⇀

r
(q)

of the
qth transducer coordinates can be linked by relative position

vector as
⇀

r
( j) = ⇀

r
( jq) + ⇀

r
(q)

. With the help of relative position

vector
⇀

r
( jq)

derived in Eq. (7), the potential field generated by
the jth transducer can be consistently formulated as [26]

φ̂
( j)
trans = φ̂0

∑
n,m

ã( jq)
nm Jm

n , (9)

where expansion coefficients ã( jq)
nm =∑

υ,μ a( j)
υμSμ,m (1)

υ,n (k
⇀

r
( jq)

), defined as the transformation

beam-shape coefficients of the jth transducer. Sμ,m (1)
υ,n (k

⇀

r
( jq)

)
is the separation transform matrix of the first kind [46], used to
transform the information from the jth transducer coordinate
system to the qth transducer coordinate system. The linearity
of the problem allows us to represent the potential field of the
whole transducer array as a summation of the contributions
from all transducers: φ̂ex = φ̂0

∑Nt
i=1 φ̂

(i)
trans. Considering the

potential fields generated by the probe transducer in Eq. (8)
and the source transducers in Eq. (9), we arrive at

φ̂ex = φ̂0

∑
n,m

ãnmJm
n , (10)

where the external potential field φ̂ex is abbreviated from
φ̂ex(

⇀

r ) at a specific position
⇀

r = (r, θ, φ) under the CCS, and
the expansion coefficients ãnm = a(q)

nm + ∑
j �=q ã( jq)

nm , defined as
the beam-shape coefficients of the transducer array. Abbrevi-
ation

∑
j �=q ≡ ∑Nt

i=1,i �=q .

D. Helmholtz wave equation

After establishing the overall framework of the external
wave-field transformation from the OCS to the CCS, we can
further estimate the scattered potential field reflected by an
irregular scatterer. In the source-free regions of the physical
space, the total potential field satisfies the Helmholtz wave
equation:

(∇2 + k2)φ̂ = 0, (11)

where ∇2 is the Laplacian operator. The total potential field is
contributed by the external potential field φ̂ex and the scatter-
ing potential field reflected by the scatterer φ̂sc(

⇀

r ) (denoted as
φ̂sc):

φ̂ = φ̂ex + φ̂sc. (12)

Here, the linearity of the problem allows us to represent
the scattering potential field as a series of spherical harmonics
function [45]:

φ̂sc = φ̂0

∑
n,m

snmãnmHm
n . (13)

The scalar scattering coefficients, snm, almost depend on
the boundary conditions. Function Hm

n ≡ hn(kr)Y m
n (θ, φ).

hn(kr) is the Hankel function of the first kind at position r.
Dirichlet or Neumann boundary conditions require that the
total acoustic pressure or the normal particle velocity vanishes

on the surface of the scatterer. For the particles under consid-
eration, this can be stated, respectively, as

[φ̂ex(
⇀

�) + φ̂sc(
⇀

�)] = 0, (14a)
⇀

n · ∇[φ̂ex(
⇀

�) + φ̂sc(
⇀

�)] = 0, (14b)

where
⇀

n is the outer normal vector to the scatterer surface
⇀

�.
To analytically evaluate the scattered fields (i.e., the scalar

scattering coefficients snm) for any given incident wave, we
must solve the Helmholtz wave equation [Eq. (11)] subject to
the irregular boundary conditions along the particle surface

[Eq. (14)]. However, due to the boundary surfaces
⇀

� that are
generally inseparable and thus incompatible with the method
of separation of variables, it is impractical to establish an an-
alytical solution to the Helmholtz wave equation. We attempt
to map the (r, θ, φ) physical space inhabited by the irregular
scatterer to a quasispherical coordinate that is denoted as
(u,w, v) system, where the locus of all points of the scatterer
boundary for the radial coordinate, u, is equal to a constant
(u = u0 = 0). The polar angular coordinate of the mapping
coordinate system, w, corresponds to the spherical polar an-
gular coordinate, θ . Since the body is symmetric along the z
axis, the azimuthal angular coordinate, v, remains identically
with the spherical azimuthal angular coordinate φ, varied from
0 to 2π . Fig. 3 shows the geometry and mapping information
of an axisymmetric particle on different coordinate systems.
The center of mass of the irregular body is set to coincide with
the origin of the physical coordinate systems. The zO f plane
is defined as a two-dimensional physical space where the
azimuthal angular variable φ is a constant. Although there are
infinite zO f planes for different azimuthal angular variables,
the cross-sectional slice of an axisymmetric object on any zO f
plane is identical. Let us consider a complex mapping function
rs(θ )eiθ = M(u + wi) [36,37], which maps an irregular cross-
sectional slice rs(θ ) described on the zO f physical space to a
circle on (u,w) space, according to

M(u + wi) = g(u,w) + f (u,w)i,

g(u,w) = c−1eucos(w) +
∞∑

n=0

cne−nucos(nw), (15)

f (u,w) = c−1eusin(w) −
∞∑

n=0

cne−nusin(nw),

where cn, n = −1, 0, 1, · · · ,∞ are the mapping coefficients.
Under the complex plane, the coordinates in physical and
mapping spaces should satisfy

rs(u,w) =
√

f 2(u,w) + g2(u,w),

θ (u,w) = cos−1
(g(u,w)/rs(u,w)

)
. (16)

Then, a set of mapping coefficients cn can be determined
by equating the slice function [Eq. (16)] to the mapping
functions [Eq. (15)] on the scatterer surface (i.e., u = u0).
Detailed processes to estimate the mapping coefficients can
be found in Appendix A. Note that the shape of the boundary
of any cross-sectional slice for any specified azimuthal angle
φ = v ∈ [0, 2π ] is identical. The scatterer can be regarded as
a cross-sectional slice rotating along the azimuthal angular
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FIG. 3. Conformal transformation mapping of an axisymmetric particle in physical space to a sphere in mapping space. The particle is
symmetric about the z axis. The particle surface in the mapping coordinate (u,w, v) system can be described by the radial coordinate u = u0,
independent with the polar angular coordinate, w, and the azimuthal angular coordinate, v. On the zO f slice plane, defined as arbitrary
cross-sectional plane along the symmetric axis (z axis), the radial coordinate satisfies rs(u0,w) = √

f 2(u0, w) + g2(u0, w) in the real system,
while rs(θ )eiθ = g(u0, w) + f (u0, w)i in the complex system (the azimuthal angular coordinates, φ or v, are not involved for the axisymmetric
reason). The mapping functions g(u0, w) and f (u0, w) are introduced to connect the physical space and the mapping space.

coordinate for a 2π period, and a three-dimensional conformal
mapping is achievable.

A well-known result is that under a conformal transforma-
tion mapping, the Helmholtz wave equation [Eq. (11)] takes a
new form in the (u,w) plane [47,48] given by

(∇2 + k2	(u,w))φ̂(u,w, v) = 0, (17)

where 	(u,w) is the Jacobian of the transformation from
[rs(θ ), θ ] system to (u,w) system. Evidently, if φ̂ is any
solution of the Helmholtz wave equation [in Eq. (11)], in
the spherical coordinate system, then φ̂(u,w, v) is a solution
of conformal mapping coordinates, Eq. (17) [49]. Following
the established results, we can formulate the external and
scattered potential fields on the mapping coordinates by trans-
forming Eqs. (10) and (13) as

φ̂ex(u,w, v) = φ̂0

∑
n,m

ãnmJm
n (u,w, v), (18)

and

φ̂sc(u,w, v) = φ̂0

∑
n,m

snmãnmHm
n (u,w, v), (19)

where abbreviations Jm
n (u,w, v) ≡ jn(kr(u,w))Y m

n (θ (u,w),
v) and Hm

n (u,w, v) ≡ hn(kr(u,w))Y m
n (θ (u,w), v). The quan-

tities r(u,w) and θ (u,w) can be determined by Eq. (16). A
summation of Eqs. (18) and (19) gives the total potential field
in terms of the coordinates (u,w, v), which also is the solution
of Eq. (17).

An equivalent representation of Dirichlet and Neumann
conditions [Eq. (14)] then becomes

[φ̂ex(u0,w, v) + φ̂sc(u0,w, v)] = 0, (20a)

⇀

n · ∇[φ̂ex(u0,w, v) + φ̂sc(u0,w, v)] = 0. (20b)

To effectively leverage these conditions, we insert Eqs.
(18) and (19) into Eq. (20), and multiply the results
by a set of spherical angular eigenfunctions, ψm′

n′ (w, v) =
Pm′

n′ (cos(w))sin(w)e−m′vi [or Eq. (B6)]; the derivations are
further independent of coordinates by integrating the over the
range of w and v, yielding

∞∑
n=0

ãnm′n′,m′
n +

∞∑
n=0

snm′ ãnm′�n′,m′
n = 0,

(n′ = 0, 1, · · · ,∞; m′ = −∞, · · · , 0, · · · ,∞) (21)

and
∞∑

n=0

ãnm′n′,m′
n,u +

∞∑
n=0

snm′ ãnm′�n′,m′
n,u = 0,

(22)
(n′ = 0, 1, · · · ,∞; m′ = −∞, · · · , 0, · · · ,∞),

where the structural functions, n′,m′
n and �n′,m′

n , and their
partial derivatives of radial coordinate, n′,m′

n,u and �n′,m′
n,u , are

listed in Eqs. (B9) and (B13). Note that a complete derivation
of the above processes is written in Appendix B.

In order to solve the problem, the infinite summations
in Eqs. (18), (19), (21), and (22) have been truncated to N
terms to facilitate their computation, which limits the summa-
tions from

∑
n,m ≡ ∑+∞

n=0

∑+∞
m=−∞ to

∑
n,m ≡ ∑N

n=0

∑N
m=−N .

It can be seen that the total number of unknown variables
of the scalar scattering coefficients snm in Eq. (19) includes
(N + 1) × (2N + 1) elements. Matrices (21) and (22) offer
a set of N + 1 equations for each fixed m′ ∈ [−N, N], and
totally a set of (N + 1) × (2N + 1) equations for Dirichlet
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(sound-soft) and Neumann (sound-hard) boundary conditions,
respectively. Hence, the scalar scattering coefficients and thus
the scattered potential field is determined by solving these
linear equations. A method to solve the equation system is
given in Appendix C.

E. Acoustic radiation force and torque

The acoustic radiation force and torque acting on a spher-
ical object excited by a transducer array under the mapping
coordinate system are given by [24–26]

Frad,x = + φ̂2
0ρ0

4
Re

[
i
∑
n,m

ãnm(1 + snm)
(
Am+1

n+1 b∗
n+1,m+1 −Bm+1

n−1 b∗
n−1,m+1 + Cm−1

n+1 b∗
n+1,m−1 − Dm−1

n−1 b∗
n−1,m−1

)]
,

Frad,y = + φ̂2
0ρ0

4
Re

[∑
n,m

ãnm(1 + snm)
(
Am+1

n+1 b∗
n+1,m+1 −Bm+1

n−1 b∗
n−1,m+1 − Cm−1

n+1 b∗
n+1,m−1 + Dm−1

n−1 b∗
n−1,m−1

)]
,

Frad,z = + φ̂2
0ρ0

2
Re

[
i
∑
n,m

ãnm(1 + snm)
(
Em

n+1b∗
n+1,m −Fm

n−1b∗
n−1,m

)]
, (23)

and

Trad,x = + φ̂2
0ρ0

4k
Re

[∑
n,m

ãnm(1 + snm)
(
Gm

n b∗
n,m+1 + G−m

n b∗
n,m−1

)]
,

Trad,y = − φ̂2
0ρ0

4k
Re

[
i
∑
n,m

ãnm(1 + snm)
(
Gm

n b∗
n,m+1 − G−m

n b∗
n,m−1

)]
,

Trad,z = + φ̂2
0ρ0

2k
Re

[∑
n,m

ãnm(1 + snm)mb∗
n,m

]
, (24)

where abbreviation bnm = ãnmsnm and symbol Re means
taking the real part of the expression. The weighting co-

efficients Am
n = −C−m

n = −
√

(n+m−1)(n+m)
(2n−1)(2n+1) , Bm

n = −D−m
n =√

(n−m+2)(n−m+1)
(2n+1)(2n+3) , Em

n = Fm
n−1 =

√
(n−m)(n+m)

(2n−1)(2n+1) , and Gm
n =√

(n−m)(n + m + 1).
Consider that the mapping coordinate system becomes a

spherical coordinate system when the radial coordinate tends
to be infinite, u → +∞, and thus the scalar scattering coef-
ficients, snm, solved in matrices (21) and (22), are acceptable
to describe the scattered field reflected by the irregular par-
ticle under the physical space in the limit of great distances
from the scatterer. Consequently, the acoustic radiation force
and torque that are evaluated using the far-field data can be
asymptotically formulated using Eqs. (23) and (24) without
performing an inverse mapping from the mapping space to
the physical space.

Note that the radiation force and torque are estimated on
the CCS. Another rotation transformation is required to trans-
form the radiation force and torque from the CCS to the OCS
using Eq. (2) (i.e., step two illustrated in Fig. 1):

[Frad,x′ , Frad,y′ , Frad,z′ ]

= [Frad,x, Frad,y, Frad,z] · R−1
z (θz′ )R−1

y (θy′ )R−1
x (θx′ ), (25)

and

[Trad,x′ , Trad,y′ , Trad,z′ ]

= [Trad,x, Trad,y, Trad,z] · R−1
z (θz′ )R−1

y (θy′ )R−1
x (θx′ ). (26)

In this way, the radiation force and torque acting upon an
irregular particle with arbitrary orientation from a transducer
array can be obtained, which is the basis for later discussion
of the translational and rotational dynamics, i.e., prediction of
the acoustophoresis of an irregular particle.

F. Dynamic manipulation

When a particle is placed above an ultrasound transducer
array, it mainly experiences radiation force and torque that
cause translational and rotational motions, the drag force
⇀

F drag and drag torque
⇀

T drag due to the viscous stresses and

shear stresses on the particle surface, and its gravity
⇀

F G. The
translational and rotational movements of the particle are then
described via the equations of motion as

mp
d

⇀

up

dt
= ⇀

F rad + ⇀

F drag + ⇀

F G, (27)

and

Ip
d

⇀

ωp

dt
= ⇀

T rad + ⇀

T drag. (28)

where mp is the mass of the particle and Ip is the moment

of inertia of the particle.
⇀

up and
⇀

ωp are translational particle
velocity and angular velocity about its center of mass, respec-
tively. Although the drag force and torque can be determined
with the help of numerical methods [31], we try to avoid
the numerical process delaying our dynamic calculations, and
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thus they are approximately evaluated using classical formulas
[41,42] as

⇀

F drag = 6πaη
⇀

u, (29)

and
⇀

T drag = 8πa3η
⇀

ω, (30)

where a is averaged radius of the particle and η is the dynamic
viscosity of the host fluid. The velocity

⇀

u and angular velocity
⇀

ω are based on the relative velocity of the particle with respect
to the background fluid. In our case, the fluid is assumed to be
at rest, thus

⇀

u = −⇀

up and
⇀

ω = −⇀

ωp. Consider that in many
acoustofluidic scenarios, the inertia of the particle can be ne-
glected since the characteristic time of acceleration is small in
comparison to the timescale of the motion (�t) of the particles
[50]. Based on this assumption, we can identify the transla-
tional and rotational trajectories, i.e., particle acoustophoresis,
with the particle velocity

⇀

up and particle angular velocity
⇀

ωp

by

⇀

up =
⇀

F rad + ⇀

F G

6πaη
, (31)

and

⇀

ωp =
⇀

T rad

8πa3η
. (32)

In this way, we have computed the solution of the dy-
namics problem of a nonspherical particle under its weight,
encompassing viscous drag, and acoustic radiation forces and
torques. The time-dependent system was solved based on
a simple time-accumulation method by providing an initial
position for the particle. The dynamics were simulated for 2 s
with a time step of �t = 0.1 ms. The acoustic radiation forces
and torques are recalculated for the new position and orienta-
tion. Specifically, at each time step (�t), we need to determine
the states of the particle, i.e., obtain the particle displacement
and rotation angle using particle velocity and angular velocity
in current time step through

⇀

rt = ⇀

rt + �
⇀

rt with �
⇀

rt = ⇀

up�t ,

and
⇀

θ rot =
⇀

θ rot + �
⇀

θ rot with �
⇀

θ rot = ⇀

ωp�t . The position and
orientation are then used to link the OCS and the CCS for the
next time-step calculation.

III. RESULTS AND DISCUSSION

A. Model preparation

We need to impose a truncation number of partial wave
series, N , in the number of modes entering the computa-
tions of acoustic radiation force in Eq. (23) and acoustic
radiation torque in Eq. (24). Although it is able to further
improve the prediction accuracy by enforcing as many modes
as possible to enter the computations, the truncation num-
ber N = ka + 6 ≈ 8 [51] is basically enough to converge
the analytical radiation force and torque to the correspond-
ing full three-dimensional numerical solutions. Note that

for N = 8, it takes about 5 s in evaluating a set of radi-
ation force and torque simultaneously (in PC with CPU:
Intel i7-6700HQ 2.6 GHz, and maximum memory usage:
16 GB).

In order to evaluate the beam-shape coefficients anm in
Eq. (6), we need to specify a spherical space with a radius
of R, in which the potential field can be approximately de-
scribed by the model expansion series as given in Eq. (5). A
larger R means that the approximated space has been wider.
If the truncation number N = 8 is fixed (i.e., the number of
the beam-shape coefficients in Eq. (6) is fixed), a larger R
indicates that the same number of beam-shape coefficients are
used to approximate a wider space, which inevitably impairs
the predicted precision, even distorts the prediction results. In
contrast, for a smaller R, it is equivalent to using the same
number of beam-shape coefficients to approximate a smaller
space, which may lead to overfitting of the potential field.
Here, we introduce the radial intensity to quantify the approx-
imation:

Ir = 1
2 Re( p̂v̂∗

r ), (33)

where the pressure amplitude p̂ = −ωρ0φ̂i, and the radial
velocity amplitude v̂r = − ∂φ̂

∂r .
Figure 4 shows the directivity of the normalized radial

intensity Īr = Ir
max(Ir ) along a probe arc. The probe arc is a

segment of the probe circle in the approximated space, as
illustrated in Fig. 4(a). The radius of the probe circle is set
to dt , consistent with the distance between the scatterer and
the circular radiator. The radius of the spherical approximated
space is R, located right above the sound source. Here, the
radius R is ranged from 0.4d to 0.9d with the transducer
diameter of d = 10 mm, while dt is taken as 20 to 60 mm
with an interval of 10 mm. The directivity of normalized radial
intensity based on the modal expansion series is compared
with the theoretical counterparts [derived from Eq. (3)], as
plotted in Figs. 4(b) to 4(g). The difference is almost invisible
in Fig. 4(d). Note that we only present the polar angle ranging
from −θapx to θapx [θapx = arcsin( R

dt
)] since the beam-shape

coefficients and the potential field given in Eqs. (5) and (6) are
valid inside the approximated space. In order to quantify the
differences, we calculate the root-mean-square error (RMSE),
which is illustrated in Fig. 4(h). It can be found that the trends
are basically the same for different dt , while the errors vary
significantly for different R. The RMSE becomes minimum
(� 1%) when R ≈ 0.6d; larger or smaller R increases the
errors. Hence, the radius of the approximated space is set to
R = 0.6d in later computations.

Furthermore, we need to prepare the mapping coeffi-
cients cn. Although a general solution for arbitrary geometries
based on series expansions is available in Appendix A, many
practical geometries do not require such a comprehensive
procedure. For the typical geometries, including ellipsoid,
triangular cone, diamond, and sphere, we give the mapping
coefficients, cn, in Table I. The geometric differences are cap-
tured by different combinations of the mapping coefficients
cn, while the geometric size can be stretched by adjusting the
averaged radius a.

Finally, before performing the validation and demonstrat-
ing the calculation, we would like to emphasize that the codes
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FIG. 4. RMSE of the normalized radial intensity (Īr) between the modal expansion approximations and the theoretical results along
the probe arc (θ ∈ [−θapx, θapx]). (a) The geometric relationship among the approximated space, the probe circle, and the probe arc. The
approximated space is a spherical domain with a radius of R, and its center is consistent with the mass center of the contained scatterer. The
radius of the probe circle is dt and its center is located at the center of the transducer surface. The intersection of the approximated space and
the probe circle is defined as the probe arc. (b)–(g) Visualization of the differences of the normalized radial intensity along the probe arc. The
solid and dashed red curves denote the results based on the modal expansion series and theoretical solutions, respectively. (h) RMSE of Īr

along the probe arc as a function of R and dt . The brown dots represent the cases given in (b)–(g).

used to calculate the radiation force and torque, as well as
the acoustophoretic processes, are open access in Ref. [52].
All the data discussed and analyzed in the following sections
can be obtained using the GUI-based software. Functionally,
the pressure field generated by the user-customized transducer
arrays, the radiation force and torque exerted on different
geometries, and the prediction of the dynamic processes are
obtainable in the platform.

B. Validation and discussion

In the following subsections, full three-dimensional finite-
element simulations are conducted with COMSOL MULTI-
PHYSICS 5.5 to provide validations for the proposed analytical
techniques as prescribed in Eqs. (25) and (26).

A rectangular region (24a × 24a × 18a) is defined as
the simulation domain. The center of mass of the irregular

TABLE I. Mapping coefficients for different axisymmetric par-
ticles in calculations. Parameter a is the averaged radius of the
axisymmetric geometries.

Mapping coefficients Sphere Ellipsoid Cone Diamond

c−1 a a a a
c1 0 a/5 0 0
c2 0 0 a/8 0
c3 0 0 0 a/10
cn, n � 0 and n �= 1, 2, 3 0 0 0 0

particles and the center of the simulation domain are both
placed at the origin of the Cartesian coordinate system. A
spherical surface with a radius of ∼0.7d is defined to di-
vide the whole simulation domain into two subdomains, a
finer mesh domain and a coarser mesh domain inside and
outside the surface, respectively. Numerically, the acoustic
radiation force and torque acting on a spherical object can
be estimated by a surface integration surrounding the object
as derived in Appendix D. Hence, we set another numeri-
cal integration surface with a radius of R ≈ 0.5d inside the
finer mesh domain as the integration surface to numerically
evaluate the radiation force and torque by inserting the sound
pressure and particle velocity into Eqs. (D4) and (D5). For
solid particles levitated in the air, we usually apply Neumann
(or sound-hard) boundary conditions to the particle surface
in numerical simulations. It should be emphasized that the
corresponding scattering properties used in theoretical pre-
dictions of Neumann boundary conditions are analytically
derived in Appendix B, quantified by Eq. (B12). To make the
wave field radiated from a circular surface in the simulation
approximately consistent with that given in Eq. (3), we can
set the circular radiator with a radial vibrated velocity of
v̂0, which is the same as that used in Eq. (3). In this way,
the circular surface can radiate a wave field approximately
expressed by Eq. (3) in the far-field region. The Sommerfeld
radiation condition is required to eliminate the reflected wave,
achievable by applying the perfect matched layer (PML)
surrounding the simulation domain. Following the above
considerations, we summarize the simulational parameters
in Table II.
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TABLE II. General parameters used in the finite-element simu-
lations in COMSOL at room temperature and pressure. Note that the
geometry of different particles is formulated in Eq. (16), where the
mapping functions and mapping coefficients are given in Eq. (15)
and Table I, respectively.

Parameter Value

Average radius of bodies (a) 2 mm
Transducer diameter (d) 10 mm
Interdistance (dt) 20 mm
Density (air ρ0) 1.224 kg/m3

Speed of sound (air cs) 340 m/s
Radial velocity (v̂0) 1.5 m/s
Incidence polar angle (θinc) 0, π

6 , π

3 , π

2
Frequency of external wave ( f0) 40 000 Hz
Wavelength (λ) cs/ f0

Cubic simulational domain 24a × 24a × 18a
Radius of integrating surface R 0.5d
Radius of finer mesh domain ∼ 0.7d
Maximum element size (finer mesh domain) λ/60
Maximum element size (coarser mesh domain) λ/6
PML depth λ/2
CPU Intel i7-6700HQ 2.6 GHz
Operating system Windows 10
Maximum memory usage ∼16 GB
Computational time per case 10∼20 min

The theoretical evaluations of the acoustic radiation force
and torque using Eqs. (25) and (26) compared with the nu-
merical calculations using Eqs. (D4) and (D5) based on finite
element method (FEM) results are given in Fig. 5. The ra-
diation force and torque are completely validated when the
scatterer rotates along the x′ axis in different phase distribu-
tions. For axisymmetric reasons, the radiation force along the
x′ axis, Frad,x′ , and the acoustic radiation torque along y′- and z′
axes, Trad,y′ and Trad,z′ , are significantly weaker than the values
on other directions.

In order to precisely compare the prediction results be-
tween the analytical method and the numerical simulation in
Fig. 5, we quantify the differences by calculating the root-
mean-square error (NRMSE), which is defined as

errF,i =
√√√√ 1

M

M∑
m=1

(Ỹi,m − Ȳi,m)
2
,

(34)

errT,i =
√√√√ 1

M

M∑
m=1

(D̃i,m − D̄i,m)2
,

where M = 16 is the number of sampling points,
including four phase groups and four polar angles
(0, π/6, π/3, π/2 rad). The errors for the acoustic radiation
force and torque along the ith direction (i = x, y, z)
are denoted by errF,i and errT,i, respectively. Yi,m =

[Fi,m−min(Fi,m )]
[max(Fi,m )−min(Fi,m )] and Di,m = [Ti,m−min(Ti,m )]

[max(Ti,m )−min(Ti,m )] with a bar
hat mean the normalized radiation force and torque on the ith
axis evaluated by numerical simulations, while those with a
tilde hat are the corresponding normalized results based on

TABLE III. The NRMSE of the acoustic radiation force and
torque compared with numerical results, defined in Eq. (34).

i = x i = y i = z

Ellipsoid errF,i [%] 7.11 6.92 7.93
errT,i [%] 7.26 8.37 7.31

Cone errF,i [%] 6.82 4.72 3.84
errT,i [%] 3.92 7.24 7.82

Diamond errF,i [%] 7.02 4.14 3.81
errT,i [%] 3.79 7.63 6.37

theoretical calculations. The corresponding NRMSEs of data
illustrated in Fig. 5 are given in Table III.

It can be observed from Fig. 5 and Table III that the
acoustic radiation force and torque between our method and
the FEM results are almost perfectly matched. What needs
to be emphasized is that we deliberately limit the height
of the simulation domain in 18a = 36 mm to reduce the
number of mesh elements, which greatly saves simulation
time. However, this means that the interdistance between
the scatterers and the transducer array is relatively small
(dt = 20 mm), and thus the wave field around the scatterers
does not meet the far-field requirements, which compromises
the accuracy of using Eq. (3) to describe the wave field.
As a result, there are still some perceivable discrepancies
in Fig. 5. It is also worth emphasizing that the computa-
tional time of each numerical simulation will take 10 to 20
min, which is much higher than the computational cost in
our method (on the order of seconds). This computational
efficiency allows us to predict the translational and rota-
tional dynamics of the nonspherical particles levitated above a
transducer array.

C. Acoustophoresis

In this section, the time-dependent system described by
Eqs. (27) and (28) is solved. Without loss of generality, the
density of all nonspherical scatterers used in the calculations
is set to ρp = 15 kg/m3. In this case, the gravity can be calcu-
lated by FG ≈ 4

3πa3ρpg, where g is the acceleration of gravity.

These particles are placed in position
⇀

r t = (2, 2, 0) mm of the
OCS, while the center of the transducer array is located right

below the origin, i.e.,
⇀

d t = (0, 0, 60) mm. The symmetric
axis of these particles is initially set to coincide with the z′

axis, that is,
⇀

θR = (0, 0, 0). As an example, we assume that
all transducers are operated in phase (αi = 0; i = 1, · · · , 9).
Without further mention, other parameters used in the compu-
tations remain the same as those listed in Table II. We start the
predictions from t = 0 s with a time interval of �t = 0.1 ms
and end the predictions when the changes of the positions and
the rotation angles among two adjacent time steps are less than
5%; the dynamic trajectories of different particles are shown
in Figs. 6 to 9.

Consider that Eq. (3) is used to describe the wave field
radiated from a circular oscillator in the far field [44]. When
the particles move down 0.05 m (i.e., dt = 0.01 m), we stop
the calculations. This critical state is highlighted by the dashed
red lines in subfigure (c) of Figs. 6 to 9. For the spherical
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FIG. 5. Comparisons of the radiation force
⇀

F rad and torque
⇀

T rad acting on the particles with different geometric features (average radius of
a = 2 mm) based on the analytical expansion series [Eqs. (25) and (26)] and the FEM results in a five-transducer system. The radiation force
and torque are plotted as a function of the rotation angle along the x′ axis, θrot,x′ , under different phase distributions. Subfigures (a), (d), and (g)
display the predictions of the radiation force, while (b), (e), and (h) are of the radiation torque for (c) an ellipsoid, (f) a cone, and (i) a diamond,
respectively. The circle marks represent the results based on the full three-dimensional FEM. In contrast, the dotted, dashed, and solid curves
mean the data collected based on the analytical method along the x′-, the y′-, and the z′ axes, respectively. The radial velocity of the transducers
are all set to v̂0 = 1.5 m/s, while four groups of phase distributions are applied to the transducer array.

particles of different sizes, although the particle is stabilized
at different heights (z′ axis), they are all trapped right above
the center of the transducer array. Theoretically, the radiation
torque is close to zero as required by symmetry. In contrast,
for the nonspherical objects, the difference of the geometri-

cal features strongly affects the scattering properties around
the particles, thus changing the radiation force and torque,
thereby the motion of the particles. It can be found that both
large and small ellipsoidal particles are difficult to capture
(moving below the critical lines of z′ = −50 mm). Compared
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FIG. 6. Translational and rotational dynamics of different particles with the same averaged radius of 0.5 mm. The translational trajectories
of different particles at different moments along (a) x′-, (b) y′-, and (c) z′ axes. The rotational angles of different particles at different moments
along (d) x′-, (e) y′-, and (f) z′ axes. If necessary, the gray regions are zoomed in for more details of the corresponding figures. (g) Three-
dimensional translational trajectory (solid line) and particle orientation (arrow). The arrows represent the symmetric axis of the particle, while
the color of the arrow is used to represent the increase of time. The time intervals represented by any adjacent arrows are the same. These are
20 arrows showing the position and orientation of the particles from the start of the calculation (red arrow) to the end of the calculation (yellow
arrow). Note that only the trajectory and orientation of the ellipsoidal particle are visualized, as the trajectory and orientation for other particles
are not significantly different.

with other geometric shapes, although they all have the same
averaged radius a, the ellipsoidal particles tend to alter their
orientation, resulting in the effective cross-sectional area fac-
ing the wave front being the smallest. Hence, the radiation
force Frad,z′ acting on the elliposoidal particles is relatively
small and insufficient to offset the gravity. For the small cone
and diamond particles, their translational and rotational mo-
tions are basically identical to the spherical particles. With
the increase of particle sizes, geometric features become an
indispensable factor. The geometric asymmetry with respect
to the wave front induces the additional radiation force and
torque, which translate and rotate the cone and diamond parti-
cles along different routes. It should be emphasized that when
the particle size parameter reaches a certain level (ka ∼ 1), the
radiation effect remains unchanged [24]. However, the gravity
is proportional to the cube of the averaged radius (FG ∝ a3).
Hence, with the increase of particle size, the radiation force
is not enough to offset the gravity. Comparing the results
given in Figs. 8 and 9, it can be found that the cone particle
with an averaged radius of a = 2 mm can be stably trapped,
while the transducer array fails to capture the cone particle
when its averaged radius is increased to a = 3 mm. Finally,
it can be seen that the large nonspherical particles tend to

be trapped at (x′, y′) = (±5,±5) mm. The difference is that
smaller particles prefer to stabilize at right above the center of
the transducer array, that is, (x′, y′) = (0, 0) mm. This can be
explaned by tha fact that the scattered effects due to the geo-
metric differences become insignificant for the small objects.
As a result, the motions of the small nonspherical particles are
close to the motions of their spherical counterparts.

According to the predictions (Figs. 6 to 9) and the above
discussions, it can be found that the geometric asymmetry is a
potential degree of freedom to tune acoustophoretic processes.
The simplification of external geometry to a sphere neglects
the effects of asymmetry, which may lead to a considerable
deviation between experiments and expectations, especially
for large objects. Here, we provide an efficient and accurate
method to estimate the acoustophoretic processes, considering
the significance of geometric features.

IV. CONCLUSIONS

This paper presents a theoretical framework to predict
the acoustophoretic process of any axisymmetric particles,
driven by acoustic radiation force and torque, above a user-
customized transducer array. We start with establishing a
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FIG. 7. The same as in Fig. 6, but increasing the averaged radius to 1 mm. Note that only the trajectory and orientation of the ellipsoidal
particle are visualized in (g), as the trajectory and orientation for other particles are not significantly different.

FIG. 8. The same as in Fig. 6, but increasing the averaged radius to 2 mm.
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FIG. 9. The same as in Fig. 6, but increasing the averaged radius to 3 mm.

computation coordinate system to facilitate the derivation of
the radiation force and torque, and an observation coordinate
system to visualize the motion of a particle in the perspective
of the observers. In the CCS, an analytical method is proposed
to estimate the acoustic radiation force and torque acting
exerted on an axisymmetric particle above a user-customized
transducer array in the air. The derivation is based on the
conformal transformation approach, which maps the irregular
surface into a spherical surface so that the boundary condi-
tions can be employed to solve the scattered wave field. Note
that the derivation is based on the premise that the symmetric
axis of the particle is parallel to the z axis of the CCS (see
Fig. 3). Therefore, it fails in the scenarios that the particle
rotation deviates from the z axis. To break this limitation,
we reconsider the rotation of the particle in the OCS as the
opposite rotation of the incident driving field (or transducer
array) in the CCS (see Figs. 1 and 2). In this case, a rotation
transformation is employed to tune the incident driving field,
and the corresponding radiation force and torque are obtained
under the CCS, while another rotation transformation is re-
quired to transfer the data from the CCS back to the OCS.

The performance of the framework is fully evaluated by
comparing the analytical results with three-dimensional nu-
merical examples. Specifically, the radiation force and torque
exerted on a nonspherical particle with different geometric
features (ellipsoid, cone, and diamond) and particle orienta-
tions levitated above a transducer array with varying phase
distributions are thoroughly compared. It could be found that
the proposed method shows superior computational accuracy,
high geometric adaptivity, and good computational robustness
(Fig. 5), while requiring much less computational time (∼5 s
vs ∼10 min for numerical method) than that based on the
numerical method. The translational and rotational dynamics

of various particles, i.e., acoustophoresis of particles, are vi-
sualized (Figs. 6 to 9), dominated by Newton’s law under the
viscosity and the radiation effects. The results illustrate that
shape asymmetry could be an essential factor in tuning the
acoustophoretic process. Although the effect of shape asym-
metry is negligible for small particles, the scattering property
becomes considerable, and the geometric feature plays a vi-
tal role in the dynamics of large particles. Furthermore, a
potential benefit of our method is that it is able to predict
the trajectory of nonspherical particles under a user-specified
wave front, which is impractical in existing numerical simula-
tions since they are cumbersome in continuously updating the
position and orientation information of particles, and complet-
ing the mesh establishment and calculation process.

The proposed framework can be an effective and efficient
tool to predict the motion of various irregular objects, which
helps to understand the acoustophoresis of the irregular par-
ticles over a wide range of size parameters. Additionally,
incorporating the phase-retrieval algorithms into the frame-
work makes it possible to achieve user-specified rotational and
translational manipulation of nonspherical objects.
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APPENDIX A: CONFORMAL TRANSFORMATION
AND MAPPING COEFFICIENTS

As there should be only one value of the given slice
function rs(θ ) for each φ, the mapping procedure for the ax-
isymmetric body is commenced by expanding function rs(θ )
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in a Fourier series relative to the polar angle, φ, as

rs(θ ) = a +
∞∑

n=1

[Ancos(nθ ) + Bnsin(nθ )], (A1)

where a is the average radius of the body, and An and Bn are
the Fourier series coefficients. Note that the Fourier expansion
is performed for the period of 2π , while the polar angular
coordinate θ is defined from 0 to π . Consequently, although
the series is intentionally computed based on the periodic
extension from π to 2π , the polar angle is only meaningful
in the range of [0, π ]. Equation (A1) can be rewritten in terms
of exponentials as

rs(θ ) = a +
∞∑

n=1

[R∗
nenθ i + Rne−nθ i], (A2)

where Rn = 1
2 (An + Bn) and the superscript symbol ∗ means

taking conjugation of the corresponding variable. It is conve-
nient to describe the boundary of the slice using the complex
system

rs(θ )eθ i = aeθ i +
∞∑

n=1

[
R∗

ne(1+n)θ i + Rne(1−n)θ i
]
. (A3)

The real part of rs(θ )eθ i corresponds to the projection value
of rs(θ ) in the z axis, and the imaginary part of rs(θ )eθ i is
the projection value in the f axis for the real zO f plane
in Fig. 3.

On the boundary of the slice of the irregular particle, we
equate rs(θ )eθ i in Eq. (A3) to complex mapping function
M(u + wi) in Eq. (6), with u = u0= 0 yielding

aeθ i +
∞∑

n=1

[
R∗

ne(1+n)θ i + Rne(1−n)θ i
] = c−1ewi +

∞∑
n=0

cne−nwi.

(A4)
Since the boundary of the slice is a periodic function, the

deviation of θ from w can be represented as a Fourier series:

θ = w +
∞∑

n=1

[Encos(nw) + Fnsin(nw)]. (A5)

In the above equation, the series coefficients En and Fn are
unknown, while

∫ 2π

0 enwie−mwidw = 2πδn,m, where δn,m is the
Kronecker delta function, can be determined by orthogonality
relationship of complex exponential functions. We multiply
both sides of Eq. (A1) by 1

2π
e−mwi and integrating over w from

0 to 2π ,

1

2π

∫ 2π

2
e−mwi

{
aeθ i +

∞∑
n=1

[
R∗

ne(1+n)θ i + Rne(1−n)θ i
]}

dw = 0, m > 1,

1

2π

∫ 2π

2
e−mwi

{
aeθ i +

∞∑
n=1

[
R∗

ne(1+n)θ i + Rne(1−n)θ i
]}

dw = c−m, m � 1. (A6)

Based on Eq. (A6), the series coefficients En and Fn

can be solved using the upper equation, which are then
used to obtain the mapping coefficients through the lower
equation.

APPENDIX B: DIRICHLET AND NEUMANN
BOUNDARY CONDITIONS

Based on the mapping relationships given in Eq. (16), the
position vector can be generally expressed as

�r = f (u,w) · cos(v)�ex + f (u,w) · sin(v)�ey + g(u,w)�ez,

(B1)
where �ex, �ey, and �ez are unit vectors along the corresponding
coordinate axes. In the coordinate system, the orthogonal co-
ordinate system is desirable since it facilitates the computation
of the normal particle velocity on the boundary. Orthogonality
of the coordinate system requires that the partial derivative of
the position vector �r in Eq. (B1) satisfies

�ru · �rw = 0; �ru · �rv = 0; �rv · �rw = 0, (B2)

where the subscripts mean the partial derivative of corre-
sponding variables. Considering the mapping relationship
given in Eq. (B1), the partial derivatives of the position vector
with respect to each of the variables are

�ru = fu(u,w) · cos (v)�ex + fu(u,w) · sin (v)�ey + gu(u,w)�ez

�rw = fw(u,w) · cos (v)�ex+ fw(u,w) · sin (v)�ey + gw(u,w)�ez

�rv = − f (u,w) · sin (v)�ex + f (u,w) · cos (v)�ey. (B3)

Inserting Eq. (B3) into Eq. (B2), it can be proven that
the coordinate system could be orthogonal if the mapping
functions satisfy

fu(u,w) = gw(u,w) or fw(u,w) = gu(u,w). (B4)

The Dirichlet boundary condition requires that the total po-
tential vanishes on the surface of the scatterer φ̂ex(u0,w, v) +
φ̂sc(u0,w, v) = 0 [derived from Eqs. (18) and (19)], which
gives∑

n,m

anmJm
n (u0,w, v) +

∑
n,m

snmanmHm
n (u0,w, v) = 0. (B5)

The system of equations necessary to satisfy this bound-
ary condition is generated by multiplying both sides of this
equation by a set of spherical angular eigenfunctions:

ψm′
n′ (w, v) = Pm′

n′ (cos(w))sin(w)e−m′vi, (B6)

and integrating over the range of w and v [47]:∫ π

0

∫ 2π

0

[∑
n,m

anmJm
n (u0,w, v) +

∑
n,m

snmanmHm
n (u0,w, v)

]
× ψm′

n′ (w, v)dvdw = 0. (B7)

Considering the orthogonality relationship∫ 2π

0 enwie−mwidw = 2πδn,m and the definition of spherical
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harmonic function Y m
n (θ, ϕ) =

√
(2n+1)

4π

(n−m)!
(n+m)! P

m
n (cos(θ ))emϕi

[45], the above equation becomes

N∑
n=0

anm′n′,m′
n +

N∑
n=0

snm′anm′�n′,m′
n = 0,

(B8)
(n′ = 0, 1, · · · , N ; m′ = −N, · · · , 0, · · · , N ),

where the structural functions n′,m′
n and �n′,m′

n are

n′,m′
n =

∫ π

0
[ jn(kr(u0,w))

√
(2n + 1)

4π
· (n − m)!

(n + m)!

× Pm′
n (cosθ (u0,w))Pm′

n′ (cos(w))sin(w)]dw

�n′,m′
n =

∫ π

0
[hn(kr(u0,w))

√
(2n + 1)

4π

(n − m)!

(n + m)!

× Pm′
n (cosθ (u0,w))Pm′

n′ (cos(w))sin(w)]dw (B9)

The Neumann boundary condition requires that the nor-
mal particle velocity vanishes on the scatterer surface �n ·
∇[φ̂ex(u0,w, v) + φ̂sc(u0,w, v)] = 0, where �n is the outer
normal vector to the surface. It can be found that the mapping
functions given in Eq. (15) satisfy the orthogonal require-
ments in Eq. (B4). Consequently, the gradient of the potential
field is

∇φ̂(u0,w, v) = ∂φ̂(u0,w, v)

∂u
�ru

ru
+ ∂φ̂(u0,w, v)

∂w

�rw

rw

+ ∂φ̂(u0,w, v)

∂v

�rv

rv

, (B10)

where vectors �ru, �rw and �rv are given in Eq. (B3). As the
scatterer surface has been defined by u = u0 = 0, the outer
normal vector �n is parallel to �ru. Hence, the Neumann bound-
ary condition becomes

1√
f 2
u + f 2

w

∂[φ̂ex(u0,w, v) + φ̂sc(u0,w, v)]

∂u
= 0. (B11)

Inserting Eqs. (18) and (19) into the above equation,
multiplying both sides by the spherical angular eigen-
functions, and considering the orthogonality relationship∫ 2π

0 enwie−mwidw = 2πδn,m, we finally yield

N∑
n=0

anm′n′,m′
n,u +

N∑
n=0

snm′anm′�n′,m′
n,u = 0,

(B12)
(n′ = 0, 1, · · · , N ; m′ = −N, · · · , 0, · · · , N ),

where n′,m′
n,u and �n′,m′

n,u are the partial derivative of the radial
coordinate of structural functions n′,m′

n and �n′,m′
n given in

Eq. (B9):

n′,m′
n,u = ∂n′,m′

n

∂u
|u=u0

�n′,m′
n,u = ∂�n′,m′

n

∂u
|u=u0 . (B13)

APPENDIX C: SOLUTION OF THE SYSTEM
OF EQUATIONS

Based on Eq. (21) [or Eq. (22) that follows a similar pro-
cess as given below], for each combination of (n′, m′), we can
obtain an additional equation to close the system. There are to-
tally (N + 1) × (2N + 1) additional equations and (N + 1) ×
(2N + 1) unknown scattering coefficients sn′m′ . For a fixed
index of m′, the change of index of n′ = 0, 1, · · · , N is able to
provide N + 1 additional equations as⎡⎢⎢⎢⎣

a0m′�0,m′
0 a1m′�0,m′

1 · · · aNm′�0,m′
N

a0m′�1,m′
0 a1m′�1,m′

1 · · · aNm′�1,m′
N

...
...

. . .
...

a0m′�N,m′
0 a1m′�N,m′

1 · · · aNm′�N,m′
N

⎤⎥⎥⎥⎦ ·

⎡⎢⎢⎣
s0m′

s1m′
...

sNm′

⎤⎥⎥⎦

=

⎡⎢⎢⎢⎣
A0,m′

A1,m′

...

AN,m′

⎤⎥⎥⎥⎦ (C1)

where abbreviation An′,m′ = ∑N
n=0 anm′n′,m′

n . Solving the
above linear equations can get N + 1 scattering coeffi-
cients sn′m′ (n′ = 0, 1, · · · , N ). The change of index of
m′ from −N to N gives a total of 2N + 1 linear sys-
tems, and therefore all the unknown scattering coefficients
sn′m′ (n′ = 0, 1, · · · , N ; m′ = −N, · · · , 0, · · · , N ) can be de-
termined by solving 2N + 1 linear systems, corresponding to
different indexes of m′.

APPENDIX D: NUMERICAL EVALUATION
OF RADIATION FORCE AND TORQUE

The acoustic radiation force and torque on an object due to
scattering phenomena was obtained as a surface integration of
the object [1–3]:

�Frad =
∫

R
〈L〉d �AR − ρ0

∫
R

d �AR · 〈�u�u〉, (D1)

and

�Trad = −ρ0

∫
R
〈(d �AR · �u) · (�r × �u)〉, (D2)

where the angle bracket 〈·〉 denotes the time average of the
variable therein. L is the acoustic Lagrange density defined
as L = 1

2ρ0�u · �u − 1
2ρ0c2

s
p2, where ρ0�u · �u is the flux of mo-

mentum density. The spherical surface R surrounding the
scattering particle is the same as defined in Eq. (6), and the
direction of the integration element d �AR is along the outer
normal of the surface.

Here, the outer normal vector of integrating surface R
can be expressed as d �AR = �eRdAR, where �eR = ( x

aR
,

y
aR

, z
aR

)
defined as the unit outer normal vector of spherical surface R
with a radius of =

√
x2 + y2 + z2. The point position on the

integrating surface is denoted as (x, y, z) under the Cartesian
coordinate system aR. Inserting d �AR = �eRdAR into Eqs. (D1)
and (D2), using tensor relation �eR · (�u�u) = (�eR · �u)�u, we
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arrive at

�Frad =
∫

R

〈
ρ0

2
�u · �u − 1

2ρ0c2
s

p2

〉
�eRdAR − ρ0

∫
R
〈(�eR · �u)�u〉dAR,

�Trad = −ρ0

∫
R
〈(�eR · �u) · (�r × �u)〉dAR. (D3)

Using the relationship 〈XY 〉 = 1
2 Re(X̂Ŷ ∗), the radiation force and torque are rearranged along corresponding coordinate axes

under the Cartesian coordinate system as

Frad,x = �F · �ex =
∫

R

1

4

x

aR

[
ρ0Re(̂�u · �̂u∗

) − 1

ρ0c2
s

Re( p̂p̂∗)

]
dAR − ρ0

2

∫
R

[ x

aR
Re(ûxû∗

x ) + y

aR
Re

(
ûxû∗

y

) + z

aR
Re(ûxû∗

z )
]
dAR,

Frad,y = �F · �ey =
∫

R

1

4

y

aR

[
ρ0Re(̂�u · �̂u∗

) − 1

ρ0c2
s

Re( p̂p̂∗)

]
dAR − ρ0

2

∫
R

[ x

aR
Re(ûyû∗

x ) + y

aR
Re(ûyû∗

y ) + z

aR
Re(ûyû∗

z )
]
dAR,

Frad,z = �F · �ez =
∫

R

1

4

z

aR

[
ρ0Re(̂�u · �̂u∗

) − 1

ρ0c2
s

Re( p̂p̂∗)

]
dAR − ρ0

2

∫
R

[ x

aR
Re(ûzû

∗
x ) + y

aR
Re(ûzû

∗
y ) + z

aR
Re(ûzû

∗
z )
]
dAR,

(D4)

and

Trad,x = �T · �ex = −ρ0

2

∫
R

xy

aR
Re(ûxû∗

z ) + y2 − z2

aR
Re(ûyû∗

z ) + yz

aR
Re(ûzû

∗
z ) − x2

aR
Re

(
ûxû∗

y

) − yz

aR
Re

(
ûyû∗

y

)
dAR,

Trad,y = �T · �ey = −ρ0

2

∫
R

xz

aR
Re(ûxû∗

x ) + yz

aR
Re

(
ûxû∗

y

) + z2 − x2

aR
Re(ûxû∗

z ) − xy

aR
Re(ûyû∗

z ) − xz

aR
Re(ûzû

∗
z )dAR,

Trad,z = �T · �ez = −ρ0

2

∫
R

x2 − y2

aR
Re(ûxû∗

y ) + xy

aR
Re(ûyû∗

y ) + xz

aR
Re(ûyû∗

z ) − xy

aR
Re(ûxû∗

x ) − yz

aR
Re(ûxû∗

z )dAR. (D5)

Here p̂ and �̂u = (ûx, ûy, ûz ) are the complex amplitudes of acoustic pressure and particle velocity, respectively. �ex, �ey, and �ez

are unit vectors along the corresponding axes.
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