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Branched droplet clusters and the Kramers theorem
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Scaling laws inherent for polymer molecules are checked for the linear and branched chains constituting
two-dimensional (2D) levitating microdroplet clusters condensed above the locally heated layer of water. We
demonstrate that the dimensionless averaged end-to-end distance of the droplet chain r̄ normalized by the
averaged distance between centers of the adjacent droplets l̄ scales as r̄/l̄ ∼ n0.76, where n is the number of
links in the chain, which is close to the power exponent ¾, predicted for 2D polymer chains with excluded
volume in the dilution limit. The values of the dimensionless Kuhn length b̃ ∼= 2.12 ± 0.015 and of the averaged
absolute value of the bond angle of the droplet chains |θ | = 22.0 ± 0.50 are determined. Using these values
we demonstrate that the predictions of the Kramers theorem for the gyration radius of branched polymers are
valid also for the branched droplets’ chains. We discuss physical interactions that explain both the high value of
the power exponent and the applicability of the Kramers theorem including the effects of the excluded volume,
surrounding droplet monomers, and the prohibition of extreme values of the bond angle.
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I. INTRODUCTION

Branched physical systems are ubiquitous in physics [1,2],
chemistry [3], biology [4], and engineering [5,6]. It seems
that the physics of branched systems was first addressed by
Leonardo da Vinci, who observed in his notebooks that “all
the branches of a tree at every stage of its height when put
together are equal in thickness to the trunk” [7,8]. In our study,
we explore branched chainlike structures built of microscale
water droplets.

Branched droplet systems have been already addressed
by the researchers [9–12]. In particular, branched chainlike
droplet structures arising from the phase separation in the
mixtures of a polymer and a nematic liquid crystal were re-
ported [10]. The formation of branched droplet structures was
observed under the confined Ouzo effect (i.e., spontaneous
emulsification) [13]. We reported the branched chainlike
structures built of droplets in the so-called droplet clus-
ters, a novel phenomenon discovered in 2004 by Fedorets,
who demonstrated that a self-assembled monolayer of micro-
droplets emerges over a locally heated (typically, at 60–95 °C)
surface of the water [14–17]. Growing condensing droplets
with a typical diameter of 10–200 μm are supported by a
vapor-air rising flow over the heated spot. The droplets levitate
at an equilibrium height, where their weight is equilibrated by
the vertical component of the drag force. The height of levi-
tation and the distance between the droplets are of the same
order as their diameters [14–17]. A diversity of approaches to
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the explanation of the origin and properties of droplet clusters
were suggested [18–20]. The mechanism of formation of the
levitating cluster is complicated and involves aerodynamic
and electrostatic interactions [21–24]. In spite of the much
experimental and theoretical effort spent on the study of the
droplet cluster, the precise mechanism of its formation and
self-ordering remains obscure.

Levitating droplet clusters can be viewed as an example
of self-assembled colloidal systems, and broadly speaking,
of diffusion-limited aggregation systems, which often have
a treelike or branched structure. We will demonstrate in the
present paper that the ideas learned from the polymer science
may be effectively applied for the phenomenological analysis
of the linear and branched chains in the levitating droplet
clusters.

II. EXPERIMENTAL METHODS

The experimental procedure described in our previous pub-
lications was used in the present study [16]. The droplet
cluster was self-assembled over the locally heated surface of
a thin layer of distilled water. The thickness of the water layer
(400 ± 2 μm) was controlled using the confocal chromatic
sensor IFC2451 made by the company Micro-Epsilon (USA).
The cuvette temperature was equal to 10 ± 0.5 °C. The water
layer was placed on a flat sitall substrate of 400-μm thickness.
The lower surface of this substrate was blackened to absorb
the radiation at the 808 ± 5 nm wavelength emitted by the
laser BrixX 808-800HP (Omicron Laserage, Germany). The
diameter of the laser beam at the substrate surface was equal
to 1 mm. The laser power was controlled by a PM200 device
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FIG. 1. Branched droplet chains within the droplet cluster.

equipped with an S401c sensor (Thorlabs, USA). Video im-
ages of the cluster were taken using a Zeiss AXIO Zoom.V16
stereomicroscope (Germany) and high-speed (1000 frames
per second) PCO.EDGE 5.5C video camera (Germany) with a
spatial resolution of 0.6 μm. The region of the droplet cluster
is schematically presented in Fig. 1. Images were treated with
the laboratory made software, based on the OpenCV image
processing library. See Supplemental Material 1 [25] for the
Video showing the dynamic behavior of the chains in the
cluster.

III. RESULTS AND DISCUSSION

A. The scaling laws and the Khun length inherent
for linear droplet chains

We have already reported the formation of “linear”, “chain-
like” and “branched” polymerlike configurations of droplet
clusters. In the “chain state” (chain configuration), droplets
almost touch each other, however, do not coalesce [17]. The
transition from the regular (hexagonal) arrangement of the
droplet cluster to the chain cluster is abrupt, and it is observed
at a certain critical ratio of droplet size and packing density.
The lifetime of the chain cluster is about 20–30 s on average,
and the transition is reversible [17]. The first approximation
of the droplet chain by the free-joint model of the polymer
(oligomer) chain predicts the random walk dependency of the
average end-to-end distance, namely 〈r2〉 = Cnl 2, where C is
called Flory’s characteristic ratio, n is the number of links in
the chain (n = m−1, where m is the number of monomers
(droplets) and l is the chemical bond length). Obviously,
when we study the polymerlike chain built from the identical
droplets with the diameter D it is plausible to assume the
scaling dependence: 〈r2〉 = CnD2.

Consider the long droplet chains, in which droplets interact
one with another, seen as polymer chains, on which monomers
interact. In this case the Flory approach predicts the following
scaling law, applicable for real polymer chains:

r̄ ≈ bNν, (1)

where r̄ is the averaged end-to-end distance of the chain and b
is the so-called Kuhn segment length of the polymer chain,

FIG. 2. The double-log plot of the nondimensional end-to-end
distance in nonbranched droplet chains vs the number of links in
the chain. The linear fitting supplies the scaling law r̃ ∼ n0.76 (the
squared standard deviation R2 = 0.9878). The standard deviation is
growing with the length of the chain because the number of small
chains increases. The results summarize the analysis of 823 droplet
chains.

N is the number of freely joined effective bonds of length
b, and ν is a power exponent. For 3D ideal chains built of
noninteracting monomers ν = 1

2 [26]. The Flory theory of
a random 3D polymer chain with excluded volume predicts
the value of the power exponent of ν = 3/5 (or ν = 0.588
based on more elaborated renormalization arguments) [27]. It
should be emphasized that for two-dimensional (2D) chains
with excluded volume the scaling theory predicts ν = 3

4 and
this law is universal for the models considering the excluded
volumelike repulsion of monomers [28]. Two additional fac-
tors may affect the value of the exponent. First, the presence
of many other chains surrounding the molecule affects its
shape and makes it less compact than in the case of a single
molecule, and this effect is quite different from the effect of
the excluded volume. Note that for linear chains built from
the spherical entities there is an additional factor, influenc-
ing the value of the scaling exponent, namely, for spherical
droplets/monomers the value of the bond angle is limited to
the values of |θ | < 120º. Actually, restrictions imposed on
the bond angle reword the “excluded volume restrictions”,
and emerge from the fact that droplets do not overlap (see
Appendix A).

The restrictions imposed on the bond angle make linear
chains less compact and explain satisfactorily the observed
value of the exponent ν established for these chains. Consider
also that the resemblance of the linear droplet cluster to a free
polymer chain should not be exaggerated. Indeed, the linear
droplet cluster is not an isolated system; it is embedded into
the complicated aerodynamic field. Thus, it is more similar
to the polymer chain exerted to the external field. Hence, the
value of the scaling exponent ν should be taken cum grano
salis.

Figure 2 presents the results of measurements of the
averaged end-to-end distance labeled r normalized by the
averaged distance between centers of the adjacent droplets,
denoted l̄ . The measurements were conducted using 823
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FIG. 3. Schematic of the polymer chain; l is the distance between monomers (droplets); θ is the bond angle, and Rmax is the contour length.

nonbranched droplet chains. The linear fitting of the double-
logarithmic plot log2

r̄
l̄

vs log2n, yields the scaling exponent
ν = 0.76 ± 0.03, thus the following scaling law holds:

r̄

l̄
= 1.176n0.76, (2)

where n is the number of links in the chain or number of
bonds. It is recognized from Eq. (2) that the actual value
of the scaling exponent is very close to that predicted for
2D models with the excluded volume, rather than to a freely
joint-ideal chain [21]. The established scaling exponent ν ∼= 3

4
corresponds to the value of the excluded volume 2D linear
chain in the dilution limit.

Now we address the Kuhn parameters of the 2D chains
built of droplets constituting the droplet cluster. The length
of the Kuhn segment has to fulfill simultaneously demands
imposed by Eqs. (3) and (4), namely,

Rmax = Nb = nl cos
θ

2
, (3)

r̄ ≈ bN
3
4 , (4)

where Rmax is the contour length of the chain, and θ is
the so-called bond angle (see Fig. 3 ). It is convenient to
introduce the dimensionless values according to: R̃ = Rmax

l̄
,

r̃ = r̄
l̄
, and b̃ = b

l̄
. Note also that for traditional polymer chains

both the bond angle and the distance between molecules is
constant, θ = const; l = const, while for the droplet cluster
this is not necessarily true. Droplets forming a pseudopoly-
mer chain do not demonstrate the constant bond angle. The
actual distribution of bond angles in the droplet chains is
presented in Fig. 4. It is recognized from experimental data
shown in Fig. 4 that the distribution of bond angles is not uni-
form; however 〈θ〉 ∼= 0 takes place; this important observation
stems from the spherical symmetry of droplets monomers.
The nonuniform distribution of the bond angles does not
break the spherical symmetry of droplet-monomer binding
along the chain; indeed, such molecules as CH4 or CCl4 are
spherically symmetrical, however characterized by the exact
valence angles.

Therefore, instead of the traditional bond angle the arith-
metic averaged value of its absolute value |θ | was introduced
and the bond length l was equal to its arithmetic average
value l̄ . Note however that R̃ should be calculated with
account for the arithmetic average of the cosine (experi-
mental data illustrated with Fig. 4 yielded: |θ | = 22◦ ± 0.5◦
〈cos |θ |

2 〉 = 0.9665 ± 0.0014). Thus, assuming ν = 0.75 [see

Eq. (4)], the constituting dimensionless equations defining the
pseudo-Kuhn length b̃ and the dimensionless end-to-end dis-
tance r̃ are supplied as follows:

R̃ = Nb̃ = n

〈
cos

|θ |
2

〉
. (5)

r̃ = b̃N
3
4 ∼= 1.176l̄n0.75. (6)

Combining Eqs. (5) and (6) supplied for the dimension-
less Kuhn length the estimation b̃ = r̃4/R̃3

max
∼= 2.12 ± 0.015

(the standard error is supplied). The dimensionless length b̃
is measured in the units of the averaged distance between
the centers of droplets. Thus, the essential correction of the
polymer model, describing levitating droplet clusters [16] is
attained. The estimation of the length of the Kuhn segment
enables the quantitative analysis of the parameters of the
branched droplet clusters, such as shown in Figs. 1 and 5.
The value of the averaged modulus of the “bond angle” |θ | =

FIG. 4. (a) The distribution of the values of the bond angle θ ;
the average absolute values of the bond angle is |θ | = 22◦ ± 0.5◦

and 〈cos |θ |
2 〉 = 0.9665 based on 1443 measurements (734 positive

values (red line) and 709 negative values (blue line)). (b) Bond angle
θ distribution density is depicted. 〈θ〉 ∼= 0 takes place.
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FIG. 5. The branched droplet chain built of 101 droplets (a frag-
ment of cluster 1). The scale bar is 0.1 mm.

22◦ ± 0.5◦ may stem from the peculiarities of aerodynamic
interactions responsible for the formation and levitation of
droplet chains.

B. Branched droplet clusters and the Kramers theorem

For the branched systems, such as shown in Figs. 1 and
5, the end-to-end distance characterization is not meaningful,
and the gyration radius characterizing the system can be intro-
duced

R2
g1 = 1

m2

m−1∑
i=1

m∑
j=i+1

( �Ri − �Rj )
2, (7)

where m is the number of droplets in the chain.
Alternatively, the square radius of gyration is defined as the

average square distance between the monomers and center of
mass in a given conformation [21]:

R2
g1 = 1

m

m∑
i=1

( �Ri − �Rcm)2 , (8)

where �Rcm is the radius vector of the center of mass of the
chain and �Ri is radius vector of the ith mass. The radius of
gyration of a polymer chain about an axis of rotation could be
interpreted as the radial distance to a point which would have a
moment of inertia the same as the chain’s actual distribution of
mass, if the total mass of the chain was concentrated. Equation
(7) yields the well-known Kramers theorem, enabling a spher-
ical counting method of calculation of the radius of gyration
[21]. Let us divide the branched polymer molecule consisting
of m monomers with the bond length l into two treelike parts.
The first part contains i monomers, and the second part con-
tains m–i monomers correspondingly. The radius of gyration
according to the Kramers theorem:

R2
g2 = l2

m2

m−1∑
i=1

i(m − i) . (9)

Introducing the Kuhn segment length b and the number
of freely joined effective bonds N enables reformulating of
Eq. (9) as follows:

R2
g2 = b2

N2
m

Nm−1∑
Ni=1

Ni(Nm − Ni ), (10)

where Nm = N + 1 and Ni correspond to m and i in Eq. (9).
When the radius of gyration is calculated for polymers

and other fluctuating objects, the square radius of gyration
is usually averaged over the ensemble of allowed confor-
mations giving the mean-square radius of gyration 〈R2

g2〉
(see Ref. [25]). For nonfluctuating objects such averaging is
not necessary. It is noteworthy that Eq. (9) was derived by
Kramers for the ideal freely joint chain [29,30]. However,
generalizations of the Kramers theorem exist for the cases
when molecular scaling behavior deviates from the classical ½
power exponent of a freely joint chain [31]. It turns out that the
Kramers theorem holds for a set of configurations of nonideal
chains (see Appendix B and Supplemental Material 2 [25]
for examples of gyration radius calculation and generalized
Kramers theorem applicability testing.). Thus, the Kramers
theorem may be exploited for the estimation of the radius
of gyration for nonideal chains. In particular, we checked
the validity of the Kramers theorem for the rigid branched
chains of droplets, such as depicted in Figs. 1 and 5. To
test the Kramers theorem, we calculate the number of freely
joined effective bonds N, corresponding to the Kuhn segment
b. The Kuhn length of the droplet chain has been established
in the previous section. The number N was calculated accord-
ing to

N = n

b̃

〈
cos

|θ |
2

〉
, (11)

where b̃ = b
l̄

is the dimensionless. The value of N calculated
from Eq. (10) was rounded to the nearest integer. When b̃
and N are known, it becomes possible to calculate the radii
of gyration using Eqs. (8) and (9) and, therefore, to check the
validity of the Kramers theorem for branched droplet chains.
It is instructive to introduce the ratio Rg2

Rg1
, quantifying the pos-

sible deviations from the predictions supplied by the Kramers
theorem [in other words, to compare Eq. (8) to Eq. (9)].

We treated the images representing four different droplet
branched chains built from the droplets with the average di-
ameter of 5 0± 5 μm. We labeled various branched droplet
clusters “1”, “2”, “3” and “4” correspondingly. The results
of testing of the Kramers theorem, extracted from the anal-
ysis of images of these droplet chains are summarized in
Fig. 6. The ratio 〈Rg2

Rg1
〉 averaged across four clusters was

established with the analysis of the images as 〈Rg2

Rg1
〉 = 0.91 ±

0.08.
For branched chains which do not contain single droplets

between branches, we obtained 〈Rg2

Rg1
〉 = 0.975 ± 0.045,

which is in excellent agreement with the predictions of the
Kramers theorem. We labeled such droplet chains as the
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FIG. 6. The ratio
Rg2

Rg1
vs the number of droplets calculated for

various branched droplet chains for three branched droplet clus-
ters. The dashed line depicts the value of the ratio averaged across
four clusters 〈 Rg2

Rg1
〉 = 0.91 ± 0.08 as established for 36 branched

chains. Solid blue line depicts the value of the ratio averaged
across group of twelve “perfectly branched” chains 〈 Rg2

Rg1
〉 = 0.975 ±

0.045.

“perfectly branched ones”. It is also noteworthy that the
Kramers theorem works reasonably well for long (m ∼= 100)
droplet chains. Long chains yielded 〈Rg2

Rg1
〉 = 0.965 ± 0.015

(See Supplemental Material 2 [25] for detailed analysis).

IV. CONCLUSIONS

Droplet clusters levitating above the locally heated water
surface demonstrate polymerlike linear and branched struc-
tures, built of droplets [17]. This makes it possible to apply the
ideas coming from the polymer science for the phenomeno-
logical and scaling analysis of the droplet cluster [21,23].
It should be emphasized that the levitating droplet cluster
is a 2D object, thus the dimensionless averaged end-to-end
distance of the droplet chain r̃ normalized to the averaged
distance between centers of the adjacent droplets l̄ is expected
to scale as r̃ ∼ n3/4, where n is the number of links in the
chain. This prediction agrees well with the actual scaling
law extracted from the analysis of the nonbranched droplet
chains, namely r̃ ∼ n0.76. The analysis of the nonbranched
droplet chains enabled calculation of the dimensionless Kuhn
length b̃ and the averaged absolute value of the bond an-
gle |θ | of the droplet chains, established correspondingly as:
b̃ ∼= 2.12 ± 0.015 and |θ | = 22.0 ± 0.50. The gyration radius
of the branched droplet chains was calculated. The origin of
the specific value of the bond angle |θ | calls for additional
insights; however, it is reasonable to suggest that it reflects
the peculiarities of aerodynamics, governing the formation of
the droplet cluster.

The predictions of the Kramers theorem, predicting the
gyration radius of the branched polymer chains, were vali-
dated for droplet chains, and it was established that it works
reasonably for the perfectly branched chains, which do not
embrace alien droplets entering their volume and it also works
for the long (n ∼= 100) droplet chains. We conclude that the

notions learned from polymer science are effective for the
analysis of both nonbranched and branched droplet chains in
levitating droplet clusters.
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APPENDIX A: RESTRICTIONS ON THE BOND ANGLE

In linear droplet chains, restrictions imposed on the bond
angle affect scaling of the end-to-end distance of the droplet
chain.

The pseudopolymer chain built of three water droplet
(or two links) yields for the ideal freely joined chains
r̄ =

√
l2 + l2 + 2l2〈cos θ〉 = l × 21/2 (consider 〈cos θ〉 = 0).

For the bond angle limited to the values of |θ | <

120º the averaged value 〈cos θ〉 = 0.4135. Correspondingly
r̄ = l

√
2 + 2 × 0.4135 ≈ 1.6814l ≈ l × 23/4 (compare with

23/4 = 1.6818).
Similar calculations may be carried out for a larger number

of droplets. Actually, the scaling exponent ν = 3
4 stems from

the assumption that droplets do not overlap. The restrictions
imposed on the bond angle coincide with the excluded volume
hypothesis.

APPENDIX B: GENERALIZATION OF THE KRAMER’S
THEOREM FOR NON-IDEAL CHAINS

It is usually accepted that the Kramers theorem works for
the ideal free jointed polymer chains, when 〈r2〉 = Cnl 2 is
adopted. We demonstrate that generalization of the Kramers
theorem for nonideal chains becomes possible. Consider the
chain built of the segments with the length of l , the number
of monomers is m. The bond within the chain is arbitrary. The
radius of gyration of the chain Rg is given by Eq. (B1):

R2
g = 1

m

m∑
i=1

( �Ri − �Rcm)2 (B1)

where �Rcm is the radius-vector of the center of mass of
the chain; �Ri–ith mass position vector. Equation (B1)
is easily transformed into Eq. (B2) (consider
�Rcm = 1

m

∑m
i=1

�Ri) [1]:

R2
g = 1

m2

m−1∑
i=1

m∑
j=i+1

( �Ri − �Rj )
2, (B2)

where �Ri − �Rj = �ri j may be expressed with Eq. (B3):

�ri j =
j−1∑
k=i

�rk, (B3)

where �rk is the vector connecting the kth and +1th masses,
obviously |�rk| = l is adopted. Equation (B2) may be
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TABLE I. Transposition Procedure.

∑m−1
i=1

∑m
j=i+1 ( �Ri − �Rj )2

∑m−1
i=1

∑m−i
j=1 ( �Rj − �Rj+i )2

r12r13r14r15r16r17r18r19 r12 r23 r34 r45 r56 r67 r78 r89

r23 r24 r25 r26 r27 r28 r29 r13 r24 r35 r46 r57 r68 r79

r34r35r36r37r38r39 r14r25r36r47r58r69

r45r46r47r48r49 r15r26r37r48r59

r56r57r58r59 r16r27r38r49

r67r68r69 r17r28r39

r78r79 r18r29

r89 r19

transformed with the transposition procedure. We illustrate
the transposition with the example of the chain built of nine
masses in Table I and Fig 7.

As a result Eq. (B4) emerges:

1

m2

m−1∑
i=1

m∑
j=i+1

( �Ri − �Rj )
2 = 1

m2

m−1∑
i=1

m−i∑
j=1

( �Rj − �Rj+i )
2, (B4)

Involving Eq. (B3) we transform Eq. (B4) as follows:

( �Rj − �Rj+i )
2 = (�r j, j+i )

2 =
⎛⎝ j+i−1∑

k= j

�rk

⎞⎠2

=
j+i−1∑
k= j

r2
k + 2r2

k

j+i−1∑
k= j

j+i−1−k∑
q=1

cos θk,k+q

= l2

⎛⎝i + 2
j+i−1∑
k= j

j+i−1−k∑
q=1

cos θk,k+q

⎞⎠, (B5)

where θk,k+q – angle between vectors �rk and �rk+q.

Exploiting Eq. (B5) we transform Eq. (B4) as follows:

1

m2

m−1∑
i=1

m−i∑
j=1

( �Rj − �Rj+i )
2

= l2

m2

m−1∑
i=1

m−i∑
j=1

⎛⎝i + 2
j−1+i∑
k= j

j−1+i−k∑
q=1

cos θk,k+q

⎞⎠

FIG. 7. A polymer chain.

= l2

m2

m−1∑
i=1

⎛⎝m−i∑
j=1

i + 2
m−i∑
j=1

j−1+i∑
k= j

j−1+i−k∑
q=1

cos θk,k+q

⎞⎠
= l2

m2

m−1∑
i=1

i(m − i) + 2
l2

m2

m−1∑
i=1

m−i∑
j=1

j−1+i∑
k= j

j−1+i−k∑
q=1

cos θk,k+q.

(B6)

Thus, if Eq. (B7) holds:

m−1∑
i=1

m−i∑
j=1

j−1+i∑
k= j

j−1+i−k∑
q=1

cos θk,k+q = 0, (B7)

we immediately obtain the exact Kramers formula:

R2
g = l2

m2

m−1∑
i=1

i(m − i). (B8)

Recall that m is the total number of monomers within the
chain. See numerous examples illustrating Eq. (B7) in the
Supplemental Material 2 [25].

Consider that Eq. (B6) was derived for the linear chain.
Strictly speaking for the branched chain the value of index
i in Eq. (B6) and Eq. (B8) and consequently in Eq. (9) of
the main text of the paper is restricted by the lengths of
corresponding branches. This problem is usually solved in
literature by exact description of the dividing of the branched
chain into the subchains, when the sum appearing in Eq. (B8)
is calculated. Let us illustrate this with a simple example.
Consider linear and branched chains built if four monomers
(m = 4), depicted in Fig. 4. For the linear chain i = 1, 2, 3
when the radius of gyration is calculated. For the branched
chain, in which lengths of the branches equal to the single
link always i = 1.

Let us adjust Eq. (B8) for the branched chain with the
single center of branching, depicted in Fig. 8. For a sake of
simplicity consider the linear chain as a chain built of two
subchains containing n1 and n2 links, respectively. Thus, the
sum appearing in Eq. (B2) is reshaped as follows:

m−1∑
i=1

m−i∑
j=1

( �Rj − �Rj+i )
2

=
n1∑

i=1

n1−i∑
j=1

( �Rj − �Rj+i )
2

+
n2∑

i=1

n2−i∑
j=1

( �Rj − �Rj+i )
2 +

n1∑
j=1

n1+n2∑
i=n1+1

( �Rj − �Rj+i )
2.

(B9)

Table II presents this dissection amply, using the data,
supplied in Table I. As an example for the linear chain built of
eight links, vectors �ri j are bolded for the branches containing
n1 = 5 and n2 = 3 links. Vectors connecting monomers in
branches with n1 = 5 and n2 = 3 are shown in green and
yellow, while purple corresponds to the vectors connecting
monomers of the two branches (Supplemental Material 2,
Table 6S).
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FIG. 8. (a) The linear chain and all of the possibilities of its dividing into two branches are depicted. (b) Branched chain with the single
center of branching and various possibilities of its dividing are depicted.

Let us exploit Eq. (B6) and assume the terms containing
cos θ equal zero. Thus, Eq. (B9) yields

R2
g = l2

m2

(
n1∑

i=1

i(n1 − i) +
n2∑

i=1

i(n2 − i) +
n1∑

j=1

n1+n2∑
i=n1+1

(i)

)
.

(B10)
Taking into account n1 = m–n2–1 and n2 = m–n1–1 en-

ables transformation of the equation appearing in Eq. (B10)
as follows:

m−n2−1∑
i=1

i(m − n2 − i) +
m−n1−1∑

i=1

i(m − n1 − i) +
n1∑

j=1

n1+n2∑
i=n1+1

(i)

TABLE II. The meaning of the vectors appearing in Eq. (B9).

∑n1
i=1

∑n1−i
j=1 ( �Rj − �Rj+i )2 + ∑n2

i=1

∑n2−i
j=1 ( �Rj − �Rj+i )2

+ ∑n1
j=1

∑n1+n2
i=n1+1 ( �Rj − �Rj+i )2

r12 r23 r34 r45 r56 r67 r78 r89

r13 r24 r35 r46 r57 r68 r79

r14 r25 r36 r47 r58 r69

r15 r26 r37 r48 r59

r16 r27 r38 r49

r17 r28 r39

r18 r29

r19

=
m−n2−1∑

i=1

i(m − i) −
m−n2−1∑

i=1

in2

+
m−n1−1∑

i=1

i(m − i) −
m−n1−1∑

i=1

in1 +
n1∑

j=1

n1+n2∑
i=n1+1

(i) .

(B11)

Considering n1 + n2 = m−1 gives rise to

m−n2−1∑
i=1

i(m − i) +
m−n1−1∑

i=1

i(m − i)

=
n1∑

i=1

i(m − i) +
n2∑

i=1

i(m − i) =
m−1∑
i=1

i(m − i). (B12)

Consider
∑m−1

i=1 i(m−i) ∝ R2
g. Thus, Eq. (B11) gives rise to

n1∑
j=1

n1+n2∑
i=n1+1

(i) −
m−n2−1∑

i=1

in2 −
m−n1−1∑

i=1

in1 = 0. (B13)
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Thus the Kramers formula appears as (again the terms containing cos θ aree assumed to be equal zero)

R2
g = l2

m2

(
n1∑

i=1

i(m − i) +
n2∑

i=1

i(m − i)

)
. (B14)

Consider now the chain built of three branches; in an analogy to dissection, described by Eq. (B9) we obtain:

m−1∑
i=1

m−i∑
j=1

( �Rj − �Rj+i )
2 =

n1∑
i=1

n1−i∑
j=1

( �Rj − �Rj+i )
2 +

n2∑
i=1

n2−i∑
j=1

( �Rj − �Rj+i )
2 +

n3∑
i=1

n3−i∑
j=1

( �Rj − �Rj+i )
2

+
n1∑

j=1

n1+n2∑
i=n1+1

( �Rj − �Rj+i )
2 +

n1∑
j=1

n1+n3∑
i=n1+1

( �Rj − �Rj+i )
2 +

n2∑
j=1

n2+n3∑
i=n1+1

( �Rj − �Rj+i )
2 (B15)

Pairs of indices n1 + n2, n1 + n3иn2 + n3 reflect the fact that in Eq. (B2) we have to account for all of possible combinations of
indices i and j. Now it is possible to carry out the dissection similar to Eq. (B9) and Eq. (B15) for the chain built of a branches
(a is arbitrary):

m−1∑
i=1

m−i∑
j=1

( �Rj − �Rj+i )
2 =

a∑
b=1

nb∑
i=1

nb−i∑
j=1

( �Rj − �Rj+i )
2 +

a−1∑
b=1

a∑
c=b+1

nb∑
j=1

nb+nc∑
i=nb+1

( �Rj − �Rj+i )
2, (B16)

where the double sum
∑a−1

b=1

∑a
c=b+1 represents all of the possible combinations of the pairs of branches. Thus, Eqs. (B14),

(B15), and (B16) yield for the chain with a single center of branching the following expression:

R2
g = l2

m2

a∑
b=1

nb∑
i=1

i(m − i), (B17)

where nb is the number of chains within the branched labeled by “b”. Equation (B17) overcomes the problems inherent for
Eq. (B8) (see an example in the Supplemental Material 2).

Considering the terms considering cos θi j yields

R2
g = l2

m2

a∑
b=1

nb∑
i=1

i(m − i)

+ 2
l2

m2

(
a∑

b=1

nb∑
i=1

nb∑
j=1

j−1+i∑
k= j

j−1+i−k∑
q=1

cos θk,k+q

+
a−1∑
b=1

a∑
c=b+1

pb∑
j=1

nb+nc∑
i=nb+1

j−1+i∑
k= j

j−1+i−k∑
q=1

cos θk,k+q

)
(B18)

In the case a = 2, Eq. (B17) yields the Kramers formula
[i.e., Eq. (B6)] and Eq. (B18) is transformed into Eq. (B8).

Finally interesting to point out that sum in Eq. (B8) can be
presented by simple equation:

m−1∑
i=1

i(m − i) =
m−1∑
i=1

(im − i2) = m
m−1∑
i=1

i

−
m−1∑
i=1

i2 = m(m2 − 1)

6
. (B19)

So, for the radius of gyration of a not branched chain we
can write the simple formula

R2
g = l2

6

(m2 − 1)

m
. (B20)
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