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How vertical oscillatory motion above a saturated sand bed leads to heap formation
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We show how oscillations in fluid flow over a fluid-saturated and porous sediment bed leads to the development
of a bedform. To understand the role of pressure fluctuations on the bed associated with flow oscillations, we
analyze how the flow penetrates into and through the bed. We then calculate the corresponding vertical pressure
gradients within the bed that tend to expand the bed along the vertical direction. When these pressure gradients
are large enough, they facilitate small irreversible rearrangements of the grains within the bed, and so cause
granular creep. We conjecture that this granular creep alternates with jamming to produce a granular ratchet
that slowly lifts the surface of the bed locally where pressure gradients dominate, and depresses the surface
where shear stresses dominate. We observe that the shape of the resulting heap exhibits a constant characteristic
width. The height of this heap evolves approximately as the square root of time, in agreement with dimensional
arguments predicated on a coarse-grained viscous deformation of the bed. The surface of the heap contracts
initially with the square root of time, consistent with an incompressible analysis of the flow of grains within the
heap. Near its peak the heap grows due to a dilatation of the bed, to inward radial flux, or to a combination of
the two.
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I. INTRODUCTION

Initially flat granular beds are unstable under many con-
ditions, and give rise to various types of bedforms including
ripples, dunes, and antidunes [1]. These bedforms are respon-
sible for the shape and evolution of terrains including deserts
[2], seabeds [3], and the surfaces of other rocky planets, such
as Mars and Venus [4,5]. Bedforms protect against damage
caused by natural disasters such as hurricanes [6], but can also
themselves be dangerous by causing sandslides [7] and unsafe
shoal waters [8].

The size, shape, and spacing of bedforms depend on flow
characteristics, such as velocity and flow depth, as well as
sediment characteristics, such as size and grading [9–11]. In
order to predict the development and erosion of bedforms, it is
necessary to understand the particle-fluid interactions within
granular beds, as has been done in various geometries includ-
ing tumblers, shakers, and flumes [9,12,13]. Due in part to
large variations in the grain properties and fluid environments,
it is both a challenge and an opportunity to identify mecha-
nisms and formulate scaling laws that describe the dynamics
of the coupled particles and fluid.

Bedforms generally arise in turbulent environments, and
the forces imposed on the bed by the surrounding fluid flows
cause sediment beds to become unstable sooner than predicted
by canonical shear-driven models [14–16]. Both mean flows
and turbulent fluctuations impose shear stresses on beds, and
understanding the effects of these stresses is an ongoing chal-
lenge [17,18]. Pressure fluctuations can be associated with
surface waves [19,20], internal waves [21], or turbulence.

When vertical forces caused by the pressure gradients are
large enough, they expand a bed and cause its failure grains
to become mobile. We show that the recurrence of these large
vertical forces leads to the development of bedforms.

Traditional sediment transport theories operate under the
assumption that transport depends only on the mean shear
stress at the bed [2,22]. However, experiments on the effects
of pressure fluctuations caused by turbulence show that single
particles experience fluctuating lift forces due to pressure
differences between the top and the bottom of the particles
[23,24]. Foster et al. [25] observed that horizontal pressure
gradients influence the onset of sediment motion. Models
incorporating this additional force generate more accurate
predictions [26], especially in cases where turbulence is dom-
inant and mean shearing is minimal, such as in the swash zone
[27].

Recently, Johnson [14] observed sediment transport in
turbulent flows absent of mean flow-induced shear. She per-
formed experiments using randomly actuated jets to develop
homogeneous isotropic turbulence with no mean flow above
a flat bed of sand. Over the course of a couple of hours,
prominent ripples developed in the sand bed. The researcher
noted that there existed a linear relationship between the ripple
spacing and the integral length scale of the turbulence but
were unable to fully explain the development of the ripples.
She hypothesized that the appearance of the ripples may be
due to pressure fluctuations above or within the sand bed.

Seepage may have an effect on pressure gradients imposed
on grains below the bed’s surface, which in turn affects the
development of bedforms and the transport of moisture and
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dust. Comparisons between the pressure fluctuations imposed
on solid [28] and porous [29] surfaces show that porosity can
affect the surface pressure gradients and induce a slip velocity.
Though sediment transport models traditionally consider only
shear forces experienced by surface grains [2,22], Louge et al.
[30] suggest that seepage-induced body forces may result in a
lowered threshold for sediment transport than the threshold
predicted by these models.

The goal of this work is to contribute to an understanding
of the onset of sediment motion due to pressure gradients. In
Ref. [31], we showed that a granular bed under an oscillating
plate forms a heap, similar to those observed in vibrated gran-
ular beds [13,32,33]. The oscillating flow, generated by the
plate motion, induced pressure gradients at the surface and in
the interior of the bed. In this paper, we extend the theory and
data analysis to capture the evolution of the heap. The upward
motion of the plate draws fluid up through the center of the bed
and lifts a layer of beads, permitting small reconfigurations
of the bed with every cycle of the plate motion. We find that
the development of the heap is approximately self-similar in
time and can be explained with simple scaling arguments.
For instance, the heap height increases approximately as the
square root of time. As a consequence of mass conservation,
the surface of the heap contracts at a similar rate. The rate of
contraction, however, is modified by a factor determined by
the shape of the heap.

II. EXPERIMENT

We performed the experiments in a 50-cm-long and 30-cm-
wide glass tank, which we filled with glass beads to a depth
of 8 cm. The glass beads had a mean diameter, d , of 0.5 mm,
an approximately uniform size distribution between 0.43 and
0.60 mm, and a mass density of 2.5 g/cm3 (Potters Industries,
P-0230). After filling the tank with beads, we filled the tank
with water to 8 cm above the bed of glass beads. A schematic
of the apparatus can be seen in Fig. 1.

A cross beam held an electromagnetic shaker over the tank.
Attached to the shaker was a 7.5 cm square plate, which
was horizontally centered in the tank and oscillated up and
down under the water. We observed the development of heaps
in the bed over a period of hours, corresponding to plate
oscillations ranging from O(104) to O(105) in number. We
performed the experiment for plate oscillation frequencies,
f , between 10 and 40 Hz, amplitudes, A, between 0.02 and
0.14 cm, and at a fixed mean height above the bed, H , of
2.7 cm.

We measured the height profiles of heaps with a red laser
sheet produced by reflecting a laser beam off of a cylindrical
surface. The laser sheet illuminated the surface of the bed
of glass beads, producing a bright curve in images of the
heap taken from the side. Before each experiment, we used
an acrylic sheet to flatten the bed. This initial condition is
illustrated in Fig. 1 (top left) and we acquired a series of
images at regular intervals as the heap developed in the bed,
as seen in Fig. 1 (top right).

We determined the profile of the bed using an algorithm
that followed the path with the highest red intensity in the
images of the heap. We found the center of the heap by
averaging the position associated with the maximum height

FIG. 1. Top left: A laser beam (red) reflected off a cylinder
to form a vertical light sheet. A plate with width 2W oscillated
about a mean height H above the bed. Before each experiment,
we flattened the bed using an acrylic sheet. Top right: After many
oscillations of the plate, a heap developed in the bed. By taking
images at regular intervals in time, we quantified the evolution
of the bed’s shape. Bottom: In this image of the heap from the
side, the surface of the heap is marked with a black curve deter-
mined using an algorithm. The initial bed height is marked with a
dashed white curve and the centerline with a vertical purple line. We
measured the radial distance, r, as the horizontal distance from the
centerline.

of the heap and taking the median value of that position in
the latter half of the time-lapse videos. The results of this
method can be seen in Fig. 1 (bottom), where the dashed line
indicates the initial configuration of the bed, the solid black
line indicates the measured surface of the bed as determined
by the technique described above, and the purple line indicates
the center of the heap. Note that, although we leveled the bed
with an acrylic sheet before each experiment, the bed was not
completely flat and the initial height varied slightly.

To measure the amplitude of the plate oscillations, we took
slow-motion videos of the plate and found the positions of
the plate by placing a black dot on the edge of the plate and
tracking the dot. To convert the size of the heap and plate
oscillations from pixels to millimeters, we placed a ruler in
the tank and aligned it with the laser sheet and to the near side
of the plate. We used images of the ruler to calibrate the ratio
between image pixels and the millimeter markers on the ruler.

In order to track the motion of grains on the surface of
the bed in the horizontal direction, we placed black beads
on the surface and took pictures of the bed every 10 min.
Figure 2 shows a ring of such beads initially, after 20 min
of plate oscillations, and after 60 min of plate oscillations. To
take images from above the heap, we stopped the experiment,
removed the plate, took the image, replaced the plate, then
restarted the experiment, taking care to disturb the bed as little
as possible during the process. We measured the radius of
rings of beads on the surface as functions of time by fitting
ellipses to the minima in the intensity of images of the rings
taken at regular intervals. Since the rings were not exactly

054901-2



HOW VERTICAL OSCILLATORY MOTION ABOVE A … PHYSICAL REVIEW E 105, 054901 (2022)

FIG. 2. Images taken from directly above the bed at different
times increasing from left to right. A ring of dark beads on the surface
of the bed drew in toward the center over time. A spot of dark beads
in the center stayed in the center while also contracting slightly. In
both cases the beads stayed at the surface of the bed. The left-most
image is of the bed in its initial flat condition, and the subsequent
images were take 20 and 60 min after being subjected to oscillations
of the plate at a frequency of 20 Hz and an amplitude of 0.4 mm.

circular, we tracked both the major and minor axes of the
ellipses.

III. THEORY

On the sediment bed in the experiment, shear stresses
under the periphery of the plate give way to normal stresses
beneath the center of the plate. Ignoring normal stresses, the
importance of mean shear stresses to the stability of the bed
is embodied in the Shields parameter, θ = τ/�ρgd , which
makes the shear stress, τ , dimensionless with the density
difference between the sediment and fluid, �ρ = ρs − ρ,
gravitational acceleration, g, and the sediment grain diameter,
d [22,34]. In order to suggest a corresponding parameter,
which we call φ, with which to gauge the importance of
normal stresses, we examine the balance of forces on grains
within the bed. We suggest that the pair θ and φ are then the
dimensionless parameters that describe the conditions in the
experiment.

In Sec. III A, we analyze the instability mechanism in-
troduced by La Ragione et al. [31]. We elaborate on the
mechanism and show how the onset of sediment motion re-
sults when fluid flows generate vertical pressure gradients
within the bed large enough to lift part of the bed directly.
In this section, we introduce a parameter φ = (U f /g)(ρ/�ρ)
that measures the importance of normal stresses, and we
propose that sediment motion occurs for φ � c/26.4. In
Sec. III B, we examine the subsequent evolution caused by
this instability of an initially flat bed into a heap, and do so in
the context of a continuum model, which has been utilized in
other granular applications [35–38], that captures the essential
features of the heap’s evolution.

A. Onset of heap formation

Given the symmetry in the experiment, radial bedload
transport arising from shear stress on the bed at high Shields
numbers would lead either to an accumulation at the center of
material from the sides or to a pit, depending on the direction
of mean transport. In the experiment we observed the former.
Furthermore, we observed that beads on the surface of the
bed remained on the surface during heap growth. Since the
accumulation of material associated with bedload transport

FIG. 3. Half of the oscillating plate appears as a horizontal bar at
z = H . Its full width is 2W and it oscillated vertically with amplitude
A. The curves between the plate at z = H and the bed surface at
z = 0 are the streamlines of an inviscid stagnation point flow. This
flow applied an oscillating pressure on the surface of the bed, which
in turn generated flow through the porous bed modeled by Darcy’s
law and shown by the blue streamlines and red isolines of pressure.
We predict sediment transport primarily under the origin of the
coordinate system, and the peak of the observed heap grew up along
the z axis at x = 0.

would tend to bury those beads in the center of the bed,
we sought a different explanation for the sediment motion.
While bedload transport may play a role in the observed heap
development, particularly around the margins of the heap, we
concentrated on prediction of possibly more novel aspects,
which include the lifting of beads near the surface of the heap.
In the following, we focus our analysis on vertical pressure
gradients near the axis of symmetry of the heap, and continue
our description of the flow away from this axis only as needed
to provide boundary conditions consistent with basic physics
such as mass conservation.

We idealize the experiment as an axisymmetric oscillatory
flow of an incompressible fluid driven by vertical oscillations
of a horizontal bar (or plate) above a flat porous bed, as shown
in Fig. 3. We note the remarkable azimuthal symmetry of the
heap observed in the experiments despite the square shape
of the plate (e.g., Fig. 2). That is, the flow of the fluid and
deformation of the bed seemed unaffected at the leading order
by the particulars of the geometry.

We divide the flow into two parts: one above the bed and
one within the bed. Above the bed, we approximate the flow
generated by the oscillating plate as the one near an inviscid
stagnation point whose amplitude varies sinusoidally in time
at a given frequency, f . We specify this flow over the bed
in order to set the boundary condition for the flow through
the bed, which is the pressure distribution on the surface of
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FIG. 4. Blue dye injected into the flow generated by plate os-
cillations showed a region beneath the plate within which the dye
followed the streamlines (black curves) of an inviscid flow associated
with a stagnation point. These streamlines are superimposed on the
image. In the inviscid theory, the fluid motion is symmetric in time
and so flows in both directions along the streamlines. In the exper-
iment and outside the boundary of the plate, the flow curled into a
slow clockwise vortex whose turnover time was much longer than
the period of plate oscillations. Our analysis of the effects of fluid
motion on the bed applies to the region directly under the plate.

the bed. Within the bed, which is porous, the fluid motion
continues as a linear viscous flow according to Darcy’s law.

In order to calculate the pressure distribution on the sur-
face of the bed, we first consider the flow above the bed.
The equations that govern the motion of the fluid are the
balances of mass and momentum [39]. As a first approxima-
tion, we consider an inviscid fluid because the plate Reynolds
number is large (Re = A f W/ν is about 102), and we lin-
earize the dynamics because the fluctuations are small. These
approximations do not hold near the edge of the plate, where
a shear layer and vortex typically develops, or at the surface
of the bed, where a boundary layer forms. The vortex we
observed (see Fig. 4) was confined to the region outside of
the plate boundaries, so that our approximations are more
realistic under the plate and where we predict bed instability.
We neglect the viscous boundary layer on the surface of the
bed because pressure is approximately constant across the
thickness of boundary layers.

The amplitude of the oscillations, A, is small compared
with the mean height of the plate above the bed, H . Under
static conditions, the pressure is p0 = −ρg(H − z), where g
is the gravitational acceleration. The fluid’s radial velocity is
u(r, z, t ), its vertical velocity is v(r, z, t ), the fluid pressure
is p(r, z, t ), and its constant mass density is ρ. In the fluid
above the bed (for 0 � r � W and 0 � z � H), the system of
equations governing the problem are

1

r

∂ (ru)

∂r
+ ∂v

∂z
= 0, (1)

ρ
∂u

∂t
= −∂ p′

∂r
, and (2)

ρ
∂v

∂t
= −∂ p′

∂z
, (3)

for conservation of mass, radial momentum, and vertical mo-
mentum, respectively, where the prime indicates a deviation

from hydrostatic conditions. Terms proportional to viscosity
are absent, since we assumed inviscid flow.

In order to estimate the variation of the pressure in space
and time, we separate the space and time dependencies of
the flow. Under the plate (for 0 < r < W and 0 < z < H),
we specify that the radial and vertical components of the
flow velocity are u(r, z, t ) = k(t )r/2 and v(r, z, t ) = −k(t )z,
where k(t ) sets the strength of the flow and the way it varies
in time.

Under the plate (for 0 < r < W and 0 < z < H), Eqs. (2)
and (3) in combination with the stagnation point flow intro-
duced above give

1

2
ρr

dk

dt
= −∂ p′

∂r

and

ρz
dk

dt
= ∂ p′

∂z
.

The solution for the pressure given by these equations is

p′ = −ρ

4

dk

dt
(r2 − 2z2 − W 2), (4)

where the constant of integration is found by observing that
on the bed (z = 0) the pressure induced by the plate motion
decays away from the center of the plate, and by prescribing
that at r = W , the induced pressure is zero.

Then, at the bed, the pressure induced by the plate through
the fluid is

p′(r, 0, t ) = ρ

4

dk

dt
(W 2 − r2). (5)

The oscillatory motion of the plate in the experiment is an
approximately sinusoidal function in time. The vertical fluid
velocity at the plate, the time derivative of its position, is given
by v′ = (2π f )A cos (2π f t ), where A is the amplitude of the
plate’s oscillations and f is the frequency of oscillation. We
combine this expression for v with the vertical velocity of an
inviscid stagnation point flow, v = −k(t )z, and find at z = H
that

(2π f )A cos(2π f t ) = −Hk(t ). (6)

From this equation, we find an expression for the time deriva-
tive of k and substitute this derivative into Eq. (5). The
pressure on the bed in excess of hydrostatic contributions is
then

p′(r, 0, t ) = −ρ

4

A

H
(2π f )2 sin(2π f t )(r2 − W 2), (7)

with 0 < r < W .
We now turn to the flow within the porous bed, which we

describe with a linear continuum model. Within the bed (for
z < 0 and 0 � r � W ), the mass balance is

1

r

∂rqr

∂r
+ ∂qz

∂z
= 0, (8)

where qr = (1 − c)u, qz = (1 − c)v, u and v are coarse-
grained interstitial fluid velocities, and c is the volume fraction
of particles in the bed, which we assume is constant. Ignoring
the compressibility and inertia of the fluid, we follow Darcy’s
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law [40], which states that

−∂ p′

∂r
− μ

κ
qr = 0 (9)

and

−∂ p′

∂z
− ρg − μ

κ
qz = 0, (10)

where κ is the permeability of the bed and μ is the viscosity
of the fluid. Under this hypothesis, the flow has no inter-
nal timescales and it evolves quasistatically with a velocity
proportional to the instantaneous gradient in pressure. By
substituting Eqs. (9) and (10) into Eq. (8), we find that mass
conservation is described by the Laplace equation,

1

r

∂

∂r

(
r
∂ p′

∂r

)
+ ∂2 p′

∂z2
= 0, (11)

which conveniently eliminates the constants that characterize
the bed and fluid, under the assumption that their spatial
gradients are zero.

The flat bed becomes unstable when vertical pressure gra-
dients within the bed exceed the buoyant weight of the bed.
To calculate this critical pressure gradient, we solve Eq. (11)
with the boundary conditions given (in part) by Eq. (7) (see the
Appendix). The solution for the perturbations to the pressure
in the porous bed is

p′(r, z, t ) = 0.28ρ
A

H
(ωW )2

× e2.41z/W J0(2.41r/W ) sin ωt, (12)

and is characterized by an exponential decay into the bed in
which J0 is the Bessel function of the first kind. This fast decay
of the flow below the surface is consistent with the observation
reported by La Ragione et al. [31] in that placing a flexible
circular cylinder in the bed, blocking the flow beneath the bed,
prevented the development of heaps only when the blockage
extended to within ten bead diameters of the surface.

The maximum vertical gradient of the pressure given by
Eq. (12), ∂ p′/∂z|max, is located at the origin and when the
plate is at its maximum excursion from its mean position. Its
particular value is given by

−∂ p′

∂z

∣∣∣∣
max

.= 2.41 × 0.28ρ
A

H
W ω2.

In the special case for which the plate is as far from the bed
as its half width, or for H = W , which was approximately
the condition in the experiment, the maximum gradient in
pressure is further simplified and is

−∂ p′

∂z

∣∣∣∣
max

.= 26.4ρA f 2. (13)

The difference between this critical pressure gradient and
the one given by the full dynamic pressure applied across a
sediment grain, ρ(A f )2/d , is the (large) geometric factor of
26.4 when the plate moves by the diameter of a grain, which
is due to the resistance of porous materials.

We balance the maximum induced pressure gradient with
the buoyant weight of the bed, (ρs − ρ)cg, to determine the

following condition for instability of the flat bed:

A f 2|failure = c

26.4

�ρ

ρ
g, (14)

where �ρ = ρs − ρ. This equation describes a limit above
which particles in the bed will be lifted by the flow.

We reexpress the criterion in Eq. (14) as a parameter, φ,
that makes pressure dimensionless in the same way that the
Shields parameter makes the shear stress dimensionless. We
define φ by rearranging Eq. (14), and by noting that U = A f
is a characteristic (vertical) velocity, so that

φ ≡ U f

g

ρ

�ρ
, (15)

which compares flow accelerations with gravitational accel-
eration reduced by buoyancy. Because the particle volume
fraction, c, does not change substantially over time or be-
tween different compact beds, we ignore it in the definition
of φ. When pressure gradients dominate gravity, we expect
the flat bed to be unstable for large values of φ. For a random
close packing of spheres, cRCP ≈ 0.64 [41]. Using Eq. (14),
we estimate that the onset of this instability occurs when
φRCP = cRCP/26.4 ≈ 0.024.

B. Bed evolution

Once a flat bed becomes unstable as described in the
previous section, and continues to evolve periodically as the
flow through it oscillates, we need to explain the subsequent
slow uplift of the bed into a heap. We conjecture that the bed
reshapes itself by creeping, or through small rearrangements
of the grains within the heaping region of the bed. Unlike the
creep analysis in previous studies that was driven by a mean
shear [42], we suppose instead that oscillatory flow through
the heap drives creep, especially near the vertical axis of
symmetry. We also suppose that creep occurs primarily during
upward flows, and that the bed locks into place, or jams,
during downward flows [43–45]. This asymmetry with respect
to time in the behavior of the bed enables the accumulation of
a net deformation, and constitutes a kind of granular ratchet
[46].

During upward motions of the plate, the particles of the
heaping region of the bed are able to move; during downward
motions, the particles are locked and the bed is rigid. The
oscillations of the plate are far more rapid than the resulting
deformation of the bed. Hence, the slow motion of the bed
may be taken to be in response to the average flow of the fluid
during the upward motion of the plate. In this case, the motion
of the bed is forced by the fluid shear stress at its surface
and forces associated with gradients of the fluid pressure in
its interior.

The size of the fluid shear stress at the bed surface may
be estimated using the boundary layer analysis of Batchelor
(see pp. 287–288 of [39]), with the x component of the steady
velocity at the surface being proportional to 2π (A/H ) f x. The
resulting shear stress is proportional to (ρμ)1/2(A f /H )3/2x.
The stresses associated with the gradients of the fluid pressure
in its interior are, roughly, the product of the pressure gra-
dient in Eq. (13) and the extent, W , of the fluidized region:
ρAW 2 f 2/H . The ratio of the first to the second is on the
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order of 10−3, which indicates that the surface shear stresses
may be ignored relative to the normal stresses induced by
the fluid pressure gradients. This emphasizes the difference
in bed formation in rapid oscillatory flows and those driven
by superficial shear stresses alone.

To capture the essential response of the bed to the applied
stresses, we suppose that the bed behaves as a linear viscoplas-
tic granular flow [47,48]. That is, we assume that the slow
deformation of the bed by the grain-scale processes outlined
above can be described approximately as a coarse-grained
viscous flow characterized by an effective kinematic viscosity,
νg. The resulting predictions include how the height of the
bed and the radius of a ring on its surface change in time,
predictions that compare favorably with the data presented in
Sec. IV.

We assume that the shape of the heap is invariant with time
when scaled by a single length scale. This characterization
may be reasonable for times much larger than the period of the
flow oscillations and much smaller than the one required for
the heap to grow large enough to modify the flow geometry.
The characterization may fail for heaps containing too few
grains, or heaps approaching the size of their container. That
is, we seek an intermediate asymptotic description of the
evolution of the bed in terms of a single length scale [49],
which we take to be the height of the bed at the peak, hp.

According to dimensional analysis [50], if a physically
meaningful equation exists that relates hp and t , then hp(t )
must be proportional to

√
νgt . We rewrite this proportionality

in terms of the dimensionless heap height, hp(t )/d , and the
dimensionless time, t f , as follows:

hp(t )

d
= Ch (t f )1/2, (16)

where the dimensionless prefactor, Ch(Reg), is unknown
but for proportionality to Re−1/2

g , where Reg = d2 f /νg is a
Reynolds number that arises due to our choice of dimension-
less variables. Equation (16) constitutes our prediction for the
temporal development of the heap.

Because the problem contains more dimensions than we
included in our analysis, the dimensionless prefactor, Ch, is
likely to contain additional dependencies that can generate
exponents different from 1/2 in principle. These additional
dimensions include, for instance, the characteristic speed and
length scales of the flow above the bed (A f and W ), and
the densities of the sediments and fluid. These additional
dependencies appear to be negligible in the regime of our
interest, where hp is small compared with H and hp/t is small
compared with U , for instance, while other parameters likely
did not vary appreciably in our experiments, including W/H
and UW/νg. Future experiments are needed to develop a more
detailed understanding of the mechanisms at play.

To see how a bead on the surface of the bed migrates
during the growth of the heap, we describe the radial flow
of sediments within the bed in a depth-averaged sense while
ignoring diffusion of the grains. Consider that the change in
heap height at any radius, r, is given in part by the flux into an
annular control volume centered on r and in part by changes in
the mass density of the bed. Granular beds are generally com-
pressible; grains can rearrange themselves to occupy more or
less volume. However, for simplicity, we initially assume an

incompressible flow of grains, though the data do not preclude
contributions from changes in mass density, and we revisit this
assumption below. For an incompressible bed, where changes
in the depth-averaged radial flux, ūT , exactly balance changes
in the height, h, we have

∂h

∂t
= −T

r

∂ (rū)

∂r
, (17)

where ū(r, t ) is the mean radial velocity of beads moving in a
surface layer with thickness T (r, t ).

Since the shape of the heap is approximately invariant with
time, we can separate the time and space variations of the
height, so that h(r, t ) = hp(t ) α(r). According to the dimen-
sional arguments summarized in Eq. (16), hp/d ∼ (t f )1/2. We
then solve for the mean radial bead velocities in the heap by
integration of Eq. (17) over the radius. Given the boundary
conditions, we find the depth-averaged radial velocity to be

ū(r, t )

f d
= −1

2
ChRe−1/2

g G(r, t ) (t f )−1/2, (18)

with

G(r, t ) = 1

r

∫ r

0

α(ξ )

T (ξ, t )
ξ dξ . (19)

The dimensionless function G depends on the thickness of the
layer of mobile beads, T (r, t ), which we did not measure, and
on the shape function, α(r), which we did measure. Large G
corresponds to tall heaps within which motion is confined to
a thin layer. Assuming that T does not vanish at the peak,
plausible assumptions about its shape, including that it is
constant or determined by α itself, lead to qualitatively similar
conclusions, namely, that the velocity of the ring approaches
zero more quickly than t−1/2 at small radii. This slowdown can
give the appearance that superficial beads cease their mean
radial motion entirely within a region near the axis, a notion
we revisit below. We note an analogy between this analysis
and the one of hydrogen particles on a quantized vortex ring
in Ref. [51], in which an underlying square-root decay in time
is modified by drag between the particles and fluid.

According to the arguments above, the radius, R, of a ring
of beads on the surface of the heap is proportional to the
square root of time far from the axis and when n = 1/2, since
its radius changes as dR = ū(R, t ) dt and integration yields

1 − R

R0
∼ G(R)

d

R0
(t f )n, (20)

where R0 is the initial radius. At long times [49], a stable
configuration of the heap is reached and it stops growing.
Equations (16) and (20) constitute the two predictions that we
compare with data in the next section.

IV. RESULTS AND DISCUSSION

We performed the experiment at various oscillation fre-
quencies corresponding to a range of values for φ in Eq. (15)
from 0.004 to 0.03. In natural flows, φ can be arbitrarily
small and reaches values larger than 0.1 for turbulent flows
under water. In the experiment and under the perimeter of
the plate, we estimate the Shields parameter θ to be no larger
than O(10−3) in any of our experiments, which is smaller than
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FIG. 5. Prediction of sediment motion by φ, Experimental data
are represented by circles (blue) and crosses (red): circles when
sediment motion occurred and crosses when it did not. The solid
lines are curves of constant φ, defined in Eq. (15). The thickest
line corresponds to the value φRCP = 0.024. We find that φ ≈ 0.020
generally separates conditions that formed heaps from those that did
not. Values above this one correspond to integer multiples of φRCP

and those below to 1/2, 1/4, and 1/8 of φRCP. Note that the predicted
onset of sediment motion using the Shields theory [22] corresponds
to A/d values of O(1000).

the value (�0.02) observed for the onset of sediment motion
under steady shear flow [22,52]. The Reynolds numbers of
the plate, Re = 2WA f /ν, ranged from approximately 500 to
1500.

A. Onset of heap formation

We review in this section the finding we reported in
Ref. [31], which is that bedforms developed only under those
conditions shown in Fig. 5. For lower amplitudes of the
plate motion, no bedform developed. When the bedforms did
develop, it took many oscillations of the plate to do so—
on the order of hundreds of thousands. The heap resulted
from the cumulative effect of many very small motions in
the bed. The data are consistent with the onset of flat-bed
instability being described by the theory in the previous sec-
tion and by Eq. (15), that is, for large φ ∼ A f 2. The particular
form of the curve of constant φ is distinctive of the onset of
heap formation due to vertical pressure gradients and not shear
stresses. The particular value of the critical φ0 for the onset of
heap formation determined from the experiment, φ0 = 0.02,
compares favorably with the factor c/26.4 � 0.03 for packed
spherical particles, as predicted by Eqs. (14) and (15).

B. Heap profile

The profiles of the bed, h(r, t ) in Fig. 6, show that after a
few thousand cycles the shape of the heap was approximately
invariant in time when appropriately rescaled. There was an
initial transient during which the peak was flat and the annular
trough around the heap was deep relative to later times. This
initial heap development was sensitive to initial conditions; it
was different in different experiments.

The profiles reported in Ref. [31] are reproduced in Fig. 6
(left), and replotted in Fig. 6 (right) normalized by their peak
height at each time, hp(t ), in order to evaluate the assumption
that, upon rescaling of the heap, the shape of the heap does

0 1
-5

0

5

10

15

0 1
-0.5

0

0.5

1

FIG. 6. Left: The profile of the bed, h(r, t ), at intervals of 4800
cycles (320 s), resulting from plate oscillations with an amplitude
of A/d = 2.72. Color transitions from yellow to purple indicate
increasing time. The profile is normalized by the diameter of the
glass beads, d , and the radius is normalized by the plate half width,
W = 3.8 cm. Right: The profile of the bed with respect to the initial
height of the bed, h0(r) = h(r, 0). Each profile is normalized by its
peak height, hp(t ) = h(0, t ). The profiles are approximately invariant
in time after an initial transient. We call the invariant profile α(r/W ).
The inset shows all profiles, including h0, normalized by the bead
diameter, d , and the radius normalized by the plate half width.

not change with time. As in Eq. (19), we call the shape that
the heap approached α(r/W ), whose form we know only from
these measurements. Empirically, we found that the first zero
crossing of the data was a constant equal to about 3.7 cm.
Note that the radius at which no material accumulated is also,
in principle, the radius at which there was a maximum in the
radial flux of material across the bed.

C. Bed evolution

The heap height grew as shown in Fig. 7. Below a certain
threshold oscillation amplitude near A = 0.38 mm at a fre-
quency of f = 15 Hz, no heap formed. Above this threshold,
the heap height data are consistent with a power law in time
with an exponent of 1/2, shown in Fig. 7 as black lines.

43
-1

0

FIG. 7. The growth of the peak height, hp, was consistent with
the square root of time (black line) predicted in Eq. (16). From the
lower to the upper curve, the normalized plate oscillation ampli-
tudes were A/d = 1.64, 1.76, 1.92, and 2.04. No heap grew for a
normalized oscillation amplitude of less than 1.52. The normalized
oscillation frequency for all cases was f

√
d/g = 0.11. The data

are smoothed using a moving average and error bars indicate the
standard error for a few select points.
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FIG. 8. Top: The radius of a ring, R(t ), on the surface of the
heap contracted over time, shown by the major (×) and minor (+)
axes of an ellipse fit to images of the ring, their mean (•), and a
square-root function for reference (–). The square-root contraction
goes hand-in-hand with the heap growth as described in the text.
The initial radius was R0 = 2.8 cm, and the frequency of the plate
oscillations was f = 20 Hz. Bottom: The logarithmic scale reveals
that as the ring approached the peak of the heap, its contraction
slowed down relative to the square root of time. The product of
the shape factor, G(R) in Eq. (20) (–◦–), and a 1/2 power law
shows that the combination of geometric effects with the slowing
dynamics reproduces the observation that the ring radius reached an
approximate constant at large times (—-).

This exponent is consistent with Eq. (16). Note that beads
deposited on top of the center of the heap stayed on the top of
the heap as the heap rose upward, while remaining centered
and contracting slightly in radius [31].

Figure 8 shows the radius of a ring on the surface of
the heap as a function of time. Initially, the ring contracted
approximately as the square root of time, in agreement with
Eq. (20) for constant G. The ring contraction subsequently
slowed down relative to a power law when it became small
relative to its initial diameter. This slowdown is consistent
with the behavior of G(R(t )), which is not constant as we now
explore.

In order to understand the role of the shape factor, G(R(t )),
and to illustrate its essential behavior, we fit a polynomial to
the data in Fig. 6 and then integrated Eq. (19) numerically
under the assumption of constant T for each measurement of
R(t ). We show these integrations of G(R(t )) in Fig. 8 as a
solid line with circles, shifted in the vertical direction (i.e.,
for arbitrary T = T0) for clarity since our interest is in scaling
behavior. The function captures qualitatively the way that the
ring in the experiment slowed down relative to a power law
of time as the radius of the ring approached zero. Indeed,
in the last hour (54 000 cycles) of the experiment, both the

incompressible model and the data showed a change of only a
few percent (6–8 %) in the ring radius.

Though the scaling arguments embodied in Eqs. (16) and
(20) capture the essential features of the development of the
heap, a granular bed is not incompressible, as we assumed
until now. Since the net volume of a granular bed can change
due to changes in the way the beads are packed within the
bed, a heap can grow as a consequence of a decrease in its
depth-averaged mass density, ρ̄(r, t ). To see this, consider that
Eq. (17) is an incompressible simplification of

∂

∂t
(ρ̄h) = −1

r

∂

∂r
(rρ̄ūh) (21)

for a compressible material. We introduce a radius, r0, within
which the radial flux is identically zero. In the incompress-
ible analysis, the radial flux approaches zero asymptotically
toward small r, but in the available data this behavior cannot
be distinguished from one where the flux is zero within r0.
We find that within this radius the heap height changes due to
changes in the mass density alone, and not to radial flux, since
dh = −(h/ρ̄ )d ρ̄ within this region. In the absence of radial
flux, the observed change in height of the bed corresponds to
a change in density of 10–20 %.

By integrating the profiles in Fig. 6 we observed qualita-
tively that the volume of the trough around the heap balanced
the volume of the heap itself, but with large enough uncer-
tainty that it was impossible to establish whether the mass
density of the material changed either in time or across the
heap. Further experiments are needed to determine the relative
contributions from the radial flux and from the changes in
mass density.

V. CONCLUSIONS

The arguments and predictions outlined above are con-
sistent with the essential features of the onset of sediment
transport and the subsequent development of the heap, while
also calling attention to the importance of motions internal to
the heap. At the coarse-grained scale, these motions include
changes in the mass density of the bed and the depth of
penetration of the granular deformation. At the scale of grains,
the motions include creep, jamming, and ratcheting, and an
important thrust of future work will be to explore the limi-
tations of the continuum models employed here. While other
mechanisms may ultimately fully explain the response of the
bed to the fluid stresses we applied to it, we observed that
sediment motion due to pressure gradients and a subsequent
viscous deformation agree with the data as hypothesized by
Johnson [14] in their experiments involving irregular oscil-
lations. Future studies could evaluate these internal motions
quantitatively as well as the extent to which permeability gra-
dients change the presented results, the relationships between
the heap’s dimensions and the grain size, and the relationships
between the heap’s shape distributions and plate geometry.
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APPENDIX

The Laplace equation governs the pressure distribution
within the bed:

∂2 p′

∂x2
+ ∂2 p′

∂y2
= 0, (A1)

with the condition at surface of the bed

p′(r, 0, t ) = −ρ

4

A

H
ω2 sin(ωt )(r2 − W 2). (A2)

If we make both r and z dimensionless by W then, within the
bed, 0 < r̂ < 1 and ẑ < 0, the solution of Eq. (A1) is

p′(r̂, ẑ, t ) =
∞∑

n=1

aneλ̂nẑJ0(λ̂nr̂)ω2 sin(ωt ),

where the assumption that p′(1, 0, t ) = 0 gives the λn as the
values at which J0(λ̂n) = 0. Then, the an are determined by

ρ

4

A

H
W 2(1 − r̂2) =

∞∑
n=1

anJ0(λ̂nr̂),

with ∫ 1

0
[J0(λ̂nr̂)]2r̂d r̂ = 1

2
[J1(λ̂nr̂)]2

and

an = ρ

2

A

H

W 2

[J1(λ̂n)]2

∫ 1

0
(1 − r̂2)J0(λ̂nr̂)r̂d r̂.

For example, J0(λ̂1) = 0 when λ̂1
.= 2.41. Then, J1(2.41)

.=
0.52, J2(2.41)

.= 0.43, and J3(2.41)
.= 0.20. So,

∫ 1

0
J0(λ̂nr̂)r̂d r̂ = 1

λ̂
J1(λ̂1)

and

∫ 1

0
J0(λ̂nr̂)r̂3dr̂ = 1

λ̂2
[2J2(λ̂1) − λ̂1J3(λ̂1)].

At lowest order,

a1 = ρ

2

A

H

W 2

[J1(λ̂n)]2

1

λ̂1

{
J1(λ̂1) − 1

λ̂1
[2J2(λ̂1) − λ̂1J3(λ̂1)]

}
.

Then,

a1 = 0.28ρ
A

H
W 2 (A3)

and, finally, at lowest order in the Fourier series, the perturba-
tion to the pressure in the porous bed is

p′(r̂, ẑ, t ) = 0.28ρ
A

H
(ωW )2

× e2.41ẑJ0(2.41r̂) sin ωt . (A4)
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