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Entropy of timekeeping in a mechanical clock
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The dynamics of a unique type of clock mechanism known as grasshopper escapement is investigated with
the aim of evaluating its accuracy in a noisy environment. It is demonstrated that the clock’s precision scales
linearly with the rate of its entropy production, consistently with recently reported results regarding nanoscale
and quantum clocks. Moreover, it is shown that the inevitable force variations present in the mechanism can be
modeled with a Maxwell-Boltzmann statistic. Finally, the function of clock error is compared with Brownian
motion and its fractal-like properties are discussed. The numerical results are confirmed with experimental data.
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I. INTRODUCTION

A mechanical clock is a device that uses a driven oscilla-
tor (usually a pendulum or balance wheel) for timekeeping.
Its central part, the so-called escapement mechanism, pro-
vides energy to the pendulum at some fixed oscillation phase
range, so that the pendulum becomes a self-excited oscillator
[1]. Various types of escapements have been analyzed; some
recent studies include anchor escapement [1,2], gravity es-
capement [3,4], and verge and foliot [5,6]. A large overview of
the basic physics of clock operation is presented in [7]. To sus-
tain the motion of the oscillator in the presence of dissipative
forces such as air resistance, the escapement mechanism needs
to continually input energy to the system. That energy is then
dissipated into the environment, raising its entropy and mak-
ing the clock an irreversible system. In fact, the requirement
of energy dissipation seems to be a fundamental feature of
all clocks, including quartz oscillators, and quantum periodic
and nonperiodic clocks [8]. To quantify the passage of time,
one has to observe the evolution of some system toward a
higher entropy state. One question that immediately arises is
how the amount of dissipated energy affects the precision of
the clock. In the paper by Erker et al. [9], this issue has been
extensively explored in a quantum system. It has been shown
that there is a fundamental, linear relation between the accu-
racy and the rate of entropy increase. In [10], this connection
has been confirmed to exist in nanoscale electromechanical
clocks, which are semiclassical systems. In this paper, we
attempt to establish some general relations between the rate
of entropy increase and timekeeping accuracy, as applied to a
mechanical clock. Naturally, such a classical macroscopic sys-
tem cannot approach the strict quantum bounds of accuracy;
nevertheless, such an analysis may shed some light on the
dynamics and limitations of mechanical clocks. In particular,
the grasshopper escapement, which is used in the world’s most
accurate mechanical clock [11], is analyzed.
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In 1722, John Harrison introduced a new type of mechani-
cal clock mechanism, the so-called grasshopper escapement
[12]. In many ways, its design seemed to be contradictory
with established clockmaking principles and it was unclear
how such a construction could attain higher precision than
contemporary designs [13]. Its most striking feature was a
large pendulum amplitude; in contrast to the usual approach
where the design strives to approximate an ideal mathe-
matical pendulum, Harrison’s clock took advantage of the
nonlinear effects emerging at large swing angles. One of the
consequences of such a design is its relatively large power
consumption: a pendulum with a large oscillation amplitude
has a greater average velocity and thus loses more energy
in each cycle due to the air friction. While these losses can
be avoided to some degree, removing them completely de-
feats the purpose of the clock; the pendulum has to achieve
some steady state with finite amplitude. Harrison properly
predicted that losses may not be detrimental to the accuracy,
unknowingly stumbling upon a fundamental law that has been
recognized almost 300 years later.

The timekeeping performance of the grasshopper escape-
ment is extensively studied in [14–16]. In our previous paper
[17], it is shown that chaotic motion can emerge in such a sys-
tem, introducing quasirandom disturbances to the pendulum’s
motion, even in the absence of external influences. In this
paper, the effects of such a random noise on the clock accuracy
are discussed and the relations between noise level, clock
power, and accuracy are explored. The theoretical predictions
and numerical calculations are experimentally verified with a
model mechanical clock.

The paper is organized as follows. In the first section,
the theoretical description of the clock used in the numerical
calculations is presented. In particular, the form of driving
torque function, the role of noise, and some general energy
conservation considerations are discussed. In the next section,
a physical model of the clock is presented and the method-
ology of measuring its speed is explained. A considerable
part of this section is devoted to finding a proper model for
describing the noise present in the experimental setup. This
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FIG. 1. Pendulum angle (dark blue) and driving torque (bright
orange) as a function of time. The pendulum has an amplitude of
3◦ and αr = 2◦ (black dashed lines). The primary driving torque MF

is a square wave with amplitude MF0 = 0.02 N cm, which is then
modified with noise term MN .

is also further discussed in the Appendix. In the next section,
a connection between clock accuracy and generated entropy
is established, and confirmed with numerical calculations per-
formed for various pendulums and escapement types. Finally,
the fractal structure of the clock error function is explored,
indicating that the clock dynamics can be modeled with frac-
tional Brownian noise.

II. THEORY

Consider a pendulum in the form of a point mass m,
hanging on a weightless string with length L, that has been
displaced from its resting position by an angle α. The equa-
tion of its motion is

α̈ = M

I
= −mgL sin(α) − γ α̇ + MF (α) + MN (t )

I
, (1)

where M is the total moment of force and I is the pendu-
lum’s moment of inertia, γ is the damping coefficient, MF

is the moment of force (torque) provided by the escapement
mechanism, and MN (t ) is a noise term. For the grasshopper
escapement, one can use an approximation [17,18]

MF (α) = MF0sgn(α − αrsgn(α̇)), (2)

where MF0 is a constant and αr is a geometrical parameter—
the pendulum angle at which the driving torque switches sign.
It should be pointed out that the forcing term MF is not explic-
itly time dependent, but rather tied to the pendulum’s position
and thus it has the same frequency as the pendulum itself.
This makes the system a self-excited oscillator. In particular,
its an example of van der Pol’s oscillator [16]. Such a system
exhibits a characteristic local minimum of oscillation period,
making it insensitive to small changes of driving term (in
the case of clocks, torque) [14,17,19]. Figure 1 shows the
pendulum angle and torque as a function of time.

The noise term MN (t ) is a phenomenological quantity en-
compassing multiple processes. In [17] it has been shown
that chaotic motion in the system leads to small, random
disturbances of period; the plot of total error, e.g., the sum
of errors of individual periods, exhibits structure resembling
a random walk. One of the possible forms of MN that lead to

FIG. 2. The pendulum period as a function of driving torque MF ,
calculated for three values of Q factor. Inset: Amplitude as a function
of driving torque.

such a dynamic is white Gaussian noise, which is also a close
approximation of thermal noise in electrical systems [20]. As
it will be shown in the later part of the paper, in the case of a
mechanical clock a better model can be proposed.

Equation (1) with the forcing term Eq. (2) is solved nu-
merically by integrating the equation of motion with a fixed,
discrete time step �t = 20 μs. The chosen value is a com-
promise between simulation time and accuracy. The noise is a
random variable added at every time step. Due to the fact that
the pendulum period is on the order of 1 s, the noise changes
happen at a timescale that is many orders of magnitude faster.
On the other hand, long-term effects originating from envi-
ronmental changes of temperature, pressure, and so on [21]
are not explored here.

A characteristic feature of the grasshopper escapement is
the existence of the local minimum of the period T as a
function of amplitude A, e.g., T (A), which is a result of
interplay between the effect of escapement and the increase
of physical pendulum period with its amplitude. An accurate
estimation of this effect is presented in [14]. Near this min-
imum, ∂T/∂A ≈ 0 and so the system is insensitive to small
changes of amplitude. The location of this minimum depends
on the Q factor of the pendulum, which is defined as

Q = 2π
E

�E
, (3)

where E is the total energy of the pendulum and �E is energy
lost in one period. In the following sections, the Q factor
is a known constant (set in simulations or measured in the
experimental setup).

The typical function T (A) obtained in numerical simula-
tion is shown in Fig. 2. Notably, for the lower Q factor the
local minimum is wider, which indicates that such a system is
more tolerant to small changes of amplitude (and thus torque).
Therefore, a more lossy system with lower Q factor is less
sensitive to torque changes. However, this result applies to
the long-term effects; the period values shown in Fig. 2 are
obtained in a steady state, when the power delivered to the
pendulum is equal to the power lost. In such a case, the
system’s trajectory is a so-called limit cycle [22]. However,
momentary forces due to the noise move the pendulum away
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FIG. 3. (a) Schematic of the grasshopper escapement: escape
wheel (top, 5) engages the pallets (orange, 1, 2); the pallet resting
positions (green, 3, 4) are moving, allowing for recoil of the pendu-
lum (6). (b) Realization of the escapement with LEGO bricks.

from its limit cycle and thus affect the period. In particular,
let us consider a short impulse (shorter than the period) that
delivers some energy �E to the pendulum, disturbing it from
its steady-state operation. The increase of kinetic energy by
�E causes a change of mean velocity:

�V ∼ �E

V
∼ �E√

E
. (4)

Therefore, a general rule, regardless of the particular type of
clock mechanism used, is that for a given power of noise, a
pendulum with larger mean velocity, and thus larger energy,
experiences smaller change of mean velocity and, correspond-
ingly, period. To reduce the errors caused by random noise,
one should aim for the largest practical pendulum energy.
Moreover, as shown in [17], in systems with lower Q factor the
effects of any disturbance die out faster, so that the pendulum
returns to steady-state operation in a shorter time, producing
smaller total timekeeping error (sum of period errors). The
brilliance of the grasshopper escapement lies in the fact that a
pendulum with low Q factor and large amplitude is exactly the
right choice to reach the local minimum ∂T/∂A, so that the
clock becomes insensitive to both long-term and short-term
disturbances.

III. EXPERIMENTAL RESULTS

To verify the correctness of numerical simulation, a model
clock fitted with a grasshopper escapement has been con-
structed and its speed was measured. For ease of quick
prototyping, LEGO bricks have been used in construction.
While this choice may seem surprising at first, the high ac-
curacy standards to which the individual elements are made
allows for the creation of highly precise instruments, such
as a Watt balance capable of measuring the Planck constant
with less than 1% error [23]. The central part of the clock
is the escapement mechanism, which is shown in Fig. 3(a).
In contrast to the usual implementation of such a mechanism
[13], the pallets (marked with orange) that engage the escape
wheel are located below it and are connected directly with

FIG. 4. (a) Fragment of the typical sound recording obtained in
the experiment. (b) The calculated period values.

the pendulum, which simplifies construction without impact-
ing the escapement’s general characteristics. The interface
points between left and right pallets and escape wheel are
located at the same distance from pendulum pivot (center
of dashed circle), ensuring that the moment of force acting
on the pendulum is the same whether it moves to the left
or to the right. Overall, the moment of force is not constant
and varies slightly with pendulum angle, but this is not an
important factor in system dynamics [17]. Figure 3(b) shows
the LEGO implementation of the mechanism. The pendulum
(marked with the number 5) has a period of 1.8 s, mass of
0.3 kg, and an estimated Q ≈ 1500. The clock is powered by
a weight on a rope, unwinding from a spool (4) and providing
torque. The driving weight of m = 0.2 kg descends at a rate of
20 cm/hour, providing approximately 110 μW of power. For
more details, see [24]. The period of oscillation is measured
by recording the ticking sound of the clock. In every period,
two audible ticks can be heard, corresponding to the moment
when the left or right pallet disengages the escape wheel and
falls down to its resting position. An example recording is
shown in Fig. 4(a). The sampling rate of the audio signal
is 44 kHz, providing a theoretical upper limit of the time
resolution δt ≈ 23 μs. Due to the fact that the escapement
mechanism is not fully symmetric, the peaks corresponding to
the left and right pallets are not equal. Furthermore, one can
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FIG. 5. Comparison of the period distribution obtained in exper-
iment (left) and simulation (right).

see some period to period variation of the peak height. This
indicates that the force acting on the pallets is not constant
in time, but exhibits some random variation. The period is
calculated by separating the peaks from the background us-
ing fixed threshold and calculating the time between peaks.
The threshold is fitted to ensure a good compromise between
the fraction of captured peaks and false signals due to the
background noise. Any outliers (periods that differ from the
mean by more than 2.5%) that may result from said noise are
discarded. The calculated periods are shown in Fig. 4(b). The
nominal period of the pendulum is 1.8 s. The average value
(red line) is slightly larger, indicating that a small correction of
the pendulum length is necessary. The measured periods seem
to follow a normal distribution with a standard deviation of
σ ∼ 0.009 s. A total number of 9377 periods was measured,
with 37 discarded outliers.

In order to verify the hypothesis that the period variance
can be modeled with white noise, the experimental data have
been compared with numerical simulation results. The com-
parison of period distributions is shown in Fig. 5. On the left
panel, one can see the period histogram (bars) and a fitted
Gaussian (red line). There is a fairly good match in the region
near the average value, but in the data there are more values
on the sides of the distribution. In other words, periods that
differ considerably from the mean one are slightly more prob-
able than in a normal distribution. There are several factors
contributing to such a result. The pendulum is a system that
is characterized by some memory of past events; any given
period is affected not only by disturbances happening in that
period, but also to ones that occurred in past periods. Thus, the
underlying condition that periods are statistically independent
is not exactly met. Moreover, the noise itself, representing
variation of driving torque, originates from the interaction
between many mechanical elements of the clock and may con-
tain many short-term and long-term contributions. Naturally,
direct modeling of the contact friction between all clock parts
(gears, axles) that form the interface between the source of
power and pendulum is challenging. One of the approaches,
proposed in [25] and adapted in our previous paper [17], is
to model the mechanism as a harmonic oscillator with some
resonant frequency, which is coupled to the pendulum. Such a
double-oscillator system exhibits chaotic motion [26], result-

ing in quasirandom driving torque. Chaotic motion can also
emerge in some single-oscillator systems that are periodically
driven [27] or parametrically damped [28]. All these features
are present in the dynamics of a mechanical clock.

A potential alternative approach, which will be explored
here, is based on the fact that the clock mechanism consists
of a large number of interacting parts that exchange energy. In
particular, let us assume that the system contains gears that
are freely moving between collisions (e.g., the majority of
friction comes from meshing teeth, not from axle bearings). In
such a case, one can propose that the noise function follows a
Maxwell-Boltzmann distribution, which is derived under the
same assumption that we have a large number of particles that
interact only during collisions. In particular, one can use a
distribution of velocity in a single axis,

f (V ) =
√

m

2πkT
exp

(−mV 2

2kT

)
, (5)

where m is particle mass, k is the Boltzmann constant, and
T is temperature. In the case of a nanoresonator operating
in dilute gas, the above relation can be used to model the
force acting on the resonator caused by collisions with gas
molecules. Only a single axis is used because it is assumed
that the period is measured by observing the resonator motion
in one axis; this is the case for a mass on a spring, a membrane,
and a pendulum with low amplitude. Interestingly, in a lot
of cases the Maxwell-Boltzmann statistic remains valid in
dense fluids and even in solids [29]. Moreover, the statistic
remains valid with a good approximation even in cases where
the number of bodies involved is relatively small, as demon-
strated in [30]. This is the base of the assumption that such
a distribution may be useful for modeling of a mechanical
clock. It should be stressed that in a macroscopic system, the
individual disturbances are also macroscopic and do not come
from air molecules; thus the mass m and temperature T in
Eq. (5) are abstract fitting parameters, not properties of any
physical body. For a numerical justification of Eq. (5), see the
Appendix.

The results of numerical simulation obtained with the
above mentioned model are shown in Fig. 5 (right panel).
The period histogram shows an excellent match with the
experimental data on the left panel. Again, a fitted normal
distribution underestimates the values far from the mean. The
noise term is modeled with Eq. (5); at every computation step,
a uniformly distributed random value V ∈ (0, 10) is chosen
and the noise term is given by

MN = MN0V f (V ), (6)

where MN0 = 100 N cm is the noise amplitude and the distri-
bution parameters are m = 1, kT = 0.9. Due to the fact that
the numerical time step �t = 20 μs is very short, individual
noise values have little impact on the pendulum motion de-
spite the seemingly large value of MN0.

By changing the simulation parameters, one can make
some general observations. In Fig. 6 the calculation results
for selected values of pendulum Q factor and temperature
parameter kT are shown. As expected, both decrease of Q
factor and increase of temperature result in a wider spectrum.
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FIG. 6. Period histograms obtained for various values of pendu-
lum Q factor (left) and temperature parameter (right).

The results obtained in the limit of high Q factor and low
temperature are closer to a normal distribution.

In Fig. 7, the total clock error (the difference between
clock time and reference time) is shown. Again, there is a
close correspondence between experimental and numerical
results. The plot resembles a random walk, which is a typical
result in such measurements [18]. The shape of the plot has
a fractal-like structure that is self-similar; this feature will be
discussed in detail later. Overall, the results indicate that the
assumed numerical model is correct and can be used to predict
the dynamics of the clock.

IV. ENERGY DISSIPATION AND ACCURACY

For a pendulum with a given Q factor, from Eq. (3), one
can calculate the energy dissipated in a single period:

�E = 2π
E

Q
, (7)

where E is the total energy of the pendulum. For the ampli-
tude A, E = 1

2 Iω2A2. The energy is lost due to the pendulum
suspension friction and air friction. In both cases, it ends up
as heat dissipated in the environment. The change of entropy

FIG. 7. Comparison of the total error obtained in experiment
(left) and simulation (right).

FIG. 8. The parameter N as a function of entropy increase per
period, �S, calculated for two values of Q.

in a single period is

�S = �E

T
= π Iω2A2

QT
, (8)

where T is the temperature of the environment. One can
reduce losses either by increasing the Q factor or reducing the
amplitude and frequency. In realistic implementations, there
is an upper bound to the Q factor depending on the quality of
the suspension mechanism and air resistance of the pendulum.
The frequency is tied to the length of the pendulum. For a
concrete example, let us consider a pendulum with length
L = 1 m, mass m = 1 kg, driven by a grasshopper escape-
ment with torque MF0 ∈ (0, 1) N cm. The white noise has an
amplitude of MN = 0.1 N cm and the system operates at room
temperature, T = 300 K. To qualify the accuracy of the clock,
one can introduce a parameter N [9],

N =
(

T̄

σT

)2

, (9)

where T̄ is the mean period and σT is the standard deviation
of the period. The value of N is the number of periods after
which the standard deviation of the clock time (e.g., the sum
of periods) is equal to a single period [9]. The value of N
as a function of entropy increase per period, calculated for a
range of torques and two Q factors, is shown in Fig. 8. In a
steady state, the energy dissipated per period is equal to the
work done by the escapement mechanism. Thus, the torque is
connected with �S by

�S = �E

T
= 2

T

∫ A

−A
MF (α)dα, (10)

where the factor 2 originates from the fact that in a single
period, the pendulum is pushed in both directions, over the
angle range of 〈−A, A〉. As the torque MF increases, both
the amplitude A and the work done in a single period are
also increasing, so the various x coordinates of the points
in Fig. 8 correspond to clock operation with various driving
torque values. In general, the increase of MF0, for the constant
amplitude of noise MN0, results in a better signal-to-noise ratio
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MF /MN , which should provide a more stable clock operation.
This is the case in the results shown in Fig. 8. For Q = 4000
(blue curve), one can notice three distinct regions marked 1,
2, and 3 and separated by vertical lines. The boundaries of the
regions are not sharply defined, but they can be clearly distin-
guished by a jump of the slope of function N (�S) and also the
increasing spread of the individual points (standard deviation
from exact linear relationship). In the simulations correspond-
ing to region 1, the power provided by the escapement was
insufficient to sustain the motion of the pendulum and thus
the calculated value of N does not describe a steady state,
but only a finite time span when the amplitude is nonzero.
The steady operation happens in region 2. One can see that
the relation between N and �S is linear, which is consistent
with results in [9] and [10]. By further increasing the driving
torque, one reaches the saturation region 3. In this regime of
operation, the accuracy N is still increasing with �S, but at a
slower rate. The dynamic becomes more chaotic, with larger
variation of obtained N values. The results calculated for
smaller Q factor (red curve) show similar structure. However,
due to the fact that for smaller Q, at any given amplitude A
more power is dissipated, the boundaries of regions 2 and 3
are shifted towards larger �S. Initially, results for Q = 1000
are characterized by roughly four times smaller accuracy than
Q = 4000. However, due to the longer linear region 2, the
peak accuracy before saturation happens is less than two times
lower for the more lossy pendulum. It should be mentioned
that the local minimum ∂T/∂A is located near the beginning
of region 2 in Fig. 8 and does not correspond to any char-
acteristic point of the plot. One can set the operating point
to an amplitude larger than the position of this minimum,
resulting in greater �S and smaller sensitivity to noise, at the
cost of larger impact of long-term effect due to ∂T/∂A > 0.
In conclusion, the optimal choice of the amplitude (and so
the driving torque) depends on the ratio of short-term to long-
term disturbances present in the system. It should be noted
that in the considered driving torque range, the value of N
never fully saturates. However, any practical realization of the
system is characterized by some maximum possible ampli-
tude beyond which the escapement cannot function properly.
To further confirm that the characteristic shape of the T (A)
function has no direct impact on the noise sensitivity of the
grasshopper escapement, one can make a comparison with
other types of mechanism such as chronometer escapement.
In the chronometer escapement, the driving torque function
MF (α) has the form of a single, short impulse occurring at
α ≈ 0, which is the point where the effect of such an impulse
on the period is smallest [7,18]. The comparison results are
shown in Fig. 9. One can see that both types of mechanism
exhibit exactly the same, linear relation between N and �S
when matched with the same pendulum. This indicates that
the obtained result is not a specific feature of the mechanism
in question, but a more general tendency; the advantage of
the grasshopper escapement is in the possibility of using
large amplitude, and thus large �S, with no disadvantage to
long-term effect sensitivity. The obtained value of N is lower
than the theoretical upper limit presented in [10] by a factor
of approximately 106. However, a more refined, non-LEGO
design could get considerably closer to this boundary.

FIG. 9. The relation between parameter N and entropy increase
per period, �S, calculated for two types of clock mechanisms and
Q = 1000.

V. FRACTAL STRUCTURE OF THE ERROR FUNCTION

Let us assume that a perfect reference clock with period TR

is used to evaluate the accuracy of the observed, noisy clock.
The total error of the clock ET at a time t is the sum of the
errors that occurred in every period up to t . Thus, it can be
defined as

ET =
t/TR∑
i=1

(Ti − TR). (11)

As mentioned before, the function ET (t ) appears to have
a fractal-like structure. Its self-similarity is demonstrated in
Fig. 10; by magnifying a small part of the plot, one obtains
a fragment that is very similar to the whole curve. On the
lowest level, one has individual periods that are either longer
or shorter than the reference period. Every disturbance pro-
duces a jump in the period value. In the case where there is
no correlation between jumps, one obtains a random walk,
which in the limit of a large number of small jumps approx-
imates Brownian motion [31]. However, as observed earlier,
the individual periods cannot be treated as completely inde-
pendent and thus the function ET (t ) is only an approximation

FIG. 10. The function ET (t ) calculated from experimental data.
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FIG. 11. Four iteration steps of the box-counting procedure. The
curve is put in a space of a given size (text over the images) and the
number of boxes containing the curve (yellow rectangles) is counted.

of the trajectory of Brownian motion. To resolve the small
differences between the clock error and true random walk, one
can use the concept of fractional dimension D. The Brownian
motion is characterized by the value of D = 1.5 [32].

To calculate the dimension of the plot of the function ET (t ),
one can use the so-called box-counting method [33]. Let us
consider a measured or simulated set of n periods, with values
Ti, i = 1, . . . .n. Every period starts at some time ti. By using
Eq. (11), one can construct a series of values of total error
ETi. The pairs of values (ETi, ti ) are interpreted as points
on a two-dimensional plane. To perform the box-counting
procedure, the plane containing the curve is divided into N
squares (boxes). Then, one counts the number M of boxes
which are nonempty, e.g., that contain one or more points.
The dimension is defined as

D = D0
∂ log M

∂ log M
, (12)

where D0 is the number of dimensions of the space that
contains the curve (in our case, D0 = 2). For example, if
the size of the boxes is reduced by a factor of 2, then the
number of boxes covering a two-dimensional plane increases
by a factor of 22, while the number of boxes containing a
one-dimensional line increases by a factor of 21. The process
is illustrated in Fig. 11. The counting is done iteratively; as
the box size becomes smaller, the number of boxes containing
the curve (marked by yellow rectangles) increases. The rate
of this increase is proportional to the dimension. Specifically,
one needs to calculate the slope of the function log M(log N ),
as indicated by Eq. (12).

One important difference between strict mathematical frac-
tals and fractal-like measured data is the fact that physical
objects are not infinitely self-similar; there is some lowest
scale, which in our case is a single period. A two-element data
set containing two consecutive periods produces a plot that is a
straight line connecting the points, which is one dimensional.
As the number of points increases, the curve becomes more
complicated, containing more details on various timescales.
Thus, in general one can expect that the dimension increases

FIG. 12. The relation between the length of measurement or
simulation and the dimension of the curve ET (t ).

with the length of the data. This is the case in the measured
and calculated results, as shown in Fig. 12.

Both experimental and simulation results start from D = 1
and converge upon some fixed value in the long-time limit.
Notably, the simulation results where the noise has been mod-
eled with a Maxwell-Boltzmann distribution provides a better
fit to the experimental data. Specifically, both dimensions
converge upon a value of D ≈ 1.2, while normal distribu-
tion noise results in D ∼ 1.27. The obtained dimension is
significantly lower than the theoretical value of D = 1.5 for
the Brownian motion. However, it matches the results for
the so-called fractional Brownian motion. Such a system is
characterized by a so-called Hurst exponent, which is a mea-
sure of the long-time memory of the system. Specifically, the
obtained data are characterized by a Hurst exponent H = 0.7.
The value of H > 0.5 indicates that there is a positive cor-
relation between consecutive periods and the system has a
memory of past states [34,35]. The process is persistent; e.g.,
the chance to obtain two consecutive periods that are both
shorter or longer is increased [36].

A question arises whether the noise description based on
fractional Brownian motion is compatible with the approaches
that treat the system as deterministic, but chaotic [17,25].
In many cases, random and chaotic processes are hard to
distinguish [37]. In particular, some types of chaotic flows
are characterized by phase trajectories that can be described
as a fractional Brownian motion with H = 0.74 [38]. This
value is close to the one obtained in the presented experiment,
indicating that both direct inclusion of noise presented here
and the chaotic double-oscillator model proposed in [25] are
well suited for description of a real clock.

VI. CONCLUSIONS

The dynamics of a grasshopper escapement operating in
a noisy environment has been studied. By using experimen-
tal data and numerical simulations, it has been shown that
the distribution of pendulum periods is accurately modeled
by assuming that the random forces acting on it follow the
Maxwell-Boltzmann distribution. The possible origin of this
type of statistic is discussed and tested numerically. Moreover,
a linear dependence of the clock accuracy on the entropy
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FIG. 13. (a) Schematic representation of the system and its one-
dimensional model. (b) Velocity distribution of the particle hitting
the wall.

increase per period is demonstrated, indicating that the recent
results regarding quantum and semiclassical nanoscale sys-
tems can be extended to classical, macroscopic mechanisms.
Finally, the fractal dimension of the function of clock error is
calculated, showing its connection with fractional Brownian
motion and confirming that the pendulum acts as a system
with long-time memory.

APPENDIX

Let us consider a set of N linked gears, as shown in
Fig. 13(a). They are characterized by some value of angular
velocity and exchange angular momentum during collisions.
Due to the fact that the angular velocity is a scalar, the motion

is one dimensional and can be modeled as a set of particles
moving in one axis [Fig. 13(a), bottom]. The system is bound
by walls (vertical lines). Due to the friction, the collisions
are inelastic, with restitution coefficient ε = 0.999; e.g., the
relative velocity after collision is 0.1% lower than the velocity
before the collision. The initial positions of particles, xi, are
random with uniform distribution x0 ∈ (0, 1). The walls are
located at x = 0 and x = 1. Particle diameter is set to d =
0.01 and the particles have equal masses. Between collisions,
the particles are free and thus follow the equation of motion

mẍ = 0. (A1)

After a collision (when distance between two particles is
smaller than d), for the initial velocities u1, u2, the final
velocities v1, v2 are given by

v1 = 0.5(1 − ε)u1 + 0.5(1 + ε)u2,

v2 = 0.5(1 + ε)u1 + 0.5(1 − ε)u2. (A2)

Based on the above rules, the motion is numerically integrated
with a finite time step �t = 0.01. To introduce energy to
the system, a white noise is added; it has the form of ran-
dom forces with Gaussian distribution that act on all bodies.
Specifically, at every time step a normally distributed value
with a mean of zero and standard deviation of 0.01 is added
to every velocity. After some time, an equilibrium is reached
where the power of the noise is equal to the power lost in
collisions. Let us suppose that one of the walls, e.g., one of the
ends of the gear chain, is the escapement. One can calculate
the velocity distribution of the particles hitting the wall, and
thus the force acting on it. The results calculated for N = 10
particles are shown in Fig. 13(b). Despite the relatively small
number of particles, the obtained histogram is a fairly close
approximation of the Maxwell-Boltzmann distribution (red
line). It should be noted that the relatively large number of col-
lisions in the simulation (approximately 3 × 104) is realistic;
in a real system the contact between gear teeth is not a single
continuous force, but a series of micro-impacts depending
on the surface roughness and high-frequency vibrations of
the gears. Furthermore, it has been confirmed that the same
distribution is obtained regardless if the noise has normal or
uniform distribution.
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