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Bifurcation analysis of two-dimensional Rayleigh-Bénard convection using deflation
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We perform a bifurcation analysis of the steady states of Rayleigh-Bénard convection with no-slip boundary
conditions in two dimensions using a numerical method called deflated continuation. By combining this method
with an initialization strategy based on the eigenmodes of the conducting state, we are able to discover multiple
solutions to this nonlinear problem, including disconnected branches of the bifurcation diagram, without the
need for any prior knowledge of the solutions. One of the disconnected branches we find contains an S-shaped
curve with hysteresis, which is the origin of a flow pattern that may be related to the dynamics of flow reversals
in the turbulent regime. Linear stability analysis is also performed to analyze the steady and unsteady regimes of
the solutions in the parameter space and to characterise the type of instabilities.
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I. INTRODUCTION

This paper considers the bifurcations of the two-
dimensional Rayleigh-Bénard convection, which supports a
profusion of states. There have been numerous investiga-
tions trying to visualize solutions and characterize the steady
states of Rayleigh-Bénard convection, as well as computing
its bifurcation diagrams with respect to Ra, the Rayleigh
number, in various settings and for different geometries [1,2].
Ouertatani et al. [3] performed numerical simulations of
Rayleigh-Bénard convection in a square cavity using the finite
volume method and computed fluid flow profiles and temper-
ature patterns at Ra = 104, 105, 106. Numerical studies have
been conducted to understand the existence of bifurcating
solutions to this problem in a two-dimensional domain with
periodic boundary conditions in the horizontal direction [4,5].
Mishra et al. [6] analyzed the effect of low Prandtl number on
the bifurcation structures, while Peterson [7] used arclength
continuation [8] to study the evolution of cell solutions with
respect to the aspect ratio of the domain. Bifurcation struc-
tures of Rayleigh-Bénard convection have been extensively
studied in cylindrical geometry by Ma et al. [9] as well as by
Borońska and Tuckerman [10,11]. In particular, Refs. [10,11]
adapted a time-dependent code to perform branch continua-
tion and then analyzed the linear stability of the computed
solutions using Arnoldi iterations [12]. Finally, Puigjaner
et al. [13,14] computed bifurcation diagrams for Rayleigh-
Bénard convection in a cubical cavity over different intervals
of Ra < 1.5 × 105.

A common way to reconstruct bifurcation diagrams is to
use arclength continuation and branch switching techniques
[8,15,16] to continue known solutions in a given parame-
ter. These solutions can be computed by applying Newton’s
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method to suitably chosen initial guesses or by using time-
evolution algorithms. A standard numerical technique in fluid
dynamics for finding initial states for the continuation al-
gorithm is to perform time-dependent simulation of initial
solutions until a steady state is reached [17–19]. These nu-
merical techniques have been widely used and are extremely
successful at computing bifurcation diagrams of nonlinear
partial differential equations (PDEs).

In this paper we employ a recently developed algorithm
called deflation for computing multiple solutions to nonlinear
PDEs [20,21]. This method has been successfully applied to
compute bifurcations to a wide range of physical problems
such as the deformation of a hyperelastic beam [21], Car-
rier’s problem [22], cholesteric liquid crystals [23], and the
nonlinear Schrödinger equation in two and three dimensions
[24–26]. We emphasize that deflation offers some advantages
that could be combined with the standard bifurcation analysis
tools. The main strength of deflation is that it detects dis-
connected branches, in addition to those connected to known
branches. An additional advantage is that it does not require
the solution of augmented problems to find new solutions.
Using perturbed solutions to the linearized equations as initial
conditions, we are able to discover numerous steady states of
Rayleigh-Bénard convection. These solutions can be obtained
without prior knowledge and regardless of the stability of the
solutions.

While much progress in fluid dynamics has been made on
the study of hydrodynamic instabilities, instabilities that occur
when a control parameter is varied within the turbulent regime
remain poorly understood [27]. The difficulty in studying
such transitions arises from the underlying turbulent fluctu-
ations which make analytical approaches cumbersome. These
types of transitions resemble more closely phase transitions
in statistical mechanics because the instability occurs on a
fluctuating background [28]. In Rayleigh-Bénard convection,
such transitions have been observed in the form of reversals of
the large-scale circulation in an enclosed rectangular geome-
try, in both experiments and numerical simulations [29–31].
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Although we do not study the turbulent case, we investigate
the bifurcations of Rayleigh-Bénard convection in an enclosed
rectangular geometry to attempt to understand the genesis of
the flow patterns that play the central role in flow reversals in
the turbulent regime.

The paper is organized as follows. We first discuss the
problem setup and the choice of parameters in Sec. II. Then, in
Sec. III, we briefly review deflation and present the methods
used to improve its initialization procedure and compute the
linear stability of the solutions. Next we analyze the different
branches discovered by deflation and their stability in Sec. IV.
Finally, in Sec. V, we recapitulate the main conclusions of this
study and propose potential extensions for future work.

II. PROBLEM SETUP

We consider Rayleigh-Bénard convection [32–34] in a
confined fluid heated from below and maintained at a
constant temperature difference �T = T − T0 across a two-
dimensional square cell of height d . For simplicity, we employ
the Oberbeck-Boussinesq approximation [35–37], in which
the kinematic viscosity ν and the thermal diffusivity κ do not
depend on temperature while the fluid density ρ is assumed
to be constant except in the buoyancy term of the momen-
tum equation. In this case, we assume the density to depend
linearly on the temperature ρ(T ) � ρ(T0)[1 − α�T ], where
α is the thermal expansion coefficient. Then the governing
equations of the problem are

∇ · u = 0, (1a)

∂t u + u · ∇u = −∇p + Pr∇2u + Pr RaT ẑ, (1b)

∂t T + u · ∇T = ∇2T, (1c)

where u = (u,w) is the velocity field, T is the temperature
field, p is the pressure, and ẑ is the buoyancy direction. The
above equations have been nondimensionalized using d , d2/κ ,
and �T as the relevant scales for length, time, and tempera-
ture, respectively. The two dimensionless parameters of the
problem are the Rayleigh and Prandtl numbers

Ra = gα�T d3/νκ, Pr = ν/κ, (2)

where g is the gravitational acceleration. The Rayleigh num-
ber represents the ratio of the acceleration gα�T related to
buoyancy to the stabilizing effects of ν and κ . The bifurcation
parameter in the problem we study is Ra by setting Pr = 1.
The cell is assumed to have rigid walls, with thermally con-
ducting horizontal walls and thermally insulating sidewalls,
i.e.,

u = w = 0, x = 0, 1 or z = 0, 1, (3a)

T = 1, z = 0, (3b)

T = 0, z = 1, (3c)

∂xT = 0, x = 0, 1. (3d)

The trivial steady state is motionless with a negative ther-
mal gradient through the layer,

u = 0, T = 1 − z, (4)

and is called the conducting state. This is because the fluid
acts as a conducting material. The cooler fluid near the top of

the layer is denser than the warmer fluid underneath it. The
symmetries of the problem are (a) the mirror symmetry with
respect to the axis x = 1/2,

[u,w, T ](x, z) → [−u,w, T ](1 − x, z), (5)

which leaves the velocity and temperature field invariant, and
(b) the Boussinesq symmetry

[u,w, T ](x, z) → [u,−w, 1 − T ](x, 1 − z), (6)

which leaves the velocity field invariant but transforms the
temperature field into its opposite. These symmetries (and the
combination of both) dictate the bifurcations that the system
can undergo.

III. NUMERICAL METHODS

A. Computation of multiple solutions with deflation

Steady states of Rayleigh-Bénard convection are computed
using a recent numerical technique called deflation [20]. This
algorithm is based on Newton’s method and can compute mul-
tiple solutions to a nonlinear system of equations F (φ, λ) = 0,
where φ is the solution and λ ∈ R is a bifurcation parameter.
First, fix λ ∈ R and assume a solution φ1 to F (·, λ) has been
previously discovered by Newton’s method. One can then
construct a deflated problem

G(φ, λ) :=
(

1

‖φ − φ1‖2
+ 1

)
F (φ, λ) (7)

such that G(φ, λ) does not converge to zero as φ → φ1. The
term M(φ, φ1) := ‖φ − φ1‖−2 + 1 is called a deflation oper-
ator and ensures that Newton’s method applied again to G will
not converge to a previously computed solution. By adding
one to the expression of the deflation operator, we impose that
the new problem G behaves similarly to F away from the root
φ1. This process can be repeated to obtain a set of solutions
S(λ) to a nonlinear problem F (φ, λ) = 0 at the bifurcation
parameter λ. Deflated continuation is the combination of this
idea with continuation. The previously discovered solutions
are continued to a new bifurcation parameter λ − �λ: Each
φ ∈ S(λ) is used as an initial guess for the deflation procedure
in order to construct a new set of solutions S(λ − �λ) at
λ − �λ.

We apply this algorithm repeatedly to discover multiple
solutions to the steady-state Rayleigh-Bénard problem

F (φ, Ra) := −u · ∇u − ∇p + Pr∇2u + Pr RaT ẑ = 0

:= ∇ · u = 0

:= −u · ∇T + ∇2T = 0, (8)

where φ = (u, p, T ) and Ra is the bifurcation parameter. This
equation is discretized with Taylor-Hood finite elements for
the velocity and pressure (piecewise biquadratic and piece-
wise bilinear, respectively), together with piecewise bilinear
polynomials for the temperature, using the FIREDRAKE finite
element library [38]. The unit square domain is represented by
a mesh with 50 × 50 square cells to preserve the symmetries
of the problem and avoid spurious symmetry-breaking solu-
tions. A coarse discretization is needed due to the complexity
of the problem and number of distinct solutions discovered.
However, we did not observe significant differences in se-
lected experiments where we refined the mesh.
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Deflated continuation requires two different computational
tasks. The first is the continuation of a previously discovered
branch by the continuation step, which usually results in the
convergence of the Newton solver in an average of three
iterations. The convergence criterion is defined to be when the
Euclidean l2-norm of the discretized PDE residual is below
10−8. The second task is the deflation step to discover new
branches. Most of the time, the solver does not converge,
which means that it does not discover any new branch within
the maximum number of Newton iterations allowed, which is
set to 100. Typically, when the deflation step is successful, it
requires around 80 iterations to find a new solution. Since the
deflation step is employed for each of the steady states in the
different branches, this yields at least hundreds of thousands
of Newton iterations in total and a few weeks of calculation
on a desktop with 32 cores. The linear systems resulting from
Newton’s method are solved using the sparse direct solver
MUMPS [39].

A crucial question in the deflation technique is the choice
of the deflation operator M because it can affect the conver-
gence of Newton’s method. We use the operator

M((u, p, T ), (u1, p1, T1))

=
(

1

‖u − u1‖2
2 + ‖∇(u − u1)‖2

2 + ‖T − T1‖2
2

+ 1

)
,

(9)

where ‖ · ‖2 denotes the L2-norm. Note that the deflation
operator M does not depend on the pressure p because we
wish to deflate all the solutions of the form (u1, p1 + c, T1),
where c ∈ R, to avoid discovering solutions trivially related
to known ones.

We perform bifurcation analysis of Rayleigh-Bénard con-
vection and compute solutions to the nonlinear system of
Eq. (8) for 0 � Ra � 105 using deflated continuation for
Ra = 105, 105 − �Ra, . . . , 0. Here �Ra denotes the con-
tinuation step size in the bifurcation parameter, which is
chosen as �Ra = 100. In a previous work on the computation
of solutions to the three-dimensional nonlinear Schrödinger
equation [26], we found that having good initial guesses
(e.g., solutions of the linearized problem) for the initial de-
flation steps facilitates the convergence of Newton’s method
and leads to more complex and interesting states. However,
contrary to [26], we do not have the analytic expressions of
the linear solutions to the Rayleigh-Bénard convection due
to the no-slip boundary conditions. Therefore, we numeri-
cally solve an eigenvalue problem (see Sec. III B) to obtain
the first ten unstable eigenmodes (u1, T1), . . . , (u10, T10) lin-
earized around the conducting steady state (4) (see Fig. 2).
Then the sums of the conducting state with the respective
normalized perturbations (u1, 1 − z + T1), . . . , (u10, 1 − z +
T10) are used as initial guesses for deflated continuation.

B. Linear stability analysis

The stability analysis of a given steady state (u0, T0) is
performed by considering the perturbation ansatz

u(x, z, t ) = u0 + veλt , (10a)

T (x, z, t ) = T0 + θeλt , (10b)

where the velocity perturbation v � 1 and the temperature
perturbation θ � 1 have an eigenvalue λ, whose real part is
the growth rate and imaginary part is the frequency of the cor-
responding eigenvector. When at least one of the eigenvalues
has a positive real part R(λ) > 0, we can have two types of in-
stabilities: to a real eigenmode, occurring when the imaginary
part of the eigenvalue I (λ) = 0, and to a complex eigenmode,
occurring when I (λ) �= 0. If all the eigenvalues have negative
real parts, then the steady state is stable. Inserting Eq. (10) into
Eq. (1) and considering the linearized system of equations, we
obtain the generalized eigenvalue problem at leading order⎛
⎝ A −∇ Ra Prẑ

∇· 0 0
−∇T0· 0 ∇2 − u0 · ∇

⎞
⎠

⎛
⎝v

p
θ

⎞
⎠=λ

⎛
⎝I 0 0

0 0 0
0 0 I

⎞
⎠

⎛
⎝v

p
θ

⎞
⎠,

(11)

where I is the relevant identity operator and A is the linear
operator defined by

Av = ∇2v − u0 · ∇v − v · ∇u0.

The eigenvalue problem described in Eq. (11) is solved with a
Krylov-Schur method [40] using the SLEPC library [41].

To obtain the critical value of the Rayleigh number Rac at
which the conducting state (4) becomes unstable, we modify
the eigenvalue problem in Eq. (11). Inserting Eq. (4) into
Eq. (11), we obtain the generalized eigenvalue problem⎛

⎝∇2 −∇ Ra Prẑ
∇· 0 0
ẑ· 0 ∇2

⎞
⎠

⎛
⎝v

p
θ

⎞
⎠ = λ

⎛
⎝I 0 0

0 0 0
0 0 I

⎞
⎠

⎛
⎝v

p
θ

⎞
⎠. (12)

A steady state becomes unstable when λ = 0 and this cor-
responds to the critical Rayleigh number Rac, which is the
smallest Ra satisfying Eq. (12) for λ = 0. So, to obtain the
critical value of the Rayleigh number for different base states
we have reformulated the problem to a generalized eigenvalue
problem for Rac as⎛

⎝∇2 −∇ 0
∇· 0 0
ẑ· 0 ∇2

⎞
⎠

⎛
⎝v

p
θ

⎞
⎠ = Rac

⎛
⎝0 0 −Prẑ

0 0 0
0 0 0

⎞
⎠

⎛
⎝v

p
θ

⎞
⎠.

(13)

In the following sections this linear analysis will be used to
study the stability of the conducting state (4) and of the non-
linear steady states that we obtain from deflated continuation.

IV. RESULTS

A. Primary instabilities

In this section we analyze the stability of the conducting
steady state defined by Eq. (4). We find that the first instability
of this state arises at Ra(1)

c := Rac ≈ 2586. It is well known
[42] that the critical Rayleigh number is approximately equal
to Ra∗

c ≈ 1707.762 for a domain with periodic side bound-
aries and no-slip top and bottom boundaries. This difference
in the value of Rac is due to the effect of the sidewalls on the
instability. This effect should decrease when the length of the
domain, L, becomes large such that the behavior predicted for
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FIG. 1. (a) Critical Rayleigh number with respect to the aspect ratio � (blue dots). The red dot indicates the aspect ratio � = 1, which is
the focus of our study. (b) Growth rates of the eigenmodes that emanate from the conducting steady state.

an unbounded domain is recovered. To demonstrate this, we
systematically increase the aspect ratio

� = L

d
. (14)

Figure 1(a) clearly shows that for � � 1 the Ra(1)
c converges

to Ra∗
c . In addition, for aspect ratios � < 1 we observe

Rac ∝ �−3.88. The critical Rayleigh number for Rayleigh-
Bénard convection with stress-free boundary conditions is
Ra∗

c (k) = (π2 + k2)3/k2 [43], where k is the horizontal wave
number. For k � 1 the critical Rayleigh number scales like
Ra∗

c (k) ∝ k4 ∝ �−4 using Eq. (14). This scaling relation is
very close to the observed one, which implies that the expo-
nent is not affected much by the no-slip boundary conditions.
The exponent we find is in agreement with [44].

The case on which we focus for the rest of the paper is the
square cell (� = 1), which is denoted by a red dot in Fig. 1(a).
We first study the linear stability of the conducting state
(4). In the range 0 � Ra � 105 we observe ten supercritical
stationary bifurcations that arise from the conducting state.
Figure 1(b) shows the growth rates of the unstable eigenmodes
as a function of Ra. These bifurcations occur when R(λ) = 0.
The critical values of the Rayleigh number at the onsets are
listed in Table I. Figure 1(b) demonstrates that the growth rates
of the eigenmodes vary with Rayleigh number such that the
curves can cross. The eigenmode which bifurcated from the

TABLE I. The ten primary bifurcations from the conductive state
within the range 0 � Ra � 105. Here n enumerates the eigenmodes
by order of appearance as Ra increases. Here (mx, mz ) are the number
of rolls in the horizontal and vertical directions.

n Ra(n)
c (mx, mz )

1 2586 (1,1)
2 6746 (2,1)
3 19655 (3,1)
4 23346 (2,2)
5 25780 (1,2)
6 41772 (3,2)
7 47431 (4,1)
8 74878 (4,2)
9 86313 (2,3)
10 94543 (3,3)

conducting state at Ra(2)
c = 6746 ends up being the most un-

stable as Ra → 105. The velocity magnitude and temperature
fields of the eigenmodes from these primary bifurcations of
the flow are shown in Fig. 2 with the corresponding critical
Rayleigh numbers indicated on the top of each flow pattern.
In Table I we characterize the flow patterns by the number
of rolls (mx, mz ), where mx and mz are the number of rolls in
the temperature field in the horizontal and vertical directions,
respectively. Note that, due to the aspect ratio � = 1 of the do-
main, the flow pattern of the first bifurcation at Ra(1)

c = 2586
is just a single convection roll (see Fig. 2) according to the
classical result [33]. In the following sections we first analyze
the branches of solutions that are created from some of these
primary bifurcations before moving to disconnected branches.

B. Bifurcation diagrams

The combination of deflation and the initialization strat-
egy presented in Sec. III A identified 43 branches for the
two-dimensional steady-state Rayleigh-Bénard convection at
Ra = 105, leading to 129 branches when reflections are in-
cluded. Here we analyze the evolution and the linear stability
of some of the branches arising from the first four excited
states (see Fig. 2) as well as two disconnected branches. More-
over, we discard the mirror symmetric solutions with respect
to the x = 1/2 and z = 1/2 axes (see symmetries in Sec. II).
Our diagnostics for the bifurcation diagrams, representing the
evolution of the steady states as a function of Ra, are the ki-
netic energy ‖u‖2

2, the potential energy ‖T ‖2
2, and the Nusselt

number Nu, which are defined as

‖u‖2
2 =

∫
u2d2x, ‖T ‖2

2 =
∫

T 2d2x,

Nu =
∫

|∇T |2d2x. (15)

The Nusselt number characterizes the efficiency of convective
heat transfer and is given by the ratio of the total heat transfer
(i.e., both advective and diffusive) to the conductive heat
transfer Nu ≡ HL/κd = 〈wT 〉 − κ∂z〈T 〉 = 〈(∇T )2〉, where
H is the heat flux and 〈·〉 stands for the area average. A
Nusselt number of one represents heat transfer by pure con-
duction. Here the Nusselt number is essentially defined as the
dissipation rate of the temperature variance (see the second
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FIG. 2. Eigenmodes of the primary bifurcations emanating from the conducting steady state (4) in the Rayleigh number range 0 � Ra �
105. The top rows show the magnitude of the velocity v (red color indicates a high magnitude and blue a zero-velocity magnitude), while the
bottom rows show the temperature θ (red and blue display positive and negative temperature values, respectively).

equality). This is obtained by integrating the equation for
potential energy over the entire area [45].

The bifurcation diagrams are presented in Fig. 3, where
the numbers denote the different branches of steady so-
lutions, indicating the values of kinetic energy, potential
energy, and Nusselt number that correspond to each branch
on each diagram. The first steady solutions that we obtain
from deflated continuation as Ra is varied are four branches
that arise from the first four bifurcations of the conduct-
ing steady state: branch (1) at Ra(1)

c = 2586, branch (2) at
Ra(2)

c = 6746, branch (3) at Ra(3)
c = 19 655, and branch (4) at

Ra(4)
c = 23 346. Moreover, a secondary branch (10) bifurcates

at Ra ≈ 13 550 from branch (2), which originates from the
second instability of the conducting state. A similar behavior
is observed for the fourth instability, where branch (6) bifur-
cates at Ra ≈ 27 300 from branch (4). We also focus on two
disconnected branches (11) and (8) obtained directly by de-
flated continuation. In Fig. 3(a), branch (11) is close to branch
(12). However, note that the bifurcation diagram using the
potential energy [see Fig. 3(b)] shows that branch (11) does
not bifurcate from branch (12). On the other hand, branch (8)
bifurcates from branch (11) at Ra ≈ 37 000 (see Fig. 3). It is
interesting to point out that in the range 0 � Ra � 105 branch
(1) has the highest kinetic energy while branch (6) has the
highest potential energy [see Figs. 3(a) and 3(b)]. The steady
states that are most effective in convecting heat transfer for
0 � Ra � 3 × 104 are in branch (1) from the first instability of
the conducting state while for 3 × 104 � Ra � 9.5 × 104 they

are in branch (2) and for Ra � 9.5 × 104 they are in branch
(11) [see Fig. 3(c)].

C. Bifurcations from the conducting steady state

In this section we analyze the states that emanate from the
conducting steady state and their evolution as a function of the
bifurcation parameter Ra. Our analysis involves the detailed
evolution of the velocity magnitude and the temperature on
the branches of the bifurcation diagrams using the kinetic
and potential energies, respectively. In addition, we present
the largest growth rates and corresponding frequencies from
the linear stability analysis we have performed on the steady
states.

Figure 4 shows results of the aforementioned analysis for
branch (1), which arises at Ra(1)

c = 2586 from the first eigen-
mode (see Fig. 2). This bifurcation breaks the x-reflection
symmetry but the branch has the Boussinesq symmetry. As
Ra increases, the magnitude of the velocity field evolves from
a circular to a bent convection roll at Ra ≈ 4 × 104 [see
Fig. 4(a)]. On the other hand, the Z-shaped interface of the
temperature field is sheared [see Fig. 4(b)], enhancing the heat
transfer in the convection cell [see also branch (1) in Fig. 3(c)].
Figure 4(c) demonstrates that the solutions on this branch
remain stable [R(λ) < 0] with an almost constant growth rate
over the whole range of Rayleigh numbers we consider. The
frequency corresponding to the largest growth rate is zero
from the stationary bifurcation at Ra(1)

c = 2586 to Ra = 105
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FIG. 3. (a) Bifurcation diagram using the kinetic energy ‖u‖2
2 of the branches studied in the paper. Also represented are (b) the potential

energy ‖T ‖2
2 and (c) the Nusselt number Nu of the branches as a function of Ra. The branches that originate from the linear conducting state

are plotted with dashed lines, while branches emanating from secondary instabilities and disconnected branches are depicted with solid lines.
The horizontal black line in (b) indicates the potential energy of the conducting steady state.

[see Fig. 4(d)], while the next eigenvalue has a negative real
part and a large imaginary part.

The second eigenmode introduced in Fig. 2 gives birth to
branch (2) at Ra(2)

c = 6746, which is depicted in Figs. 5(a)
and 5(b). The bifurcation is transcritical and preserves the
symmetries of the eigenmode in the velocity and temperature
profiles. Then the largest growth rate in Fig. 5(c) indicates that
the solutions on this branch are stable over the interval Ra ∈
[13 500, 85 500] and unstable outside. A bifurcation occurs
at Ra ≈ 13 500 when R(λ) = I (λ) = 0, which is analyzed
later and illustrated in Fig. 6. The bifurcation from branch
(2) to branch (10) is accompanied by a loss of Boussinesq
symmetry. Another bifurcation is observed at Ra ≈ 85 500
and has been obtained by deflated continuation. Figure 6(a)
demonstrates that the two symmetries of the second eigen-
mode (see Sec. II) are rapidly broken as Ra increases after the
bifurcation from branch (2) to the secondary branch (10). This
symmetry breaking leads to a primary large-scale circulation
spanning the domain and a secondary vortex with smaller am-
plitude in one of the corners depending on which symmetric
solution one is referring to. As Ra → 105, the difference in
the flow pattern of the velocity magnitude between branches
(1) and (10) is the secondary vortex in the corner of the
convection cell. The symmetry breaking is also obvious in the

temperature field [see Fig. 6(b)] with the potential energy of
the flow increasing and then decreasing slightly in contrast
to the increase of the kinetic energy and the convective heat
transfer [see also Fig. 3(c)]. The largest growth rate shows
that the states are unstable to a real eigenmode [see Fig. 6(d)].
The subsequent growth rates shown in Fig. 6(c) are negative
and almost constant in this range of Rayleigh numbers.

Branch (3) originates from the eigenmode of the conduct-
ing state at Ra(3)

c = 19 655, which is depicted in Fig. 7. This
branch preserves the centrosymmetry of the third eigenmode
and has a turning point located at Ra ≈ 42 130. Interestingly,
the lower part of the branch, colored in red in Figs. 7(a) and
7(b), bifurcates from branch (5) around Ra ≈ 27 000. The
latter branch emanates from the fourth eigenmode and is il-
lustrated later in Fig. 10. The largest growth rates of the upper
and lower parts of branch (3) are displayed in Figs. 7(c) and
7(e), together with their associated frequencies in Figs. 7(d)
and 7(f). We find that the steady states in the branch are un-
stable with a zero frequency throughout the range of Rayleigh
numbers for which the branch exists. Moreover, we observe
that the eigenmode colored in purple in Fig. 7(c) traverses
zero at Ra ≈ 23 800, indicating the presence of a secondary
bifurcation, which we will analyze in the following paragraph.
We point out that this branch was not originally discovered by
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FIG. 4. Evolution of the steady states in branch (1) arising from the first eigenmode, illustrated via (a) the kinetic energy and (b) the
potential energy. The color scheme for the temperature ranges from 0 (blue) to 1 (red). Also shown are (c) the largest growth rates and (d) the
corresponding frequencies.

deflated continuation (our method does not guarantee finding
all the steady states of a problem) but obtained by contin-
uing the third linear state with finer steps in the Rayleigh
number. This illustrates that deflated continuation may be
complemented by standard bifurcation analysis techniques,

such as arclength continuation and branch-switching algo-
rithms. We now focus on branch (12), which bifurcates from
branch (3) at Ra ≈ 23 800, and display the evolution of the
steady states in the branch in Fig. 8 along with its stability
analysis. This branch breaks the centrosymmetry of branch

0 0.2 0.4 0.6 0.8 1×1050

1,000

2,000

3,000

Ra

‖u‖2
2

0 0.2 0.4 0.6 0.8 1×105
−50

−25

0

25

50

Ra

R(λ)

0 0.2 0.4 0.6 0.8 1×1050.26

0.28

0.3

0.32

0.34

Ra

‖T‖2
2

0 0.2 0.4 0.6 0.8 1×1050
50

100
150
200
250

Ra

I(λ)

(a) (b)

(c) (d)

FIG. 5. Evolution of the steady states in branch (2) arising from the second eigenmode, illustrated via (a) the kinetic energy and (b) the
potential energy. Also shown are (c) the largest growth rates and (d) the corresponding frequencies. The two largest growth rates are shown in
red and green, while the subsequent ones are depicted in blue.
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FIG. 6. Evolution of the steady states in branch (10), bifurcating from branch (2) at Ra ≈ 13 550, illustrated via (a) the kinetic energy and
(b) the potential energy of branch (10). Also shown are (c) the largest growth rates and (d) the corresponding frequencies.
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FIG. 7. Evolution of the steady states in branch (3) arising from the third eigenmode, illustrated via (a) the kinetic energy and (b) the
potential energy. The upper and lower parts of the branch are colored in blue and red, respectively. Also shown are (c) the largest growth rates
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FIG. 8. Evolution of the steady states in branch (12), bifurcating from branch (3) around Ra ≈ 23 800 and illustrated via (a) the kinetic
energy and (b) the potential energy. Also shown are (c) the largest growth rates and (d) the corresponding frequencies.

(3) and the pattern of the velocity magnitude becomes more
complex as Ra increases. This complex pattern is one reason
for the meandering of the potential energy in this range of
Rayleigh numbers and enhances the convective heat transfer
[see Fig. 3(c)] by mixing the temperature field. Figure 8(c)
shows that the steady states of branch (12) are unstable to
two eigenmodes until Ra ≈ 39 500, where they coalesce. At
this Rayleigh number, we see that the two most unstable
eigenmodes coalesce into an unstable complex conjugate pair
of eigenvalues [see Fig. 8(d)]. All the subsequent eigenmodes
are found to be stable with either I (λ) = 0 or I (λ) �= 0.

Figure 9 shows bifurcation diagrams and the linear stability
results of branch (4), which originates from the fourth eigen-
mode at Ra(4)

c = 23 346 through a transcritical bifurcation.
The flow pattern of the velocity magnitude has a symmetric
form of an array of four vortices, which is conserved over the
whole range of Rayleigh numbers we consider, as Fig. 9(a)
suggests. Similarly, the symmetric pattern of the temperature
field remains unaffected in the regime 23 346 � Ra � 105

[see Fig. 9(b)]. We have verified numerically that the sym-
metries are conserved within this range of Ra. Figure 9(c)
shows the four largest growth rates as a function of Ra. At
Rayleigh numbers close to Ra(4)

c = 23 346 we see that three
of the eigenmodes are real and unstable, while the fourth
one is real and stable. As Ra increases, the two most unsta-
ble eigenmodes [colored in red and green, respectively, in
Fig. 9(c)] coalesce at Ra ≈ 56 000 into a complex unstable
eigenmode whose growth rate and oscillation frequency in-
creases as Ra → 105. Similarly, the other two real unstable
modes coalesce at Ra ≈ 40 000 into a complex conjugate pair
of eigenmodes which are unstable for 40 000 < Ra � 105.
At Ra ≈ 52 000 and Ra ≈ 73 500, we observe in Fig. 9(c)
that the growth rate colored in blue vanishes with a nonzero

frequency, leading to Hopf bifurcations where periodic solu-
tions to the time-dependent problem (1) arise.

We close our discussion on the branches arising from the
conducting steady state with branch (5), presented in Fig. 10.
This branch originates from the fourth eigenmode of the con-
ducting state at Ra ≈ 23 346 through the same transcritical
bifurcation as branch (4). The steady states in branch (5) con-
serve the Boussinesq and x symmetries, with a velocity field
consisting of four vortices, located symmetrically at each cor-
ner of the domain. The velocity fields of branches (4) and (5),
illustrated in Fig. 11, are different, indicating that branch (5)
is not a symmetric version of branch (4). The stability analysis
reveals that the steady states in this branch are very sensitive
to perturbations and unstable to a real eigenmode throughout
the range of Ra considered in this study. Moreover, the largest
growth rate at Ra = 105 is equal to R(λ) ≈ 188, which is
approximately three times larger than the largest growth rate
of the steady state in branch (4) at the same Rayleigh number
[see Figs. 9(c) and 10(c)]. One of the eigenmodes vanishes
at Ra ≈ 27 000, giving rise to branch (3), depicted in Fig. 7.
Finally, the real part of the eigenvalue depicted in blue in
Figs. 10(c) and 10(d) crosses zero at Ra ≈ 57 500, which
shows the existence of a Hopf bifurcation.

We now analyze the branches bifurcating from branches
(4) and (5). The fourth largest growth rate of branch (4),
colored in blue in Fig. 9(c), crosses zero at Ra ≈ 38 150,
leading to the bifurcating branch (6) depicted in Fig. 12. We
observe that the Boussinesq symmetry of branch (4) is broken
by the bifurcation, while the symmetry with respect to the
x axis is preserved. Additionally, the linear stability analysis
indicates that this branch is unstable with a zero frequency
except in the interval Ra ∈ [72 500, 93 000], where the largest
growth rate is associated with a positive frequency, as shown
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FIG. 9. Evolution of the steady states in branch (4) arising from the fourth eigenmode, illustrated via (a) the kinetic energy and (b) the
potential energy. Also shown are (c) the largest growth rates and (d) the corresponding frequencies.

by the eigenvalues colored in blue in Figs. 12(a) and 12(c).
Moreover, the third largest growth rate (colored in orange)
crosses zero around Ra ≈ 63 500, indicating the presence of
a bifurcation which has not been discovered by deflation.
Finally, a branch, denoted by (7), bifurcates from branch (5)
at Ra ≈ 46 300. The steady states in this branch are illus-
trated in Fig. 13. We observe on the velocity magnitude and

temperature field that the symmetry of branch (5) with respect
to the x axis is maintained while the Boussinesq symmetry is
broken. Branches (6) and (7) might seem nearly symmetric
but they arise at different Rayleigh numbers and have dif-
ferent eigenvalues. The linear stability analysis of branch (7)
shows that the steady states are unstable to a real eigenmode,
with a largest growth rate around R(λ) ≈ 150 throughout
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FIG. 10. Evolution of the steady states in branch (5) illustrated via (a) the kinetic energy and (b) the potential energy. Similarly to branch
(4), this branch bifurcates from the fourth eigenmode. Also shown are (c) the largest growth rates and (d) the corresponding frequencies.
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FIG. 11. Velocity magnitude of the steady state in branches (4) and (5) at Ra = 105.

the range of Ra considered in this study. In Figs. 13(c) and
13(d) we observe that the third eigenvalue (plotted in green)
crosses zero at Ra ≈ 92 000, resulting in a tertiary branch
that breaks the remaining symmetry. The branch has been
discovered by deflation, but we chose to not report it in the
study.

D. Disconnected branches

We now focus on the disconnected branch (11) (see Fig. 3),
which comprises an upper and a lower branch, depicted in
blue and red in Fig. 14, respectively. At the upper (blue)
branch the flow pattern of the velocity magnitude is a three-
vortex state with one large tilted vortex spanning the domain
and two smaller vortices located at the corners. As Ra → 105

we notice that the state looks similar to branches (1) and (10).

The difference is that branch (10) involves only one smaller
vortex at the corner of the domain and branch (1) has no
vortices at the corners, while branch (11) has two smaller
vortices located at the corners. At Ra ≈ 52 000 the branch
takes the form of an S-shaped curve with hysteresis, similar
to the cusp bifurcation [46].

As the saddle-node bifurcation is approached from below,
the growth rate of the most unstable eigenmode decreases
toward zero at the critical point [see Fig. 14(c)]. Above the
bifurcation point R(λ) increases and seems to saturate as
Ra → 105. The frequency corresponding to the growth rate
is zero in the whole range of Ra numbers, suggesting that the
steady state is unstable to a real eigenmode in this regime.
The potential energy of the upper (blue) branch decreases
with Ra in contrast to the kinetic energy. As Ra increases
the flow pattern of the temperature becomes more efficient
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FIG. 12. Evolution of the steady states in branch (6), bifurcating from branch (4) at Ra ≈ 38 150, illustrated via (a) the kinetic energy and
(b) the potential energy. Also shown are (c) the largest growth rates and (d) the corresponding frequencies.
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FIG. 13. Evolution of the steady states in branch (7), bifurcating from branch (5) at Ra ≈ 46 300, illustrated via (a) the kinetic energy and
(b) the potential energy. Also shown are (c) the largest growth rates and (d) the corresponding frequencies.
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FIG. 14. Evolution of the steady states in the disconnected branch (11), illustrated via (a) the kinetic energy and (b) the potential energy.
The upper and lower parts of the branch are colored in blue and red, respectively. Also shown are (c) the largest growth rates and (d) the
corresponding frequencies of the upper part of the branch. (e) and (f) Same as (c) and (d) but for the lower part of the branch.
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FIG. 15. Evolution of the steady states in branch (8), bifurcating from the lower part of the disconnected branch (11) at Ra ≈ 37 000,
illustrated via (a) the kinetic energy and (b) the potential energy. Also shown are (c) the largest growth rates and (d) the corresponding
frequencies.

at transferring heat due to the large-scale circulation in the
flow [see Fig. 3(c)]. The flow pattern of the velocity of the
upper (blue) branch, shown for Ra = 105 [see Fig. 14(a)],
exhibits a large-scale vortex and two smaller vortices at the
corners of the domain. This is reminiscent of the flow pat-
terns from studies on the dynamics of random-in-time flow
reversals [29–31,47]. These reversals in the flow direction of
the large-scale circulation at irregular time intervals have been
observed in domains with free-slip or no-slip boundaries and
in a narrow band of Rayleigh numbers in the range 107 �
Ra � 109 depending on the Prandtl number [29–31]. In this
regime the system fluctuates in time between essentially the
state we show for Ra = 105 [see Fig. 14(a)] and its mirror
symmetric state. These large changes in the dynamics of the
flow are caused by bifurcations over a turbulent background
[27]. Such bifurcations have been observed in many other
types of flows [48–52] and understanding their dynamics is
an open question of great interest.

At the lower (red) branch illustrated in Fig. 14(a) we ob-
serve the central vortex to be oriented more vertically, giving
space to the smaller vortices at the corners to extend along
the z axis and almost reach the height of the domain. This
flow pattern is an extension of the two-vortex pattern observed
in branch (5) (see Fig. 6) and it has similar features to the
three-vortex pattern found near the linear limit of branch (3)
(see Fig. 7). The patterns of the kinetic and potential energies
of this branch are almost invariant within the range 30 000 �
Ra � 105. The flow pattern of the temperature clearly man-
ages to effectively push the hot fluid toward the cold plate
at the top and vice versa. This efficiency in convective heat
transfer is clearly depicted in Fig. 3(c), where this part of
branch (11) has the highest Nusselt number for Ra > 95 000.

Analyzing the stability of the lower (red) branch, we find
that the steady solutions become increasingly more stable as
the Rayleigh number increases, with R(λ) → 0 at Ra ≈ 105,
leading to a Hopf bifurcation [see Fig. 14(e)]. On the other
hand, the frequency corresponding to the growth rate satisfies
I (λ) = 0 at the threshold of the disconnected branch and as
Ra increases the instability becomes progressively oscillatory
[see Fig. 14(f)]. The subsequent growth rates presented in
Fig. 14(e) remain negative as Ra increases, suggesting that
this part of branch (11) is another preferred steady state of the
system, particularly for Ra > 105.

Branch (8) illustrated in Fig. 15 bifurcates from the lower
part of the disconnected branch (11) at Ra ≈ 37 000 (see also
Fig. 3). In this case, the pattern of the velocity transitions
into a main bent vortex with a vertically elongated vortex on
its left and a smaller vortex at the bottom right corner [see
Fig. 15(a)]. From Fig. 3 we can see that even though the
kinetic energy of branch (8) is equal to that of the upper part
of branch (11) for Ra > 50 000, the potential energy is much
smaller and apparently the smallest among the branches we
have considered. The pattern of the temperature is essentially
a hot plume that rises effectively all the way to the cold plate
[see Fig. 15(b)]. This flow pattern becomes increasingly more
efficient at transferring heat across the domain as Ra increases
[see Fig. 3(c)]. However, it is not as efficient in convecting
heat as the pattern of branch (11) [see the lower branch in
Fig. 14(b)] because two hot plumes are obviously more effec-
tive than one. The steady state of branch (8) is unstable to a
real eigenmode over the range 37 000 � Ra � 105 except for
a small range around Ra = 50 000, where it becomes unstable
to a complex eigenmode. This can be seen from Figs. 15(c)
and 15(d), where the two largest growth rates (colored in red
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FIG. 16. Evolution of the steady states in the disconnected branch (9), illustrated via (a) the kinetic energy and (b) the potential energy.
The upper and lower parts of the branch are colored in blue and red, respectively. Also shown are (c) the largest growth rates and (d) the
corresponding frequencies of the upper part of the branch. (e) and (f) Same as (c) and (d) but for the lower part of the branch.

and blue) swap with each other in this small range of Rayleigh
numbers. Finally, the real part of the eigenvalue depicted in
blue in Figs. 15(c) and 15(d) crosses zero at Ra ≈ 62 000,
giving birth to a Hopf bifurcation.

The second disconnected branch that we find in this range
of Rayleigh numbers is branch (9) and arises at Ra ≈ 70 000
(see Fig. 16). From Fig. 16(a) we see that all the symmetries of
the flow are broken in this branch and the flow pattern consists
of a number of vortices with different orientations. These flow
structures are not persistent over the range of parameters that
we consider, and hence the heat is not transferred effectively
across the domain [see also Fig. 3(c)]. Here Fig. 16 shows
that the potential energy of branch (9) increases along with
the kinetic energy, unlike in most of the other branches we
considered, and from Fig. 3(b) we see that it is significant
in comparison to many other branches. Moreover, from the
linear stability analysis of the steady states we find that both
the upper and lower parts of this disconnected branch are
unstable to a real eigenmode, i.e., R(λ) > 0 and I (λ) =
0, with large growth rates. This suggests that this branch
is very unlikely to be observed in a laboratory experiment
and highlights the effectiveness of deflated continuation in
identifying such unstable disconnected branches and steady
states.

V. CONCLUSION

In this work we have computed and analyzed the linear
stability of steady states of the two-dimensional Rayleigh-
Bénard convection in a square cell with rigid walls. The
combination of deflated continuation and a suitable initializa-
tion procedure based on the linear stability of the motionless
state was revealed to be a powerful numerical technique for
finding multiple solutions including disconnected branches,
which are not easily accessible by standard bifurcation tech-
niques such as arclength continuation and time-evolution
algorithms. A highlight is the success of deflation to discover
these branches in an automated manner without any prior
knowledge of the dynamics.

We classified the solutions based on the kinetic and poten-
tial energies as well as the Nusselt number. Our classification
provided a clear view of the steady states of Rayleigh-Bénard
convection up to a Rayleigh number of 105. We showed that
the steady states of branch (1) (which originated from the
conducting state) dictate the dynamics of the flow for Ra �
105, while for Ra ∼ 105 the flow patterns of the disconnected
branch (11) start to play a very important role as the steady
states become stable. Solutions on branch (11) are reminis-
cent of the flow pattern that plays a fundamental role in the
turbulent dynamics of flow reversals that have been reported
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in the literature for Rayleigh-Bénard convection at Ra ∼ 107

[29–31]. This disconnected branch exhibits an S-shaped curve
with hysteresis which can be a challenge to discover with
other bifurcation techniques.

There are several possible extensions to this work. An
interesting but computationally challenging future study is to
extend certain solutions of interest to higher values of Ra and
determine whether they give the required theoretical scalings
in the limit of high Rayleigh number. A first attempt toward
this direction has been done in Rayleigh-Bénard convection
with periodic boundary conditions in the horizontal direction
and no slip in the vertical direction [53,54]. Moreover, the
extensions of branch (11) and its stability in the regime where
reversals occur are also of great interest. Another extension
of interest is to study how the states presented in this study
change with respect to other parameters of the system such as
the Prandtl number or the aspect ratio of the domain �. As
observed in Fig. 1(a), the critical Rayleigh number converges
to Ra∗

c ≈ 1707.762 for large aspect ratio. Using alternative
formulations of the Rayleigh-Bénard problem, with the aspect
ratio playing the role of the bifurcation parameter, it is possi-
ble to analyze the evolution of the branches for large aspect
ratio and connect them with the solutions of the periodic setup,
which has been studied well in the literature, both analytically
[42] and numerically [4,5]. This connection will be of great
interest to theoreticians and hopefully will spark their interest

to explore analytical solutions on more realistic convection
setups with sidewalls.

A different future direction would be to perform bifur-
cation analysis on Rayleigh-Bénard convection in a three-
dimensional rectangular domain. Such an approach will be
of interest to experimentalists since direct comparisons with
experiments would be possible. However, while the general-
ization of the bifurcation technique employed in this paper to
three dimensions is straightforward, high Rayleigh numbers
require an efficient solver to perform the underlying Newton
iterations. One possible solution would be to construct an
efficient preconditioner robust with respect to the Rayleigh
number to be able to reach high-Ra regimes in the spirit of
[55,56].
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