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Multiple instabilities of thermocapillary flow in a cylindrical pool with a rotating disk
on the free surface
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The thermocapillary flow instabilities of silicon melt in a cylindrical pool with a rotating disk on the free
surface (a simplified model of the Czochralski crystal growth) are numerically investigated by using the linear
stability analysis. The complete neutral or critical stability curves are determined. Results show that the neutral
stability curves form a closed region in the parameter plane, in which the steady axisymmetric flow is linearly
stable. Two types of rotating wave (RW1 and RW2) instabilities and two types of hydrothermal wave (HTW1 and
HTW2) instabilities are found. The energy analysis shows that all the instabilities are hydrodynamic (inertial)
in nature. Specifically, RW1 and RW2 are caused by the azimuthal shear induced by the crystal rotation, while
HTW1 and HTW2 are caused by the radial shear induced by the thermocapillary force.

DOI: 10.1103/PhysRevE.105.055101

I. INTRODUCTION

Monocrystalline silicon has important applications in high-
tech industries such as photovoltaic solar battery, chip,
computer, and so on. In the semiconductor silicon industry, the
Czochralski method is the most commonly used method for
growing large-size monocrystalline silicon [1–3]. In fact, the
Czochralski technique is the most important method for the
production of electronic materials such as silicon, germanium,
and different semiconducting compounds [4]. In the process
of Czochralski crystal growth, the thermocapillary force, ther-
mal buoyancy, and crystal rotation will drive a complex melt
convection, and the instability of the melt convection has a
serious impact on the quality of crystal growth [5–7]. The
occurrence of flow instability may cause irregular patterns
such as the spoke patterns [1,8], the reconstruction of the
crystal chemical components, or stripes (microsegregation)
[9], or even cause the spiral growth phenomena [2,3], resulting
in the failure of crystal growth. Therefore, in the past few
decades, many experimental [10–19] and numerical [20–30]
works have been devoted to the study of flow instability in the
Czochralski crystal growth.

Lee and Chun [11] experimentally studied the oscilla-
tory convection induced by thermal buoyancy and crystal
rotation in a Czochralski crucible. Thermal waves traveling
in the azimuthal direction were observed when the rota-
tion rate of crystal exceeded a certain threshold value, and
the thermal waves disappeared when the rotation rate was
large enough to suppress the thermal convection. Hintz and
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Schwabe [12,13] investigated the mixed convection driven by
thermal buoyancy, thermocapillary force, and crystal rotation
in a Czochralski crucible, and they found that the mixed
convection was strongly influenced by the thermocapillary
force. In addition, an oscillatory transition is observed when
the rotation rate of crystal reaches a critical value, and this
critical value increases linearly with the temperature differ-
ence. Kanda [14] experimentally studied the flow instability
in a Czochralski crucible when the crystal and crucible rotate
in the same direction under isothermal conditions. It is found
that there are elliptical instability and circular shear instability
in the forced convection with the increase of the difference
between the crystal and crucible rotation rate. Teitel et al.
[16] performed experiments to investigate the flow instability
of large-Prandtl-number fluid in the Czochralski model, and
pointed out that the increase of crystal radius and crystal
rotation rate will destabilize the flow, while the increase of
Prandtl number will stabilize the flow. Shen et al. [17,18] ex-
perimentally investigated the effects of aspect ratio and crystal
and crucible rotation on the thermal convection stability in the
Czochralski crucible, and indicated that the crystal rotation
reduces the thermal convection stability when the aspect ratio
is small, while the crystal rotation improves the thermal con-
vection stability when the aspect ratio is large. Yu et al. [19]
experimentally studied the flow instability of a binary mixture
driven by rotation and thermal-solutal capillary force in a
shallow Czochralski configuration. Their results show that the
critical Marangoni number increases at first, then decreases
with the increase of crystal rotation rate.

Compared with experimental research, the numerical sim-
ulation can reveal the details and evolution process of the flow
instability. Zeng et al. [20,21] numerically found that the flow
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structure and oscillation characteristics of melt convection in
the Czochralski crucible were strongly affected by the crystal
rotation rate. Based on the model of Zeng et al. [20,21],
Gelfgat et al. [22,23] numerically studied the influence of
crystal rotation on the instability of thermal convection by
means of linear stability analysis, and found that as the crystal
rotation rate increases, the critical temperature difference for
the flow instability first decreases and then increases. Li et al.
[24] simulated the forced convection driven by the rotation
of the crystal and crucible under isothermal conditions, and
reported that the flow is always stable when the crucible is
rotated alone, and the crystal and crucible rotating in the same
direction is more stable than the crystal and crucible rotating
in the opposite direction. Wu et al. [25–27] performed a se-
ries of three-dimensional numerical simulations to study the
effects of crystal and crucible rotation on the instabilities of
thermocapillary convection and thermal capillary-buoyancy
convection of silicon melt in the Czochralski configuration,
and showed that with the increase of the crystal rotation
rate, the stability first decreases and then increases when the
crucible depth is small. However, when the crucible depth
is large, the stability first increases and then decreases as
the crystal rotation rate increases. Bessonov [28] numerically
analyzed the effects of Prandtl number and crystal and cru-
cible rotation on the instabilities of mixed convection in the
Czochralski model. It was found that for large Prandtl number
melts, the appropriate combination of crystal rotation and cru-
cible rotation can improve the flow stability by more than ten
times. Recently, Liu et al. [29,30] performed linear stability
analysis to study the effects of crystal rotation and rotating
magnetic field on the instability of thermocapillary flow in a
Czochralski model, and pointed out that the rotating magnetic
field can significantly improve the flow stability when the
crystal and the magnetic field rotate in the same direction.

Although there has been a lot of research work on the
flow instability in the Czochralski crucible, the research con-
clusions of different scholars are quite different, and some
are even contradictory. For example, Hintz and Schwabe [12]
pointed out that with the increase of crystal rotation rate, the
critical temperature difference for the onset of flow instability
in the Czochralski crucible increases, and the critical temper-
ature difference is independent of crucible depth. However,
Shen et al. [17,18] found that when the crucible depth is small,
the crystal rotation reduces the critical temperature difference
for the flow instability, while when the crucible is deep, the
crystal rotation improves the critical temperature difference
for the flow instability. The above discrepancies indicate that
the current research still lacks a unified and deep understand-
ing on the instability and corresponding mechanism of the
complex convection in the Czochralski crucible. Therefore,
it is still necessary to study in depth the instability of melt
convection in the Czochralski crucible.

For the mixed convection driven by multiple driving forces,
it is difficult to find all instability modes via experiments
or three-dimensional numerical simulations, due to a large
number of cases need to be dealt with under the combinations
of multiple parameters. In comparison, the linear stability
analysis can study flow instability more efficiently because
it can transform the three-dimensional problems into two-
dimensional or one-dimensional problems. The present paper

FIG. 1. Geometric and physical model of the Czochralski
configuration.

aims to investigate the multiple instabilities of the mixed
convection driven by the thermocapillary force and crystal
rotation, and give the complete neutral or critical stability
curves. For this purpose, the linear stability analysis is used to
study the flow instability in the Czochralski crucible, and the
energy analysis is employed to reveal the physical mechanism
of the flow instability. This paper not only contains a summary
of previous findings, but also reports some different results,
and provides a helpful understanding for the flow instability
driven by multiple drive forces.

II. MODELS AND METHODS

A. Physical and mathematical models

In the Czochralski process, an oriented single-crystal seed
attached to a cooled pulling shaft is initially dipped into
the melt contained in a heated cylindrical crucible. Then the
single-crystal seed is slowly rotated and pulled up. In this way,
a large oriented monocrystalline ingot is grown from its melt
[4]. We consider a simplified model of the Czochralski crystal
growth, as shown in Fig. 1. The crucible with depth d and
radius rc is filled with silicon melt, which is regarded as an
incompressible Newtonian fluid of density ρ, kinematic vis-
cosity ν, and thermal conductivity κ . The crystal with radius rs

rotates on the melt surface along the counterclockwise direc-
tion, which is defined as the positive azimuthal direction. The
sidewall of crucible is maintained at a constant temperature
Фh, the crystal-melt interface is maintained at the crystalliza-
tion temperature Фc (Фh > Фc), and the bottom of crucible
and the melt surface are considered as adiabatic. Because the
capillary number is quite small, the free surface is assumed to
be nondeformable and flat, and the surface tension σ of silicon
melt varies with temperature � as σ = σ0 − γT �, where γT

is the surface tension coefficient, and σ0 is the surface tension
at the reference temperature �c. The gravity (buoyancy) is
neglected since the crucible depth is small. In addition, the
no-slip condition is imposed to all solid-liquid boundaries,
and the melt convection is considered as laminar flow.

All variables are made dimensionless using the crucible
radius rc as the length scale, therefore the geometry of
the convective system can be determined by the aspect ra-
tio ε = d/rc and the radius ratio β = rs/rc. In this study,
the aspect ratio and radius ratio are fixed at ε = 0.06 and
β = 0.3, respectively. The time t velocity u = (u, v,w) and
the pressure p are scaled with r2

c /ν, ν/rc, and ρν2/r2
c ,
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respectively, where u, v, and w are the velocity components
in the radial, azimuthal, and axial directions of the cylindrical
coordinates. The dimensionless temperature T is defined as
T = (� − �c)/(�h − �c). Then the dimensionless govern-
ing equations in the cylindrical coordinates are

∇ · u = 0 (1)

∂u
∂t

+ (u · ∇)u = −∇p + ∇2u (2)

∂T

∂t
+ (u · ∇)T = 1

Pr
∇2T (3)

Here the dimensionless parameter Pr = ν/κ is the Prandtl
number, and the Prandtl number of silicon melt is Pr = 0.011
[31].

The dimensionless boundary conditions are as follows: the
free surface (z = ε, β < r < 1),

∂u

∂z
= −Ma

Pr

∂T

∂r
,

∂v

∂z
= −Ma

Pr

∂T

r∂θ
,

w = 0,
∂T

∂z
= 0, (4)

the melt-crystal interface ( z = ε, 0 � r � β),

u = w = 0, v = Re

β
r,T = 0, (5)

the bottom (z = 0, 0 � r < 1),

u = v = w = 0,
∂T

∂z
= 0, (6)

and the crucible sidewall (r = 1, 0 � z � ε),

u = v = w = 0, T = 1. (7)

Here the dimensionless parameters, Ma = γT rc(�h −
�c)/(ρνκ ) and Re = (2πnsrsrc)/(60ν), are the Marangoni
number and the rotation Reynolds number, respectively,
where ns (rpm) is the rotation rate of the crystal.

B. Basic flow and linear stability analysis

The system of Eqs. (1)–(7) admits an axisymmetric steady-
state solution, called the basic flow. The basic flow is first
simulated by the spectral element method [30,32]. The linear
stability of the basic flow can be analyzed by adding the
infinitesimal disturbances to the basic flow:

(u, p, T ) = (u0, p0, T0) + (û, p̂, T̂ ). (8)

Here (u0, p0, T0) is the basic flow, and (û, p̂, T̂ ) is the
infinitesimal disturbance. Then the linearized disturbance
equations and corresponding boundary conditions are ob-
tained by substituting Eq. (8) into Eqs. (1)–(7) and discarding
the second-order infinitesimal and the basic-state part:

∇ · û = 0, (9)

∂ û

∂t
+ (u0 · ∇)û + (û · ∇)u0 = −∇ p̂ + ∇2û, (10)

∂T̂

∂t
+ (u0 · ∇)T̂ + (û · ∇)T0 = 1

Pr
∇2T̂ , (11)

the free surface (z = ε, β < r < 1),

∂ û

∂z
= −Ma

Pr

∂T̂

∂r
,

∂ v̂

∂z
= −Ma

Pr

∂T̂

r∂θ
,

ŵ = 0,
∂T̂

∂z
= 0, (12)

the melt-crystal interface (z = ε, 0 � r � β),

û = v̂ = ŵ = 0,T̂ = 0, (13)

the bottom (z = 0, 0 � r < 1),

û = v̂ = ŵ = 0,
∂T̂

∂z
= 0, (14)

and the crucible sidewall (r = 1, 0 � z � ε),

û = v̂ = ŵ = 0, T̂ = 0. (15)

The general solution of Eqs. (9)–(15) can be written as an
infinite sum of normal modes in the form⎛

⎝û
p̂
T̂

⎞
⎠(r, θ, z, t ) =

⎛
⎝ũ

p̃
T̃

⎞
⎠(r, z)e(τ+iω)t+imθ . (16)

Here m is the wave number in the azimuthal direction
of the normal mode, τ is its real growth rate, and ω is its
oscillation frequency. By using the spectral element method
for spatial discretization, the linear system of Eqs. (9)–(15)
can be written in a generalized eigenvalue problem:

Ax̃ = (τ + iω)Bx̃. (17)

For linear stability analysis the leading eigenvalue (τ +
iω) has been solved using the Arnoldi algorithm from the
ARPACK library [33]. To determine the neutral stability
curves, we must find the Marangoni numbers and rotation
Reynolds numbers at which the growth rate τ of the leading
eigenvalue is equal to zero. The critical stability curves are
the lower envelope curves of the neutral stability curves. For
a determined neutral mode or critical mode, the correspond-
ing frequency ω indicates the oscillation state. Moreover, the
propagation angular velocity of the oscillating wave is defined
as η = −ω/m. Therefore, ω < 0 and ω > 0 indicate that the
oscillating wave propagate in the counterclockwise and clock-
wise direction, respectively.

C. Energy analysis

Once the linear stability problem is solved, it is useful to
compute the energy-transfer rates from the basic flow to the
neutral or critical disturbance mode. The contribution and the
spatial distribution of the local energy can provide physical
insight into the instability mechanism. In addition, the cal-
culation of disturbance energy is a posteriori examination of
the linear stability results, since the production of disturbance
energy should be balanced by the viscous dissipation at any
neutral or critical modes. The disturbance kinetic energy (Ekin)
is defined as

Ekin = 1

2

∫
V

û · ûdV. (18)
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Therefore, the change rate of disturbance kinetic energy
can be expressed as

∂Ekin

∂t
= ∂

(
1
2

∫
V û · ûdV

)
∂t

=
∫

V
û · ∂ û

∂t
dV. (19)

Substituting the disturbance equation Eq. (10) into Eq. (19)
and using some algebra, the change rate of the disturbance
kinetic energy can be derived as [34,35]

1

Dk

∂Ekin

∂t
= Iv + M − 1 (20)

which has been normalized by the viscous dissipation rate of
kinetic energy Dk ,

Dk =
∫

V
(∇ × û)2dV. (21)

Iv is the energy-transfer rate from the basic flow to the
disturbances, and M is the rate of work done by Marangoni
stress on the free surface. The expressions of the above energy
terms are

Iv = Iv1 + Iv2 + Iv3 + Iv4 + Iv5 + Iv6 + Iv7 + Iv8

= 1

Dk

∫
V

(
−ûû

∂u0

∂r
− ûŵ

∂u0

∂z
+ ûv̂v0

r
− ûv̂

∂v0

∂r

−v̂ŵ
∂v0

∂z
− v̂v̂u0

r
− ûŵ

∂w0

∂r
− ŵŵ

∂w0

∂z

)
dV, (22)

M = 1

Dk

∫
S

(
û
∂ û

∂z
+v̂

∂ v̂

∂z

)
dS. (23)

The positive value of the above energy term indicates that it
promotes the flow instability, and the negative value indicates
that it has a stabilizing effect.

III. NUMERICAL RESULTS AND DISCUSSION

All numerical codes are based on the spectral-element
discretization and have been verified in our previous articles
[30,32]. The present results are computed using a nonuniform
grid with Nr × Nz = 155 × 26 points in the radial and axial
directions, respectively. In order to check the grid conver-
gence, the growth rate τ and the frequency ω corresponding
to the real and the imaginary parts of the leading eigenvalue
are plotted in Fig. 2 as functions of the wave number m
for Re = 2400 and Ma = 1155. It can be seen from Fig. 2
that the results obtained from the selected grid (Nr × Nz =
155 × 26) are consistent with those obtained from a finer grid
(Nr × Nz = 166 × 31).

A. Basic flow

When the Marangoni number and the rotation Reynolds
number are small, the melt convection is steady and axisym-
metric, called the basic flow. Figure 3 shows the representative
structures of the basic flow. When the crystal rotation is
absent, the inward thermocapillary force induces a counter-
clockwise main vortex below the free surface, and a secondary
vortex is embedded into the main vortex near the crystal
[Fig. 3(a)]. When the crystal rotation acts alone, the rota-
tion drives a clockwise vortex cell under the crystal due to

FIG. 2. (a) Growth rate τ and (b) frequency ω of the leading
eigenvalue as functions of the wave number m for Re = 2400 and
Ma = 1155.

the outward centrifugal force [Fig. 3(b)]. When the crystal
rotation and thermocapillary forces act together, these two
driving forces will compete with each other, so that the two
vortices in opposite directions interact [Figs. 3(c)–3(f)]. With
the increase of Marangoni number, the main vortex induced
by the thermocapillary force is strengthened, while the clock-
wise vortex caused by the crystal rotation is weakened.

B. Neutral and critical curves for the onset of flow instability

The steady and axisymmetric basic flow will lose its stabil-
ity to become an oscillatory flow when the Marangoni number
or the rotation Reynolds number exceeds a certain threshold
value. When there is only the thermocapillary force, the flow
instability occurs at about Ma = 1717. If there is only the
crystal rotation, the basic flow will be unstable when the ro-
tation Reynolds number exceeds Re = 1179. Figure 4 shows
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FIG. 3. Streamlines of the basic flow (dashed lines correspond
to negative values). (a) Re = 0, Ma = 1760; (b) Re = 1180, Ma =
0; (c) Re = 1800, Ma = 116; (d) Re = 1800, Ma = 1113; (e) Re =
4200, Ma = 857; (f) Re = 4200, Ma = 1088.

the neutral or critical stability curves in the parameter (Re-Ma)
plane. Four types of flow instabilities (two types of rotating
waves, denoted as RW1 and RW2, and two types of hydrother-
mal waves, denoted as HTW1, HTW2) are predicted by the
linear stability analysis results. The horizontal axis, vertical
axis, and the four neutral stability curves form a closed param-
eter region, in which the basic flow is linearly stable. In par-
ticular, in the interval 1179 < Re < 4593, the flow state will
undergo two transitions from unstable to stable, and then from
stable to unstable with the increase of Marangoni number. For
Re > 4593, the basic flow is always linearly unstable. Figure 5
shows the propagation angular velocity η of the four types of
oscillatory flow as a function of the rotation Reynolds number
Re. With the increase of Re, the propagation angular velocity
of HTW1 decreases, while the propagation angular velocity
of HTW2, RW1, and RW2 increases almost linearly. The de-
tailed neutral or critical instability values are listed in Table I.

C. Instability type and mechanism

1. Instability mechanism of RW1

When the Marangoni number is relatively small
(Ma < 262), the RW1 occurs if the rotation Reynolds
number exceeds a critical value. With the increase of

FIG. 4. Neutral or critical stability curves in the Re-Ma plane.

Marangoni number, this critical value increases almost
linearly. Figure 6(a) shows the surface patterns of temperature
disturbance for RW1, which are characterized by petal-like
temperature fluctuations. For RW1 the wave number is
always m = 3 and the rotating wave propagates in the
counterclockwise direction, the same as the direction of
crystal rotation. Moreover, the propagation angular velocity η

of RW1 increases almost linearly with the increase of rotation
Reynolds number (see Fig. 5).

Under the critical stability condition, the kinetic energy
budgets for the incipience of flow instabilities are shown in
Fig. 7. We can see from Fig. 7 that the Marangoni effect
hardly contributes to the disturbance energy, indicating that
the instabilities are hydrodynamic (inertial) in nature. For
RW1, Iv4 occupies a dominant position in the energy bal-
ance. Iv4 = − ∫

V (ûv̂∂v0∂r)dV /Dk measures the transfer of
azimuthal basic-state momentum v0 to the azimuthal distur-
bance v̂ via the radial disturbance û. Therefore, the instability

FIG. 5. Propagation angular velocity η of the oscillating waves
as a function of the rotation Reynolds number Re.
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TABLE I. Neutral or critical instability parameters and instability
types.

Re Mac (or Man) η m Type

1179 0 549.3 3
1800 116 942.9 3
2400 204 1164.4 3 RW1
2700 240 1287.7 3
3000 273 1414.9 3
3600 332 1679.4 3

2700 173 3272.3 9
3000 305 3881.2 11
3600 583 4596.8 12 RW2
4200 857 5242.0 12
4800 1146 5952.5 11
5400 1510 6704.4 11

0 1717 ±1171.1 18
600 1327 −987.5 11
1200 1164 −612.0 11
1800 1113 −339.7 11 HTW1
2400 1152 −247.8 10
3000 1212 −220.6 9
3600 1307 −251.3 8

3300 1573 448.7 12
3600 1348 562.3 12
3750 1201 621.4 11
3900 1147 705.3 11 HTW2
4200 1088 845.5 11
4800 1025 1083.5 11
5400 988 1292.0 11

FIG. 6. Surface patterns of temperature disturbance for the four
types of flow instabilities. (a) RW1, Re = 1800, Ma = 116; (b)
RW2, Re = 4200, Ma = 857; (c) HTW1, Re = 1800, Ma = 1113;
(d) HTW2, Re = 4200, Ma = 1088.

FIG. 7. Kinetic energy budget under the critical conditions. (a)
For RW1 and RW2; (b) for HTW1 and HTW2.

of RW1 is caused by the azimuthal shear of basic flow induced
by the crystal rotation.

2. Instability mechanism of RW2

For 262 < Ma < 1046, the RW2 becomes the critical
mode when the rotation Reynolds number exceeds a critical
value. This critical value increases linearly with the increase
of Marangoni number, but the gradient is less than that of
RW1. The surface patterns of RW2 are characterized by a
series of small temperature spots distributed at the edge of
the crystal. The amplitude of temperature fluctuation of RW2
is much smaller than that of RW1, but the phase velocity η of
RW2 is larger than that of RW1. The propagation direction
of RW2 is also counterclockwise, which is consistent with
the crystal rotation. The kinetic energy budget [see Fig. 7(a)]
shows that Iv4 still plays a leading role in the energy balance.
However, Iv7, representing the axial shear, also occupies a
considerable proportion, and it increases as Re increases. In
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general, instability of RW2 is still mainly caused by the az-
imuthal shear of the basic flow driven by the crystal rotation.

3. Instability mechanism of HTW1 and HTW2

The HTW1 arises as the most dangerous mode for rel-
atively small rotation Reynolds number (Re < 3636) and
relatively large Marangoni number, and the HTW2 replaces
it as the critical mode for larger rotation Reynolds num-
ber (Re > 3636). With the increase of rotation Reynolds
number, the critical Marangoni number for the onset of
HTW1 instability decreases at first and then increases, and
the critical Marangoni number for HTW2 instability de-
creases monotonously. The surface patterns of temperature
disturbance for HTW1 and HTW2 are characterized by the
curved spokelike temperature fluctuation [see Figs. 6(c) and
6(d)], and the amplitudes of fluctuation are between those
of RW1 and RW2. The energy budgets under the critical
conditions [see Fig. 7(b)] show that Iv2 is the main source
of disturbance energy for both HTW1 and HTW2. Iv2 =
−∫

V (ûŵ∂u0/∂z)dV /Dk measures the transfer of radial basic-
state momentum u0 to the radial disturbance û via the axial
disturbance ŵ. Therefore, instabilities of HTW1 and HTW2
are mainly caused by the radial shear of the basic flow, which
is induced by the thermocapillary force. It should be noted
that although the instabilities are mainly caused by the ther-
mocapillary force, the contribution of Marangoni effect on
the disturbance energy is almost zero [see Fig. 7(b)]. The
perturbation flow field is only driven by the basic flow (inertial
instability), and the perturbation temperature field is enslaved
to the perturbation flow field.

The characteristics and mechanisms of HTW1 and HTW2
instabilities have been reported in our previous article [32],
and the HTW1 is also reported by Wu et al. [25] in their three-
dimensional numerical simulations. Moreover, the HTW1
and HTW2 instabilities are very similar to the hydrothermal
waves in small-Prandtl-number fluid in the annular pool [36],
and also similar to the spoke patterns in oxide melt in the
Czochralski system [37].

IV. DISCUSSION

For the flow instability in the Czochralski crucible, the
past research work mainly focused on the thermal convection
instability and the effect of crystal rotation on the thermal
convection instability. However, even for isothermal fluids,
flow instability will still occur when the rotation rate of crystal
exceeds a certain threshold, and this type of flow instabil-
ity is often ignored. Wu et al [25]. studied the effect of
crystal rotation on thermocapillary flow instability by three-
dimensional numerical simulations, and they indicated that
the critical Marangoni number decreases at first and then
increases with the increase of rotation rate. In addition, the
propagation direction of oscillatory flow is opposite to the
direction of crystal rotation. Through comparative analysis
with the present results, the instability they found belongs
to HTW1. Shen et al. [17] experimentally found that the
crystal rotation destabilizes the thermocapillary flow, and the
propagation direction of oscillatory flow is consistent with
the crystal rotation. The instability they found may belong
to HTW2. Hintz and Schwabe [12] experimentally showed
that the oscillatory instability occurs when the rotation rate of

crystal exceeds some threshold value, and this threshold value
is found to increase linearly with the temperature difference
(Marangoni number) between the crucible and the crystal. It
can be inferred that this instability belongs to RW1.

In fact, when the flow is driven by two or more driving
forces, there may be multiple instabilities in the bifurcation
diagram, owing to the competition and suppression among
the different driving forces. For example, Yin et al. [31] in-
vestigated the thermocapillary flow instability in a rotating
annular pool, they found that within a certain intermediate
range of rotation rate, the flow state will undergo three transi-
tions between stable and unstable as the Marangoni number
increases, and a similar phenomenon was also reported by
Li et al. [35] in the study of instabilities of thermocapillary-
buoyant-Coriolis flow.

V. CONCLUSIONS

In this paper, a series of linear stability analyses based
on the spectral element method are performed to understand
the instability behavior of melt convection driven by thermo-
capillary force and crystal rotation in a Czochralski crucible.
Four neutral or critical stability curves, representing four types
of flow instabilities (HTW1, HTW2, RW1, and RW2), are
predicted. The results show that the four neutral or critical
stability curves enclose a closed region in the parameter (Re-
Ma) plane, in which the steady and axisymmetric basic flow
is linearly stable. The critical Marangoni number for the onset
of HTW1 and HTW2 instabilities shows a downward trend
in general with the increase of rotation Reynolds number,
i.e., the crystal rotation destabilizes the thermocapillary flow.
Contrarily, the critical rotation Reynolds number for the onset
of RW1 and RW2 instabilities increases linearly as Marangoni
number increases. In other words, the thermocapillary force
stabilizes the forced convection driven by the crystal rotation.
In particular, in the range 1179 < Re < 4593, the flow state
will change twice with the increase of Marangoni number,
due to the competition and suppression between the thermo-
capillary force and crystal rotation. The HTW1 is found to
propagate in the opposite direction of crystal rotation, and
the propagation angular velocity decreases with the increase
of crystal rotation rate. Contrarily, HTW2, RW1, and RW2
propagate in the same direction as the crystal rotation, and
the propagation angular velocity increases linearly with the
increase of crystal rotation rate. The disturbance energy bud-
gets under the neutral or critical conditions indicate that all
the instabilities are triggered by the shear instability mecha-
nism. For HTW1 and HTW2, the radial shear induced by the
thermocapillary force is responsible for the flow instabilities,
however the azimuthal shear induced by the crystal rotation is
the main cause for the instabilities of RW1 and RW2.

The data that support the findings of this study are available
from the corresponding author upon reasonable request.
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