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Predicting plasticity of amorphous solids from instantaneous normal modes
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We present a mathematical description of amorphous solid deformation and plasticity by extending the concept
of instantaneous normal modes (INMs) to deformed systems, which allows us to retain the effect of strain on
the vibrational density of states (VDOS). Starting from the nonaffine lattice dynamics (NALD) description of
elasticity and viscoelasticity of glasses, we formulate the linear response theory up to large deformations by
considering the strain-dependent tangent modulus at finite values of shear strain. The (nonaffine) tangent shear
modulus is computed from the VDOS of affinely strained configurations at varying strain values. The affine
strain, found analytically on the static (undeformed) snapshot of the glass, leads to configurations that are rich
with soft low-energy modes as well as unstable modes (negative eigenvalues) that are otherwise completely
“washed out” and lost if one lets the system fully relax after strain. This procedure is consistent with the structure
of NALD. The INM spectrum of deformed states allows for the analytical prediction of the stress-strain curve of
a model glass. Good parameter-free quantitative agreement is shown between the prediction and simulations of
athermal quasistatic shear of a coarse-grained polymer glass.
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I. INTRODUCTION

Explaining the emergence of rigidity across the glass tran-
sition (Tg) and the fact that the low-frequency shear modulus
G goes from zero in the liquid to a finite value in the
glassy state is one of the overarching goals of condensed
matter physics with widespread applications from materials
engineering [1] to the mechanical stability of amorphous bi-
ological matter [2]. An important step towards this goal is
to develop a mechanistic understanding of how amorphous
solids behave under deformation, i.e., of both their elastic and
plastic deformation behavior. In particular, an understanding
of how plastic deformation leads to material yielding and what
kind of microstructures promote the plastic flow is currently
missing, let alone the possibility of predicting the plastic be-
havior in terms of stress vs strain.

Whereas many approaches have aimed at identifying the
carriers of plasticity with moderate success so far given the
absence of identifiable microstructures in glass, approaches
aiming at describing amorphous plasticity in terms of me-
chanical instabilities are, with no exceptions, heavily based on
numerical simulations which hinders the mechanistic under-
standing. In this paper, we tackle this problem from a different
angle. By exploiting recent success in mathematically describ-
ing the temperature-induced softening and melting of glasses
based on the so-called instantaneous normal mode (INM)
spectrum [3–6], we apply the same strategy to describe the
strain-induced analogues of softening and “melting,” i.e., the
plasticity and yielding phenomena [7].

Starting from the seminal work of Squire et al. [8], it
became clear that, in the case of amorphous systems (and

even complex noncentrosymmetric crystals), in addition to
the affine displacements [9], the mechanical properties are
defined by the relaxation of atomic positions towards their
equilibrium values, which are called nonaffine deforma-
tions [10]. These deformations make the material softer, i.e.,
the elastic shear modulus decreases with increasing nonaffin-
ity. It turns out that G = GA − GNA, where GA is the affine
or Born modulus and −GNA is the softening correction from
nonaffine displacements [11].

II. THEORY

Despite the fact that a formal expression for the nonaffine
corrections was written early in Ref. [8], the concept has
been used mainly as a tool to calculate elastic constants in
computer simulations [12]. Only recently the mathematical
nonaffine response theory of viscoelasticity of amorphous
solids was developed [10,11,13]. It was again limited to small
deformations and athermal, meaning that the system resides
at, or very close to, a local minimum of the potential energy
(inherent state). Further introduction of the so-called INMs
made it possible to extend the theory to finite temperatures up
to the glass transition temperature Tg and slightly beyond [14].
The main idea of INMs is that, instead of characterizing the
system in the well-equilibrated inherent states, single snap-
shots of the nonfully equilibrated system are considered, and
averaging is performed over the snapshots. This procedure,
devised long ago in the context of numerical simulations of
liquids [3,4] (and recently formulated analytically [6]) allows
one to retain crucial information about anharmonicities and
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saddle points, which dominate the dynamics of liquids [15]
and glasses [16,17].

The extended theory including INMs (also known as non-
affine lattice dynamics or NALD) yields predictions that
agree with coarse-grained molecular dynamics (MD) sim-
ulations [14,18] and with atomistic simulations [19], quite
well without adjustable parameters. In order to compute the
viscoelastic moduli of a model glass of N particles with mass
m from the MD configurations with the atoms’ positions,
one needs to know the vibrational density of states (VDOS)
ρ(ω) and the affine force correlator �(ω). This leads to the
following expression for the complex viscoelastic modulus
G∗(�) = G′(�) + iG′′(�) [10,14]:

G∗(�) = GA − 3N

V

∫
C

ρ(ω)�(ω)

−m�2 + i�ν + mω2
dω, (1)

where ν is a friction coefficient, the �(ω) can be computed
if all the eigenvalues and eigenvectors of the Hessian matrix
are known, while the VDOS is a modified distribution of
eigenvalues. See Ref. [14] for details.

A limitation of the theory presented above is that it works
only for small deformations. Upon increasing the shear strain
(γ ), the amorphous solid can exhibit extensive irreversible
plastic deformation. At the moment, there is no way to analyt-
ically predict whether a given material state will fail suddenly
and catastrophically (brittle failure) or flow like a liquid
(ductile yielding). Moreover, we cannot predict when or
where it will fail. For disordered solids, including glassy mate-
rials, this fundamental question remains a challenge [20–22].

A useful theoretical framework to analyze elementary plas-
tic events is the limit of temperature T = 0. To this end,
many computational studies on amorphous solids have been
performed with the athermal quasistatic (AQS) protocol [23]:
A glass sample initially quenched down to zero temperature
is deformed by a quasistatic shear procedure consisting of
the (nonaffine) relaxation of the system after each strain step.
While this protocol still cannot accurately reproduce the elas-
tic and plastic stress-strain response of real materials due to
the missing entropic contributions [24–26], it represents a use-
ful framework for developing a deeper physical understanding
of plasticity in amorphous solids [27]. As before, the elastic
and plastic features of amorphous solids can be understood
by analyzing the Hessian matrix [27]. In this case, the NALD
equation for the shear modulus reads as [10,11]

G = GA − 1

V

∑
p

�T
p · �p

ω2
p

, (2)

where ωp is the pth eigenfrequency, �p is the projection of
the affine force onto the pth eigenvector of the Hessian, and V
is the volume occupied by the system.

Our aim here is to extend the approach to large de-
formations and, hence, to predict the stress-strain curve
and the yielding point. We propose to construct the INMs
spectrum of deformed states (in short, γ INM) by an instan-
taneous affine transform (AT) from the nondeformed state.
This procedure provides a set of deformed configurations
{r(γ AT

i )}. Using these configurations in Eq. (2), we calcu-
late the strain-dependent shear tangent modulus, referred to
here as the “local” modulus, from which we predict the

FIG. 1. VDOS ρ(ω) for different affine strains γi, showing the
INMs spectrum for deformed glasses. The inset gives a closer look
at the low-ω region where we see the increase in the number of low-
energy modes with the increase in γ . The VDOS for the fully relaxed
configuration at γ = 0.1 from the AQS simulation is also shown, and
it basically coincides with the VDOS at γ = 0 because the energy
minimization at each strain step effectively washes out all the soft
low-energy modes and the unstable modes.

stress-strain curve. We will subsequently refer to this proce-
dure as γ NALD. A reconstruction of the whole stress-strain
curve of amorphous solids based on modeling the local strain-
dependent shear modulus has been presented also in Ref. [28],
however, their continuum model contained a free parameter
given by the size of hypothetical Eshelby inclusions, whereas
our prediction is entirely parameter free and from only micro-
scopic quantities.

We also compared the calculations based on γ INM with
the calculations obtained with a similar procedure but using,
instead of the γ INM states from AT, the fully relaxed states
in the local energy minima or inherent states {r(γ MIN

i )}. We
found that this calculation does not predict any softening nor
yielding, but just a steady linear elastic regime because relax-
ing the configurations at each strain step effectively washes
out all the instabilities, the soft modes, and the saddle points
(see below in Fig. 1) from the VDOS. This is exactly the
same as the case of varying temperature at constant density
where the VDOS of fully relaxed configurations is basically
T independent [14]. Further, using the energy-minimized con-
figurations after each strain step to compute VDOS and shear
modulus with Eqs. (1) or (2) would lead to an erroneous “dou-
ble counting” of the nonaffine relaxations. This is because
the negative term in Eqs. (1) and (2) already represents the
nonaffine relaxations from affine positions (the � are precisely
the force fields that act on the particles in the affine posi-
tions [10,23]), hence, it is consistent that this term is evaluated
using the eigenvalues and VDOS of affinely deformed config-
urations. Finally, we use the AQS’s stress-strain curve as the
reference benchmark to test our prediction.

III. NUMERICAL SIMULATIONS

We have used a modified Kremer-Grest model [29] of a
coarse-grained polymer system consisting of 100 linear chains
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of 50 monomers, where the polymer chain consisted of two
masses, chosen as m1 = 1 and m2 = 3, placed in an alternat-
ing fashion along the chain backbone.

To test the idea described above, a zero temperature con-
figuration of the solid must first be obtained. All of the above
quantities can then be extracted from the coordinate snapshots
of the system and knowing the interaction potentials. In brief,
the snapshots of the system are obtained using the LAMMPS

simulation package [30]. After a sufficient number of equili-
bration steps, the system is slowly quenched below the glass
transition temperature Tg, and then the energy minimization is
performed. Five replica configurations were constructed, and
all results are, subsequently, averaged over these five glass
realizations at T = 0.

Each glassy configuration is used as an input for the calcu-
lation of the γ INM. For this we perform an AT of the initial
configuration,

r
(
γ AT

i

) = �r
(
γ AT

0 = 0
)
, (3)

where � is the simple shear strain transformation matrix
(strain tensor) with all diagonal elements equal to 1, and the
only nonzero off-diagonal element �xy = γi. The set of γi

values is chosen such that we do not skip any of the significant
plastic events. For every configuration {r(γ AT

i )}, we calculate
the Hessian matrix H and the affine force field � [10]. The
Hessian is then diagonalized to obtain the eigefrequencies
ωp, and the eigenvectors needed to compute the �p fields
projected onto the eigenvectors that enter Eq. (2).

IV. RESULTS

A. Vibrational density of states under strain

We start by looking at the VDOS of both sets of config-
urations, {r(γ AT

i )} and {r(γ MIN
i )} (Fig. 1). The VDOS for a

Kremer-Grest model of polymeric amorphous solid at low
temperatures consists of two prominent features: A large
peak associated with Lennard-Jones (LJ) interactions between
beads and a higher-frequency band dominated by FENE bonds
vibrations [31]. Also, in the {r(γ AT

i )} configurations, the di-
agonalization of the Hessian H produces negative eigenvalues
and, thus, imaginary frequencies. The conventional way of de-
picting these imaginary frequencies is to show their absolute
values on the negative part of the frequency axis as discussed
many times in the literature [3,4,32].

As shown in Fig. 1, the VDOS of the minimized states from
AQS {r(γ MIN

i )} does not show signatures of the deformation,
similar to what happens as a function of temperature where
the VDOS of well equilibrated systems barely changes with
T . In contrast, the VDOS of affinely strained (i.e., not fully
relaxed) states changes significantly in the same way as the
INMs are traditionally extracted from MD configurations that
are not fully relaxed [3–5]. Moreover, in the γ INM procedure,
the increase in γ produces a similar effect on the VDOS,
i.e., proliferation of soft low-frequency modes, exactly as for
the increase in T on the VDOS of liquids and glasses in
standard MD simulations at zero strain (for the latter effect,
see Refs. [5,14] and references therein). In particular: (i) the
population of low-energy and saddle-point unstable (nega-
tive eigenvalue) modes increases significantly with increasing
strain; (ii) the increase in γ causes the LJ peak and the

FIG. 2. Strain-dependent shear modulus. Yellow (light gray)—
calculated with Eq. (2) using the γ INM spectrum as input excluding
the lowest negative eigenvalue. Blue (dark gray)—calculated as the
slope of AQS stress-strain curve.

FENE-bond peaks to decrease and shift to lower frequencies,
while a tail of very high-frequency modes emerges at the end
of the spectrum and the Debye frequency ωD is shifted to
higher frequencies [33].

The proliferation of low-energy modes (with positive
eigenvalues) directly explains the softening of the material
upon increasing γ , similar to what happens upon increasing
T at vanishing strain as shown in Ref. [14].

B. Predicting shear modulus and stress-strain curve

To directly test if the softening predicted by the previous
mechanism also occurs in reality, we first semianalytically
calculate the local strain-dependent shear modulus of the
{r(γ AT

i )} configurations using Eq. (2). Figure 2 shows the
local shear modulus as a function of the applied shear strain
calculated via Eq. (2), excluding the lowest negative eigen-
value from the sum and as a slope of the AQS. In both cases
we average it over 50 replicas of the polymer glass. As shown
in Fig. 2, the overall trend of the “softening” as a manifesta-
tion of the strain-induced softening caused by the proliferation
of low-frequency vibrational modes shown in Fig. 1, similar to
the AQS. For some values of strain it drops to huge negative
values, these drops corresponding to a negative slope in the
stress-strain curve or, in another words, to mechanical insta-
bilities. We can see that NALD is overestimating the negative
drops of the shear modulus. There are two possible reasons for
this: (1) the specific AT configurations are not ideal to predict
plastic events (but at the moment there are not better alterna-
tives), (2) Eq. (2) itself is approximate, and possibly must be
improved, which is also suggested by the slight discrepancy
in the low-γ region. Further work is required to clarify this
point. Note also that these drops of the shear modulus can be
called “plastic events” only if a single replica is considered.
Thus, in Fig. 3 we show a frequency of the plastic events fe

across 50 replicas, calculated as the average appearance of the
negative shear modulus at strain γ . As shown in the figure,
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FIG. 3. The frequency of the plastic events fe, calculated as the
average appearance of the negative shear modulus averaged over 50
replicas.

the frequency calculated through γ NALD is very similar to
the one from AQS simulations.

Using the calculated local shear modulus we then re-
construct the stress via the following algorithm (see also
Ref. [28]):

σ (γi ) = σ (γi−1) + G(γi )(γi − γi−1). (4)

We present the stress-strain curves in Fig. 4 . Here, we
compare the stress measured as the direct output of the AQS
simulation with that predicted from Eq. (4) using the val-
ues of G(γi ) computed from the undeformed snapshots. The
semianalytical calculation from Eq. (4) (red-dark gray) gives

FIG. 4. Stress vs strain. Stress directly recorded in AQS simu-
lation of deformation (solid black). Stress mathematically predicted
from γ NALD [Eq. (2)] for the set of snapshots {r(γ AT

i )} from the the
N = 5 K system averaged over 50 replicas. Curves are shown that
exclude all negative eigenvalues (dashed green), exclude the lowest
negative eigenvalue (red-dark gray), include only the lowest negative
eigenvalue (dotted blue), and NALD applied to AQS states (cyan-ight
gray).

FIG. 5. Normalized standard deviation for negative and positive
eigenvalues. For the negative eigenvalues the absolute value has been
taken in the plot. The value of shear strain is fixed at γ = 0.03

meaningful results, successfully predicting the deviation from
linearity at ≈5%. Similar to the vDOS results, using the
configurations {r(γ MIN

i )} from the fully minimized states of
the AQS, although it shows a moderate softening, gives no
indications at all of the appearance of the plastic events. In a
similar way, if we include the lowest negative eigenvalue into
our NALD analysis, there are no indications of the softening
whatsoever.

C. Analysis of lowest positive and negative eigenvalues

In order to obtain an agreement between γ NALD and
AQS in the above comparison of stress-strain curve in Fig. 4,
the lowest negative eigenvalue was discarded in the γ NALD
calculation. To provide a tentative explanation, we analyzed
the statistics of the eigenvalues E = ω2, both negative E< and
positive E>, of the Hessian matrix at a fixed strain γ . The re-
sults are shown in Fig. 5. As expected, the standard deviation
becomes larger for the modes near E = 0 (or ω = 0). In par-
ticular, it is seen that the standard deviation is systematically
larger for the negative eigenvalues, i.e., for the INMs, and,
in particular, near |E | = 0. Upon extrapolating to |E | = 0 or
ω = 0, this effect becomes striking and provides a possible
justification for our heuristic elimination of the lowest nega-
tive eigenvalues in γ NALD while retaining the lowest positive
one as argued below.

From the data shown in the figure, we gather that the
lowest negative eigenvalue with mean |E<| = 0.0190 has a
non-normalized standard deviation equal to approximately
0.0130, which is in the same order of magnitude of |E<|. This,
in other words, implies that the lowest negative eigenvalue is
statistically less meaningful, which provides a justification for
neglecting it in our γ NALD calculation.

Furthermore, the fact that the standard deviation becomes
comparable to the mean, also implies that the lowest negative
eigenvalue could be confused for a zero-energy mode. This
can be explained with the fact that, under a shear γ and in a
dissipative environment (our polymer glass system is subject
to a Langevin thermostat), additional trivial Goldstone-type
modes may exist [34], besides the standard three Goldstone
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trivial modes with ω = E = 0 that exist for nonsheared solids
due to spontaneously broken translations. Since these three
Goldstone modes for nonsheared solids are always discarded
in calculations of the dynamics and mechanics, then also any
additional Goldstone modes arising from the applied shear
field should also be discarded. This is another possible jus-
tification for discarding the lowest negative eigenvalue (and
not the lowest positive), i.e., that it may represent a zero
Goldstone mode due to shear as discussed in recent work on
the additional Goldstone zero modes in sheared systems, e.g.,
see Ref. [34]. Clearly, further work on this issue is required in
future investigations.

V. CONCLUSION

To summarize, we have presented a microscopic mathe-
matical framework that is able to predict in a parameter-free
way the nonlinear deformation and plastic flow transition
of amorphous solids. The approach is based on the NALD
theory of amorphous solids [10,11,14,19] formulated for
large strains by extending the concept of INMs to deformed
glasses. In this procedure, the mechanical relaxations (and
avalanches) are effectively taken into account via the imag-
inary frequencies (unstable modes) contained in the INMs
spectrum of the Affinely Transformed (AT) strained config-
urations, along with the proliferation of low-energy modes
upon increasing the strain. These effects can hardly be seen
in standard calculations where the energy is minimized after
each strain step. Instead, in our approach, by using the affinely
transformed strain states (which is the correct input to the
nonaffine response calculations), all the information about
microscopic relaxation processes is retained. Using the INMs

of the deformed glass as input to the nonaffine shear modulus
expression in Eq. (2), it is then possible to semianalytically
reconstruct the stress-strain relation in a parameter-free way
via Eq. (4). In comparison with actual AQS simulations of
the plastic deformation of a coarse-grained polymer glass,
our prediction is able to capture the deviation from the linear
elastic regime without the need for performing any simulation
of the deformation process, i.e., using only MD snapshots of
the undeformed material as input. The methodology is still far
from perfect, and there could be better candidates instead of
AT configurations to use as the input of the γ NALD calcula-
tion. In future work, we will investigate systems with more
extensive annealing, which have a much more pronounced
(sharper) yield point. It will also be useful to understand
how the spatial structure of the lowest eigenmode, allegedly
responsible for the softening, is connected to new topological
“defects” that have been recently identified in the displace-
ment field of deformed glasses and which can self-organize
into a slip system at yielding [35]. Further extensions of the
current approach will be useful to elucidate rheological behav-
ior of soft materials [16]. The γ NALD approach developed
here can be further extended for finite temperatures and for
atomistic systems with more complex potentials.

The data that support the findings of this paper are available
within the article.
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