
PHYSICAL REVIEW E 105, 055109 (2022)

Predicting transition from selective withdrawal to entrainment in two-fluid stratified systems
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Selective withdrawal is a desired phenomenon in transferring oil from large caverns in the U.S. Strategic
Petroleum Reserve (SPR), because entrainment of oil at the time during withdrawal poses a risk of contaminating
the environment. Motivated to understand selective withdrawal in an SPR-like orientation, we performed
experiments in order to investigate the critical submergence depth as a function of critical flow rate. For the
experiments, a tube was positioned through a liquid-liquid interface that draws the lower liquid upward, avoiding
entrainment of the upper fluid. Analysis of the normal stress balance across the interface produced a Weber
number, utilizing dynamic pressure scaling, that predicted the transition to entrainment. Additionally, an inviscid
flow analysis was performed assuming an ellipsoidal control volume surface that produced a linear relationship
between the Weber number and the scaled critical submergence depth. This analytical model was validated
using the experimental data, resulting in a robust model for predicting transition from selective withdrawal to
entrainment.
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I. INTRODUCTION

This paper presents experimental data and discusses re-
sults using scale analysis and a simplified inviscid analysis
that yields a new relationship between two nondimensional
terms that predicts the transition from selective withdrawal to
viscous entrainment in a two-liquid, immiscible system.

In the U.S. Strategic Petroleum Reserve (SPR), crude oil is
stored in underground salt caverns, which have diameters of
approximately 60 m and depths of approximately 600 m [1].
In order to add oil to a cavern, brine is pumped out using a
pipe that has been lowered through the interface into the brine.
At some critical combination of flow rate and depth below
the undeformed interface and the inlet to the pipe, oil is also
withdrawn during pumping. This marks the transition from se-
lective withdrawal to entrainment. Selective withdrawal, i.e.,
removal of only the brine, is desirable during this process,
because the removed brine is stored as surface water and any
oil in it acts as a pollutant. Motivated to understand selective
withdrawal in an SPR-like orientation for which we found
no published studies, experiments were performed in order
to investigate the critical submergence depth as a function of
critical flow rate. For the experiments, a tube was positioned
through a liquid-liquid interface that draws the lower liquid
upward, avoiding entrainment of the upper fluid, i.e., the SPR-
like orientation shown in Figs. 1(a)–1(c). The schematic of the
complete experimental setup is shown in Fig. 2.

In this paper, we present two approaches to obtain pre-
dictive results for the transition from selective withdrawal
to entrainment. The first applies dimensional analysis on the
interfacial stress balance, while the second uses Bernoulli’s
principle or Euler’s equation for inviscid fluid flow. The paper
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is organized as follows: Background on selective withdrawal
phenomena is provided in Sec. II; a brief description of the
experiments conducted is given in Sec. III; the analytical
methods and the necessary fit equations are explained in
Sec. IV; and finally the paper concludes with discussion of
the results and the conclusion in Secs. V and VI, respectively.

II. BACKGROUND

Early research conducted on selective withdrawal of two-
layer stratified liquids was an experimental study by Lubin
and Springer [2]. The critical height between the floor of
a two-liquid tank and the liquid-liquid interface above was
predicted as a function of the sink flow rate. Assuming surface
tension to be negligible and using Bernoulli’s principle, a
Froude number (defined as Fr = Qcr/(g′d )1/2, where, Qcr is
the critical flow rate, d is the tube diameter, and g′ is the
reduced gravity) based on the sink tube diameter was found to
be the characteristic nondimensional parameter representing
the flow, and a linear relationship between the nondimensional
flow rate and the scaled critical depth for their experimental
data collapsed their data well.

A more recent experiment was performed by Cohen and
Nagel [3] for a liquid-liquid system in which the upper liquid
was withdrawn at a fixed rate (similar to secondary orientation
but with the withdrawal tube above the interface). For the
given system, the authors found the height of the tube above
the interface at the moment of entrainment to be proportional
to the volumetric flow rate raised to approximately the 0.3
power. The authors were also able to find a scaling relation-
ship that collapsed all hump profiles to a single profile for
low Reynolds number flow. A capillary number based on the
capillary length was found to be the representative nondimen-
sional number for the flow. Cohen [4] extended the research by
including several pairs of fluids resulting in different density
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FIG. 1. (a) Primary orientation in an initial state. (b) Primary
orientation in a steady, intermediate subcritical flow rate state.
(c) Primary orientation just after the inception of entrainment.
(d) Secondary orientation just after the inception of entrainment. All
the tube inner diameters in the figure are 10.8 mm.

and viscosity ratios. Based on the low Reynolds number as-
sumption, a dimensional analysis led to a relationship between
a scaled flow rate and a scaled distance to the undisturbed
interface for prediction of the transition to entrainment. The
fit equation had the form of a power law with the exponent
varying from 0.30 to 0.45, depending on the fluid combina-
tions used in the experiment. Case and Nagel [5] reported a
similar relationship in their work while trying to analyze and

FIG. 2. Schematic diagram of the experimental setup. Cameras
(not shown) were located perpendicular to the two faces of the
hexagonal test tank [1].

collapse the spout profiles after entrainment. According to the
authors, the spouts have two asymptotic regimes, based on
the viscosity ratio, which was matched to each other by the
flow dynamics. At large radius, the interface is constrained by
gravity to be horizontal and at large heights the spout inter-
face is constrained by the flows in the nozzle to be vertical.
The nondimensional flow rate based on the capillary number
(defined as Ca = μwQcr/γ l2

c , where, Qcr is the critical flow
rate, lc is the capillary length, γ is the interfacial tension, and
μw is the viscosity of withdrawal fluid) was identified as the
representative parameter that collapsed the spout states.

Blanchette and Zhang [6] developed a force balance model
to evaluate the system studied experimentally in Cohen paper
[4]. According to the authors, the transition to entrainment
was dependent on a global force balance on the interface,
when the upward force exerted by viscosity because of the
withdrawal flow overcomes the downward force of surface
tension. The results of the simulation matched the transition
trends found in Ref. [4] closely. It was concluded that the
interfacial tension was dominated by the weakly deflected por-
tion of the hump far away from the tip. The capillary number
(defined as Ca = μwQcr/γ S2, where Qcr is the critical flow
rate, S is the submergence depth, γ is the interfacial tension,
and μw is the viscosity of withdrawal fluid) was also found to
be the representative nondimensional parameter that collapses
their data.

In addition to experimental work, the entrainment prob-
lem has been investigated numerically. Lister [7] performed
a numerical simulation of a two-liquid system of equal vis-
cosity in which a point sink was located a distance above
an undeformed interface. Assuming Stokes flow and equal
viscosity in both layers, the flow field was solved as a function
of capillary number, the sink strength, and a viscous velocity
scale. A linear trend in the log-log plot was identified between
the nondimensional capillary length and sink strength.

Farrow and Hocking [8] used a two-dimensional finite-
difference approach to simulate selective withdrawal of water
for high Reynolds number, inviscid, irrotational flow in order
to investigate the scatter in the critical draw-down Froude
number (defined as Fr = Qcr/(g′S3)1/2, where Qcr is the crit-
ical flow rate, S is the submergence depth, and g′ is the
reduced gravity), i.e., transition from selective withdrawal.
Their results indicated that interfacial waves could affect the
critical draw-down Froude number and were responsible for
the experimental scatter observed. The critical draw-down
Froude number based on the depth of the withdrawn fluid
layer, for conditions in which interfacial waves was not a
significant factor, is approximately 1. Later, Hocking et al.
[9] included the surface tension effect due to the curvature of
the interface and concluded that the Froude number, based on
the sink depth from the interface, represented the complete
flow phenomenon and the surface tension adds a resistance
to the withdrawal force. However, no predictive relationship
between the submergence depth and the critical flow rate was
found.

Initially, the relationships developed in the aforementioned
works were applied to our data, but the results were not able
to produce a consistent collapse for a predictive relationship
between flow rate and submerged depth as shown in Fig. 3.
In an attempt to understand the reason for the disparities, we
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FIG. 3. Plots showing the nondimensional submergence depth as a function of various nondimensional parameters. The secondary
orientation data are presented by “filled” symbols, whereas the primary orientation data are presented by “hollow” symbols. The symbols are
defined in Table I. (a) Nondimensional submergence depth as a function of capillary number as in Ref. [4]. The dotted red line shows Cohen’s
correlation. (b) Nondimensional submergence depth as a function of capillary number as in Ref. [6]. (c) Nondimensional submergence depth
as a function of Froude number as in Ref. [8]. (d) Nondimensional submergence depth as a function of Froude number as in Ref. [2]. The
dotted red line shows Lubin’s correlation; see Eq. (15).

consider the flow regime at the onset of entrainment using the
Ohnesorge number (Ohlc = μw/(ρwγ lc)1/2, where μw is the
viscosity of withdrawn fluid, ρw is the density of withdrawn
fluid, γ is the interfacial tension, and lc is capillary length),
which is defined as the ratio of viscous effect to the combined
effect of surface tension and inertia. As fluid is removed at
a rate below critical flow rate, the reduction in the pressure

due to the withdrawal flow is responsible for the deformation
of the interface. In order to maintain the steady deformed
interface, the force balance has to be at an equilibrium. For
a given subcritical flow rate, at equilibrium, the flow regime
effect is not explicitly observable other than causing a change
in interface location or shape. But at the onset of entrainment,
the interface is swept into the flow and the Ohnesorge number
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FIG. 4. Weber number as a function of Ohnesorge number. The
data from Cohen’s experiment are shown using the symbol ∗.
The data from Lubin and Springer’s experiment are shown using the
symbol +. The data from this experiment had two orientations. The
fluid combinations for the primary and the secondary orientation are
expressed using the symbols mentioned in Table I.

and Weber number (defined as Welc = ρwU 2
0 lc/γ , where ρw

is the density of withdrawal fluid, lc is capillary length, γ is
interfacial tension, and U0 is the tube velocity) help define the
flow regime. Figure 4 shows where the experimental studies
fall in comparison to each other in terms of the Weber number
and Ohnesorge number. There are three major regimes in
terms of the Ohnesorge number. For Ohlc < 0.1, the viscous
effect is negligible compared to the surface tension and in-
ertia effect. For Ohlc > 10, the viscous effect dominates the
surface tension and inertia effect. For 0.1 < Ohlc < 10, the
viscous effect is comparable relative to the surface tension and
inertia effect. To understand the comparative effect between
the surface tension and inertia, the Weber number was also
plotted in Fig. 4. For Welc > 1, the inertia effect dominates
over surface tension and for Welc < 1 the surface tension
dominates inertia.

It was found that the Ohnesorge number for our experi-
mental data was very low, meaning during entrainment the
viscous effect is negligible compared to the surface tension
effect and inertial effect, as shown in Fig. 4. Similarly, Lubin’s
experimental data are in the regime where viscous effects are
also negligible. For both these studies, the Weber numbers
are high, meaning surface tension effects were not dominant.
Reviewing Cohen’s data in Fig. 4, it can be seen that their
experimental flow regime overlaps high and low values of
Welc with Ohlc close to order one; that is, some data are
in the region where viscous effect was in a similar order in
comparison to the surface tension and inertial effect and also
in a region of surface tension dominance. This also explains
the possibility of having a hysteresis effect at very low flow
rates, as described by Cohen [3,4].

In this paper, we present two approaches that were used to
predict transition from selective withdrawal to entrainment for
two withdrawal orientations—a dimensional analysis based
on the normal stress balance and an extension to a simpli-
fied inviscid model. No paper in the literature was found
that studied withdrawal of bottom layer fluid from a tube
penetrating the interface from above. Moreover, this analysis
shows the comparison between withdrawal from above and
withdrawal from below, especially due to the tube wall effect
on the interface. Also, it attempts to explain how having large
diameter compared to the capillary length would affect the
analysis, which would be more representative for real SPR-
like conditions.

III. EXPERIMENTAL DETAILS

A laboratory investigation was performed in order to gain
insight into the conditions for which entrainment of the lighter
fluid occurred for the orientations shown in Fig. 1. To record
the transition from selective withdrawal to entrainment in an
immiscible, two-liquid system, liquid pairs (silicon oils, brine,
and water) were selected with density ratios similar to what
was expected for SPR-like conditions. The liquid pairs were
contained in a glass hexagonal tank approximately 25.4 cm
wide and 61 cm tall. The withdrawal location was kept near
the center of the container to minimize wall effects. Two
withdrawal tube orientations were utilized. In the primary
(SPR-like) orientation, the withdrawal tube is lowered through
the interface and the lower fluid is drawn upwards (Fig. 1).
In the secondary orientation, the withdrawal tube opening
is placed below the interface and the lower fluid is drawn
downward.

All experiments began by adjusting the withdrawal tube
centered in the tank such that the inlet was perpendicular to
the undisturbed interface; two Redlake MotionPro cameras
positioned 120◦ apart were used to adjust alignment. The
withdrawal tube was attached to a linear variable displacement
transducer (lvdt) that was zeroed at the undisturbed inter-
face. Prior to each experiment, the tube was lowered at least
2.54 cm below the interface of the upper fluid. The position of
the tube was monitored using an lvdt (Fig. 2). The upper fluid
layer was 2.54 cm thick.

In order to ensure that the return flow from the filter at the
bottom of the test tank did not significantly influence the flow
at the liquid-liquid interface or near the withdrawal tube, dye
injection tests were conducted. The results showed that the
filter distributor created a flow uniform enough to maintain
the flow quality. Furthermore, tests were conducted to show
that there was no change on the critical submergence depth
when the location of the withdrawal tube was varied by two
diameters off center or when the thickness of the oil layer
was varied between 1.2 and 5.0 cm. This result is in contrast
with the findings of Cohen [4] for selective entrainment above
the interface, who reported that the entrainment process was
affected by upper layer thickness less than 2.54 cm.

After setting the initial position of the withdrawal tube,
the withdrawal rate was then slowly increased to the desired
level using an impeller pump. The lower fluid was pumped
into a settling tank and then back into the bottom of the
tank at the withdrawal rate, maintaining a constant interface
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TABLE I. Table of the properties for each fluid combination studied. ρu and νu correspond to upper fluid density and upper fluid kinematic
viscosity respectively. ρw and νw correspond to lower fluid density and lower fluid kinematic viscosity respectively. γ corresponds to surface
tension coefficient. The upper layer fluid consists of two variations of polydimethyl siloxane (PDMS) and for lower fluid deionized water (DI
H2O) and two variations of calcium chloride brine (CaCl2 brine) were used.

System 1 System 2 System 3 System 4 System 5 System 6

Symbols ◦ ∇ � � � �
Upper fluid 5 cSt PDMS 5 cSt PDMS 5 cSt PDMS 20 cSt PDMS 20 cSt PDMS 20 cSt PDMS
Lower fluid DI H2O 1.97 cSt CaCl2 brine 3 cSt CaCl2 brine DI H2O 1.97 cSt CaCl2 brine 3 cSt CaCl2 brine
ρu (g/cc) 0.918 0.918 0.918 0.950 0.950 0.950
ρw (g/cc) 0.998 1.245 1.325 0.998 1.245 1.325
ρu/ρw 0.920 0.737 0.693 0.952 0.763 0.717
νu (cSt) 5 5 5 20 20 20
νw (cSt) 1.01 1.97 3 1.01 1.97 3
νu/νw 4.95 2.54 1.67 19.80 10.15 6.67
γ (N/m) 0.031 0.038 0.038 0.031 0.038 0.038
lc/d 0.44–0.94 0.22–0.46 0.20–0.41 0.57–1.21 0.23–0.49 0.20 - 0.43

depth. Keeping the flow rate constant, the tube was raised in
increments of 0.25 mm until the interface neared transition,
at which time the tube was raised in increments of 0.03 mm
until entrainment occurred. Upon entrainment, the pump was
stopped and the flow rate and tube depth were recorded. Six
fluid pairs were tested in the experiments with two PDMS oils
used as upper fluids and three brine solutions with varying
concentrations of CaCl2 as lower fluids. These combinations
resulted in kinematic viscosity ratios from 1.67 to 19.80 and
density ratios from 0.69 to 0.95. The surface tension for each
pair was measured using a ring tensiometer and was between
0.03 and 0.038 N/m for all pairs (Table I).

For the primary orientation, three stainless steel tubes
were used, with inner diameters of 0.74, 1.08, and 1.57 cm;
the respective outer diameters were 0.95, 1.27, and 1.91 cm
(Table II). The secondary orientation only utilized a stainless
steel tube with an inner diameter of 1.08 cm. Flow rates
were varied from 4.7 × 10−5 to 6.5 × 10−4 m3/s resulting
in Reynolds number (Red ) based on the inner tube diameter
ranging from 2000 to 60 000, with most cases above 104.
Typical SPR-like situation has nominally 16 000 m3/day of
brine flowing through a 9.85-in. inner diameter tube. These
flow conditions result in Red values on the order of 390 000
to 900 000 [1]. Assuming turbulent flow begins at Red values
on the order of 2000 and fully turbulent at 104, the tube flow
in the SPR caverns can be considered fully turbulent, similar
to most of the experimental conditions presented.

IV. ANALYSIS

The first approach applies dimensional analysis on the
normal stress balance equation. This analysis presents an idea

TABLE II. Withdrawal tube dimensions. All the tubes used in the
experiment were stainless steel.

Tube 1 Tube 2 Tube 3

Nominal dia. (cm) 0.953 1.27 1.905
Inner dia. (cm) 0.744 1.08 1.57

about the forces which are important in the selective with-
drawal phenomenon. The second approach uses Bernoulli’s
principle to explain the intuition achieved from the dimen-
sional analysis pertaining to the experiment.

A. Interfacial stress balance

The objective of this study was to determine a predictive
relationship between the submergence depth and critical flow
rate at the moment of entrainment. The dimensional analysis
approach on the interfacial stress balance equation allows us
to scrutinize the forces acting on the interface at selective
withdrawal. Surface tension manifests itself in the normal
stress balance in the boundary condition for a Newtonian
incompressible fluid as given below from Ref. [10], where �P
indicates the pressure change across the interface, followed by
the viscous normal stress across the interface and the surface
tension stress, where γ is the surface tension and ∇ is the
gradient operator:

�P − �

(
2μ

∂un

∂n

)
− γ∇ · n = 0. (1)

Next, we nondimensionalize Eq. (1) with a choice to make
regarding the pressure scaling. In previous works, the flow
was often considered to be creeping flow [4,7,11], which
resulted in a capillary number based on the capillary length as
the representative nondimensional flow parameter that did not
collapse our data. We therefore investigated dynamic pressure
scaling and chose to bring gravity in the normal stress balance,
by decomposing the pressure term into its dynamic and static
component such that P = Pd − ρgz, where Pd is the dynamic
pressure, g is gravitational acceleration, and z is the vertical
height, defined positive opposing the gravity vector, and thus
�g · z is negative. Using ρwU 2

0 as the dynamic pressure scale,
capillary length (lc = √

γ /�ρg) as length scale for the nor-
mal and tangential direction on the interface, tube diameter
(d) as the axial or vertical length scale, and U0 = 4Qcr/πd2

as the velocity scale, respectively, we achieve the following
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equation with dimensionless variables indicated by overbars:

�Pd − 1

Fr2
d

�ρgz − 1

Relc

�

(
2μ

∂un

∂n

)
− 1

Welc

γ∇ · n = 0,

(2)

where Frd = U0/
√

g′d is the Froude number based on the
tube diameter and g′ is the reduced gravity such that g′ =
(1 − ρu/ρw ), ρu and ρw are the upper fluid density and lower
fluid density respectively. Relc = ρwU0lc/μw is the Reynolds
number based on the capillary length and Welc = ρwU 2

0 lc/γs

is the Weber number based on the capillary length.
Prior to entrainment, the location and shape of the interface

is stable for a fixed flow rate, as observed from the experi-
ment. Using order of magnitude analysis, just at the onset of
entrainment, the following equation can be shown (see details
in Appendix A):

�Pd︸︷︷︸
O(1)

− 1

Fr2
d

�ρgz︸ ︷︷ ︸
O(10−1 )

− 1

Relc

�

(
2μ

∂un

∂n

)
︸ ︷︷ ︸

O(10−2 )

− 1

Welc

γ∇ · n︸ ︷︷ ︸
O(1)

= 0.

(3)

The scaling analysis allowed the viscous shear component
to be ignored, and the dynamic pressure was found to balance
surface tension with a secondary effect of buoyancy.

We defined the flow regime using the Ohnesorge number,

Ohlc = We
1
2
lc
/Relc = μw/(ρwγ lc)1/2, as illustrated in Fig. 4.

Rearranging Eq. (3), we can write the following:

We
1
2
lc
�Pd − We

1
2
lc

Fr2
d

�ρgz − Ohlc�

(
2μ

∂un

∂n

)

− 1

We
1
2
lc

γ∇ · n = 0. (4)

The Ohnesorge number has previously been used in the
literature to define the droplet breakout regimes of liquid jets
[12]. Recently, it has also been used to analyze the regimes
of selective withdrawal phenomena [13]. It enables the com-
parison of the viscous effect to the surface tension and inertia
effect in one nondimensional parameter. In our experiment the
flow regime Ohlc < 0.0085 and also from Eq. (3), it can be
inferred that the viscous effect at the onset of entertainment is
negligible for our experiments. This reduces Eq. (4) into the
following representative stress balance equation.

�Pd − 1

Welc

[
1

(lc/d )
× �ρgz + γ∇ · n

]
= 0. (5)

There are three potential cases that can be considered in
Eq. (5). For case 1, as (lc/d ) → ∞, surface tension balances
pressure and Weber number becomes dominant. For case 2,
as (lc/d ) ≈ 1, both buoyancy and surface tension act as the
resistive force to balance pressure. But as the capillary length
and the tube diameter are of similar order, the Weber num-
ber once again becomes the representative nondimensional
parameter. For case 3, as the ratio (lc/d ) → 0, buoyancy
balances pressure and Froude number becomes the dominant
nondimensional parameter, which is the case for actual SPR.

Thus, dimensional analysis for our case indicates that the
Weber number, based on capillary length, is the representative
flow parameter for the experimental data presented and is
found to collapse the data well as shown in Fig. 7.

B. Inviscid flow model using Bernoulli’s principle

This approach was introduced by Lubin and Springer [2]
and offered a more detailed insight on the selective withdrawal
phenomena. The analysis was based on the assumptions that
the viscous effects are negligible and the flow is incompress-
ible. Bernoulli’s principle was applied just below the interface
streamline. Lubin and Springer, in their paper, assumed a
hemispherical control volume surface area, with the plug hole
being at the center of the hemisphere.

In this analysis, it was already confirmed, based on the
Ohnesorge number, that the viscous effect was negligible for
our experimental flow field at the onset of entrainment. The
assumption made by Lubin and Springer were slightly modi-
fied such that the model accounts for the suction tube instead
of a drain hole on a flat tank surface. An ellipsoidal control
volume surface was assumed, with the center being at an offset
from the tube opening, as in Fig. 5(a). Our supposition was
that the interface acts similar to a static wall and influences
the isovelocity profiles away from the tube exit. An ellipsoidal
control volume surface is more generalized as compared to the
previously assumed spherical or hemispherical control vol-
umes. This assumption is also supported by True and Crimaldi
[14] for inhalant flows for which velocity magnitude contours
near the tube opening become ellipsoidal in shape as Re
increased. The ellipsoidal shape is also seen in mulitiphase
Eulerian-Eulerian CFD simulations that we have performed
for a few of our experimental cases; see, for example,
Fig. 6.

The flow phenomena observed in this experiment is similar
to the one observed by Lubin and Springer [2] and Hocking
et al. [8,9]. At a certain entrainment depth and at a certain
flow rate, a dip forms above the point sink on the surface of
the lower fluid. The flow is steady unless it reaches a critical
entrainment depth (S) and a critical flow rate (Qcr), at which
point the dip grows rapidly and extends toward the point sink
almost instantaneously. Mass conservation at the ellipsoidal
control volume, using the Knudsen-Thomsen approximation
[15], can be expressed as

Qcr = 4πα0H2
d Us, (6)

α0 ≈
(

b

Hd

)[
2

3

{
1 + 1

2

(
b

Hd

)( 8
5 )}]( 5

8 )

, (7)

where Qcr is the critical flow rate and Hd and b are the axes
of the 2D ellipsoidal control surface. Us is average velocity
normal to the ellipsoidal surface. The deformation coefficient
α0 expresses the deviation from the spherical control surface
assumption. When α0 → 1, the control surface is a sphere,
when α0 → 0.5, the control surface is a hemisphere; other-
wise, it is an ellipsoid. Equation (7) can be used to estimate
α0.
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FIG. 5. Schematic of symbols and control volume used in the analysis of inviscid model. (a) Primary orientation. (b) Secondary orientation.
The critical flow rate is denoted by Qcr , the tube diameter by d and the submergence depth by S. Hd and b are the axes of the 2D ellipsoid. Us

is the average velocity normal to the control volume surface and a is the offset of the ellipsoidal control volume from the tube opening

Bernoulli’s principle along a streamline from point 1 to
point 2 in Fig. 5 generates the following equation,

S = Hd + U 2
s

2g′ ∓ a, (8)

where (−) is for primary orientation, (+) is for secondary
orientation, and a is the offset of the ellipsoidal centroid from

FIG. 6. An example multiphase Eulerian-Eulerian CFD simula-
tion for system 4, withdrawal of bottom layer fluid at subcritical flow
rate using Ansys FLUENT [16]. Label (1) denotes the initial position
of the undisturbed interface; label (2) denotes an equilibrium position
of the interface; label (3) denotes the control volume where the
velocity vectors are perpendicular to the ellipsoidal control surface
(dashed line); and label (4) denotes isovelocity contours.

the tube opening. Equations (6)–(8) can be rearranged to yield

S = Hd + Q2
cr

32π2g′α2
0H4

d

∓ a. (9)

The assumption of instantaneous rupture of the interface at
the critical condition is used to eliminate Hd :

dS

dt

/dHd

dt
≈ 0. (10)

Differentiating Eq. (9) and applying Eq. (10) gives

Hd = 0.4174

α
2/5
0

[
Q2

cr

g′

] 1
5

. (11)

Substituting Hd from Eq. (11) to Eq. (9) yields

S = 0.5227

α
2/5
0

[
Q2

cr

g′

] 1
5

∓ a. (12)

Normalizing Eqs. (11) and (12) with the diameter allows
us to rewrite the equations in terms of Weber number Welc =
ρwQ2

cr lc/d4γ and capillary length lc = √
γ /�ρg, such that

it provides a linear relationship between the nondimension-
alized critical entrainment depth and nondimensionalized
critical flow rate raised to the power 1/5:

S

d
= 0.5227

α
2/5
0

(
lc
d

) 1
5

We
1
5
lc

∓ a

d
, (13)

Hd

d
= 0.4174

α
2/5
0

(
lc
d

) 1
5

We
1
5
lc
. (14)
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FIG. 7. Critical submergence depth as a function of critical We-
ber number. The “hollow” symbols represent the primary orientation
data, whereas the “filled” ones represent the secondary orientation
data. The solid line through the hollow symbols is the best linear
fit for the primary orientation and the solid line through the filled
symbols is the best linear fit for the secondary orientation. The dotted
lines are 95% prediction intervals. The region above the 95% upper
bound of entrainment depth is selective withdrawal zone, whereas the
area below is entrainment zone. The symbols are defined in Table I.

V. RESULTS AND DISCUSSION

We now apply Eq. (13) to our experimental data for both
orientations and present the results in Fig. 7. The relation for
entrainment depth as a function of Weber number to the one-
fifth power fits the data well. Additionally, expressions for α0,
a, and b can easily be estimated from the slope and intercept
values of the fitted equation as shown in Table IV.

From this analysis, it can also be concluded that the ex-
periment by Lubin and Springer is a special case of the
proposed model, where α0 = 0.5 (for hemispherical control
volume surface) and the fluid layers were chosen such that
(lc/d )1/5 ≈ 1; see Table III. The point sink was assumed to
be exactly on the plug-hole opening, rendering a = 0. Using
these assumptions in Eqs. (6), (11), and (12), as well as tak-
ing help from Eq. (B4), the expression derived by Lubin in

TABLE III. Fluid properties for calculating ratio of capillary
length to tube diameter for Lubin’s paper [2].

ρ1 (kg/m3) ρ2 (kg/m3) γ (N/m) d (m) lc (m) (lc/d )(1/5)

998 1.2226 0.075 0.0032 0.003 0.99
998 783.43 0.04 0.0032 0.004 1.05
998 918.16 0.021 0.0064 0.005 0.95
998 918.16 0.038 0.0064 0.007 1.02
998 868.26 0.012 0.0032 0.003 0.99

Eq. (15) is realized:

S

d
= 0.69

[
Q2

cr

g′d5

] 1
5

. (15)

For an individual critical Weber number, the fit equa-
tions lead to a critical nondimensional submergence depth for
the corresponding tube orientations, Fig. 7. For cases when the
viscous effect is negligible compared to the surface tension
and inertial effect (low Ohlc flow), and the capillary length
is in the comparable order of scale to the tube diameter,
a predictive relationship is generated for the desired selec-
tive withdrawal, above the curve, and entrainment, below the
curve.

The offset between the primary and the secondary orien-
tation can be explained as the effect of the tube wall on the
interface. In the primary orientation, the tube wall is in con-
tact with the interface and impedes the entrainment whereas
in the secondary orientation the interface is completely free
from any surface contact. As a result, for the same submer-
gence depth the primary orientation requires a stronger flow
rate compared to the secondary orientation for entrainment
to occur. A point to be noted here is that having a negative
entrainment depth would require the lower fluid to “stick”
to the withdrawal tube and block the upper fluid from being
entrained.

It is evident from the analysis that the ratio (lc/d ) plays a
significant role in shaping the ellipsoid; see Table IV for pa-
rameters. The inverse Bond number can be defined as (lc/d ),
with details in Appendix B. It can be interpreted that Bo−1 is
the scaled surface tension effect with respect to the buoyancy
effect at the diameter scale. From the normal stress balance,
Eq. (5), buoyancy dominates surface tension for large diam-
eters and the Bo−1 reduces to a small number. In SPR-like
cavern flows, the tube diameter is large compared to the cap-
illary length, so it can be inferred that the force balance is one
of buoyancy balancing pressure and, consequently, the Froude
number is expected to be the representative nondimensional
number, and the correlation shown in Fig. 7 is not claimed to
be predictive. However, for the experiments presented herein,
the inverse Bo numbers range from about 0.2 to 1.2, which
is in the vicinity of case 2 and makes the Weber number the
representative nondimensional number at entrainment.

In this experiment, during selective withdrawal, the reduc-
tion of pressure due to the tube velocity creates a downward
pull on the interface toward the tube inlet. The surface tension
and the buoyancy create a resistance to this force and at equi-
librium, a steady state, subcritical balance is achieved such
as shown in the left photo in Fig 1. When Bo−1 > 1, surface
tension dominates as the resistive force and when Bo−1 < 1,
buoyancy dominates. Entrainment occurs when the resistive
force is overcome by the force due to the pressure reduction.

To understand the effect on inverse Bond number on the
shape of the ellipsoidal control volume, a simulation was
conducted keeping the flow rate fixed for a chosen fluid com-
bination. A high flow rate of 0.35 m3/s was chosen so that
the high Reynolds number flow condition was satisfied even
for the largest diameter and viscous effect can be neglected
(Relc ≈ 103 to 108). It corresponds to very low Ohnesorge
number (Ohlc ≈ 10−4 to 10−2) for the simulation. The inverse
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TABLE IV. Table of estimations for the parameters α0, a, and b, with uncertainties of the slope and the intercept given parenthetically.

Orientation Slope Intercept α0 a (m) b (m)

Primary 0.41(± 0.01) −0.56(± 0.04) 1.84(lc/d )
1
2 0.56d Hd [ − 1 + {1 + 7.92(lc/d )

4
5 }

1
2 ]

5
8

Secondary 0.41(± 0.03) +0.30(± 0.08) 1.95(lc/d )
1
2 0.30d Hd [ − 1 + {1 + 8.75(lc/d )

4
5 }

1
2 ]

5
8

Bond number, Bo−1 = (lc/d ) was varied by changing the
surface tension coefficient and the diameter. The range of the
surface tension coefficient was from 0.001 to 0.1 N/m. Eight
selected diameters were chosen from a very wide range of
0.001 to 0.30 m.

The inverse Bond number, according to the derived model,
shapes the major and minor axes of the ellipsoidal control
volume surface. Figure 8(a) shows the trend of Hd , b for the
primary orientation as a function of Bo−1. The trend for the
secondary orientation Fig. 8(b) was found to be similar to
the primary. For both orientations, the ellipsoid becomes a
sphere at a particular Bo−1 value. As the Bo−1 increases, Hd

tends to decrease, indicating the lowering of interface, Fig. 5.
The interface acts like a static wall and consequently, as the
interface drops, it also reduces the velocity in its vicinity. At
some critical average velocity Us, the interface cannot resist
the downward pull anymore and it collapses. To collapse at
a reduced critical velocity the area of the control surface has
to increase, as the Bo−1 increases. The only way the control
surface area can increase for a fixed flow rate is by an increase
of the parameter b, which is evident in Fig. 8. Figure 8(c)
shows the results of extending the analysis to fluids in Lubin’s

FIG. 8. Ellipsoidal control volume parameters (Hd , b) as a func-
tion of the inverse Bond number for (a) primary orientation,
(b) secondary orientation, and (c) Lubin and Springer model. The
fluid combination of system 3 (Table I) was chosen. The flow rate
was set to be 0.35 m3/s. The surface tension coefficient was varied
from 0.001 to 0.1 N/m and eight selected diameters were chosen
from a very wide range of 0.001 to 0.30 m. The solid line is for
plotting Hd and the dashed line is for plotting b.

experimental setup. It is apparent that as Bo−1 gets closer to
1, the major and minor axes becomes equal and the control
volume shape obtains the form of an hemisphere, as Lubin
and Spring assumed in his paper.

VI. CONCLUSION

This paper presented two approaches to predict transition
from selective withdrawal to entrainment using the physics of
fluid flow. The first used the dimensional analysis approach on
the normal stress balance equation showed the Weber number
as the relevant nondimensional parameter specific to selective
withdrawal. Moreover, this method provided a representation
for the force balance on the interface for the relative signif-
icance of buoyancy, surface tension, and pressure balance.
The second used Bernoulli’s principle for selective withdrawal
with two withdrawal-tube orientations. The theoretical model
was fitted using experimental data and the expressions for
corresponding unknown parameters were derived. It is shown
that the general control volume associated with the average
velocity at the critical flow rate is ellipsoidal in shape. It was
also shown that Lubin’s correlation is a special case of this
proposed model. Both approaches led to predictive relations
for the selective entrainment depth as a function of the critical
Weber number raised to the one-fifth power.
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APPENDIX A: ORDER OF MAGNITUDE ANALYSIS

Order of magnitude analysis for each term of Eq. (3) can
be performed using the appropriate scales.

We analyze �Pd term,

�Pd =
(
ρwU 2

i − ρuU 2
i

)
ρwU 2

0

≈ O

(
U 2

i

U 2
0

)
, (A1)

where Ui(≈ Qcr/4π l2
c ) is the velocity estimated close to the

interface. The maximum order of the ratio Ui/U0 becomes
10−1:

�Pd =
(
ρwU 2

i − ρuU 2
i

)
ρwU 2

0

≈ O(10−2). (A2)

We analyze the 1
Fr2

d
�ρgz term,

�ρgz = (ρwgzw − ρugzu)

ρwg′d
≈ O

(
ρwgzw

ρwg′d

)
. (A3)
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The maximum depth that z can have is in the order of the
submergence depth S, so the maximum order becomes

�ρgz = (ρwgzw − ρugzu)

ρwg′d
≈ O(1). (A4)

Similarly, for the Froude number we can find the maximum
order to be

1

Fr2
d

= g′d
U 2

0

≈ 10 × 10−2

102
≈ O(10−3). (A5)

The order of the total product becomes

1

Fr2
d

�ρgz ≈ O(10−3). (A6)

We analyze the 1
Relc

�(2μ∂un
∂n ) term,

�

(
μ

∂un

∂n

)
= μw

�uw
n

�n − μw
�uu

n
�n

μw
U0
lc

. (A7)

Below the interface, for the withdrawal fluid, it can be
estimated that the velocity goes from almost zero (compared
to tube velocity) near the interface to U0 near the tube, over the
length scale lc. Above the interface, for the upper fluid, it can
be estimated that the velocity goes from almost zero near the
interface to some maximum normal velocity U m

n (≈ 4Qcr/π l2
c )

over the length scale lc. Using these estimated scales, we can
rewrite Eq. (A7) as below:

�

(
μ

∂un

∂n

)
≈ O

(
μuU m

n

μwU0

)
≈ O(10). (A8)

Similarly, for the Reynolds number we can find the order
to be

1

Relc

= μw

ρwU0lc
≈ 10−3

103 × 10 × 10−2
≈ O(10−5). (A9)

The order of the product becomes

1

Relc

�

(
2μ

∂un

∂n

)
≈ O(10−4). (A10)

We analyze the 1
Welc

γ∇ · n term,

γ∇ · n = γ∇ · n
γslc

≈ O

(∇ · n
lc

)
, (A11)

where ∇ · n is the curvature and from our experiment it is in
the order of 10:

γ∇ · n ≈ O

(∇ · n
lc

)
≈ O(103). (A12)

The order of Weber number in our experiments are

1

Welc

= γs

ρwU 2
0 lc

≈ 10−2

103.102.10−2
≈ O(10−5). (A13)

The order of the product is as following,

1

Welc

γ∇ · n =≈ O(10−2). (A14)

APPENDIX B: BOND NUMBER

The Froude number for two-fluid stratified flow is defined
as the ratio of flow inertia to buoyancy effect [17,18], FrL1 =
U0/

√
g′L1, where g′ is the reduced gravity such that g′ =

(1 − ρu/ρw ), assuming ρw > ρu. Similarly, the ratio of inertia
to surface tension effect is defined as Weber number [17],
WeL2 = (ρwU 2

0 )/(γs/L2). When comparing Froude number to
the Weber number, another dimensionless number, known as
the Bond number [17], comes into effect. The Bond number
is defined as the ratio of buoyancy effect to surface tension
effect, Bo = (ρwg′L1)/(γs/L2). The squared Froude number
can be rewritten as

Fr2
L1

= U 2
0

g′L1
= ρwU 2

0 L2

γs
× γs

ρwg′L1L2
, (B1)

Fr2
L1

= WeL2/Bo. (B2)

The dimensional analysis approach uses length scales L1 =
L2 = lc. Using the definition of capillary length, lc, the Bond
number reduces to Bo = 1. Applying this in Eq. (B2) yields

Fr2
lc = Welc . (B3)

Similarly, if the length scales were such that L1 = d and
L2 = lc, the Bond number reduces to Bo = d/lc. Applying
this in Eq. (B2) yields

Fr2
d = Welc/Bo =

(
lc
d

)
Welc . (B4)

Equations (B3) and (B4) helps us express the Froude num-
bers in terms of Weber numbers.
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