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Fundamental properties of an interface evolving on a domain of size L, such as its height distribution
(HD) and two-point covariances, are known to assume universal but different forms depending on whether L
is fixed (flat geometry) or expands linearly in time (radial growth). The interesting situation where L varies
nonlinearly, however, is far less explored and it has never been tackled for two-dimensional (2D) interfaces.
Here, we study discrete Kardar-Parisi-Zhang (KPZ) growth models deposited on square lattice substrates, whose
(average) lateral size enlarges as L = L0 + ωtγ . Our numerical simulations reveal that the competition between
the substrate expansion and the increase of the correlation length parallel to the substrate, ξ � ct1/z, gives rise to a
number of interesting results. For instance, when γ < 1/z the interface becomes fully correlated, but its squared
roughness, W2, keeps increasing as W2 ∼ t2αγ , as previously observed for one-dimensional (1D) systems. A
careful analysis of this scaling, accounting for an intrinsic width on it, allows us to estimate the roughness
exponent of the 2D KPZ class as α = 0.387(1), which is very accurate and robust, once it was obtained averaging
the exponents for different models and growth conditions (i.e., for various γ ′s and ω′s). In this correlated regime,
the HDs and covariances are consistent with those expected for the steady-state regime of the 2D KPZ class for
flat geometry. For γ ≈ 1/z, we find a family of distributions and covariances continuously interpolating between
those for the steady-state and the growth regime of radial KPZ interfaces, as the ratio ω/c augments. When
γ > 1/z the system stays forever in the growth regime and the HDs always converge to the same asymptotic
distribution, which is the one for the radial case. The spatial covariances, on the other hand, are (γ , ω)-dependent,
showing a trend towards the covariance of a random deposition in enlarging substrates as the expansion rate
increases. These results considerably generalize our understanding of the height fluctuations in 2D KPZ systems,
revealing a scenario very similar to the one previously found in the 1D case.
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I. INTRODUCTION

Surface growth is a fascinating research topic, underlying
very important technologies (e.g., all those related to thin film
deposition), as well as fundamental processes in biological
systems and others [1]. In this context, the Kardar-Parisi-
Zhang (KPZ) [2] class is of primary importance, being a
paradigm of universality of nonequilibrium fluctuations in
growth phenomena and a number of other physical systems
(such as polymers in random media, driven particles, etc.)
[1,3,4].

If h(�x, t ) is a height field defining a translation-invariant
surface of lateral size L, so these fluctuations can be quan-
tified in terms of the global squared roughness W2(L, t ) =
〈h2(t ) − h(t )2〉, where · denotes average over the heights of a
given surface and 〈·〉 over different samples (at a given time),
respectively. Since the seminal work by Family and Vicsek
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(FV) [5], it is known that W2 follows a dynamic scaling, with
W2(L, t ) ∼ L2α f [ξ (t )/L], where ξ (t ) � ct1/z is the correla-
tion length parallel to the substrate and the scaling function
behaves as f (x) ∼ x2α if x 	 1 and f (x) = 1 if x ∼ 1. There-
fore, while ξ 	 L, the system is found in a transient growth
regime (GR) where the roughness increases asymptotically
as W2 ∼ t2β , with β = α/z. When the finite system becomes
completely correlated (i.e., ξ ∼ L), W2 stops increasing, but its
saturated values scale with the system size as W2 ∼ L2α . The
one-dimensional (1D) KPZ class is defined by the exponents
α = 1/2 and z = 3/2 [2]. From Galilean invariance, one ex-
pects also that α + z = 2 for KPZ systems in any substrate
dimension d [1,6]. However, despite 35 years of efforts to
calculate these exponents for d > 1, their exact values are still
an open issue. Particularly for the two-dimensional (2D) KPZ
class, which is our focus here, different analytical approaches
to the KPZ equation usually return different exponents [7–11],
and they are not supported by the most accurate numerical
estimates available for them [12,13]. Actually, even the out-
comes from these large scale simulations of 2D KPZ models
do not agree within the error bars.
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In the ideal case of an infinite flat substrate (L → ∞),
the system stays in the GR forever, with the height at one
point of the surface evolving asymptotically according to the
“KPZ ansatz” h = v∞t + sλ(�t )βχ + · · · , where the asymp-
totic growth velocity v∞, the signal of the coefficient λ in
the KPZ equation [2] sλ, and the amplitude � are model-
dependent parameters, whereas the growth exponent β and
the probability density function (pdf) of the fluctuating vari-
able χ [i.e., the underlying height distribution (HD), P(χ )]
are universal. For example, for the 1D KPZ class, P(χ )
is given by the Tracy-Widom (TW) [14] distribution from
a Gaussian orthogonal ensemble (GOE) [15,16]. The two-
point spatial covariance—CS (r, t ) = 〈h̃(�x + �r, t )h̃(�x, t )〉, with
h̃(�x, t ) ≡ h(�x, t ) − h(t )—is also known for the flat 1D KPZ
class and it is related to the Airy1 process [17]. No one of
these quantities are exactly known for KPZ systems in d � 2.

For finite substrates (of fixed size L), one still obtains
the same HDs and covariances above for 1D KPZ systems,
provided that L and t are large enough, while ξ 	 L, as indeed
verified in the celebrated experiments by Takeuchi et al. [18]
and in several numerical works [19–21]. Based on this fact,
the asymptotic HDs and covariances have been numerically
investigated for the KPZ class in d = 2 [22–25] and higher
dimensions [26–28], as well as for the nonlinear Villain–Lai–
Das Sarma (VLDS) [29,30] class in d = 1 and 2 [31]. This has
been also used to numerically confirm the universality of the
HDs for the linear classes by Edwards-Wilkinson (EW) [32]
and Mullins-Herring (MH) [33] in both d = 1 and 2 [34].

Interestingly, if instead of performing the growth on a
flat substrate of fixed size, it is started from a seed, such
that the surface size L expands linearly in time (i.e., L ∼ t),
the scaling exponents are still the same, but the HDs and
covariances change. For instance, for 1D KPZ systems the
HDs are given by the TW distribution from a Gaussian unitary
ensemble (GUE) in this case, as widely demonstrated analyt-
ically [15,35–37] and confirmed experimentally [18,38] and
numerically [20,21,39–41]; and the spatial covariance is now
related to the Airy2 process [42]. This dependence with the
initial condition has also been analytically demonstrated for
the EW and MH classes [34], and numerically verified for the
2D KPZ class [22–25], as well as for the VLDS class [31].
Hence, the splitting of universality classes for surface growth
into subclasses depending on whether L is fixed or L ∼ t is a
quite general feature in growth phenomena.

We remark that systems expanding linearly in time never
become completely correlated, because L ∼ t increases faster
than ξ ∼ t1/z, once z > 1 [1,6]. This leads us to inquire: what
happens in the more general case where L(t ) varies nonlin-
early? A first step to answer this interesting question was
recently given by us for the 1D KPZ class, considering the
situation where 〈L〉 = L0 + ωtγ [43] and by varying ω and γ

a very rich scenario for the HDs and spatial covariances was
numerically found [43]. In the present work, we generalize
this for 2D KPZ systems, by performing extensive simulations
of discrete KPZ models on square lattice substrates whose
lateral sizes enlarge as 〈Lx〉 = 〈Ly〉 = L0 + ωtγ . Once again,
very interesting behaviors are obtained depending on the ex-
pansion rate. For example, the HDs are always given by the
2D counterpart of the TW-GUE distribution for γ > 1/z, but
the spatial covariances are (γ , ω)-dependent in this regime.

FIG. 1. (a) Illustration of a hole-like substrate for γ > 1. (b) Ver-
tical cross section of a deposit/surface (in red) growing on the
substrate shown in (a).

For γ < 1/z the system becomes fully correlated and the HDs
and covariances correspond to those of the steady-state regime
of flat interfaces. The roughness, however, keeps increasing
as W2 ∼ t2αγ , allowing us to obtain an accurate estimate for
the roughness exponent α. For γ ≈ 1/z, we find a family of
distributions continuously varying between those for γ < 1/z
and γ > 1/z as the ratio L/ξ increases.

It is worth noticing that in the 1D case these nonlinearly
expanding systems may represent circular interfaces evolving
out of the plane, on the surface of a background space given by
a solid of revolution [43], but this seems to have no physically
realizable analog in 2D. However, if deposition is performed
on a hole-like substrate—with curved and symmetric walls
yielding a square horizontal cross-section (see Fig. 1)—for
special aggregation rates (at the deposit, its contour and naked
substrate) and wall shapes, it seems possible to obtain square
surfaces expanding as in our system as they grow.

The rest of this paper is organized as follows. In Sec. II
we briefly introduce the investigated models and the kinetic
Monte Carlo method used to simulate them on expanding
substrates. Results for the roughness scaling, HDs, and spatial
covariances are respectively presented in Secs. III A, III B, and
III C. Our final discussions and conclusions are summarized in
Sec. IV.

II. MODELS

We investigate the restricted solid-on-solid (RSOS) model
by Kim and Kosterlitz [44] and the single-step (SS) model by
Meakin et al. [45], which are two workhorses for numerical
studies of the KPZ class. In both models, particles are se-
quentially released toward a horizontal substrate, with Lx × Ly

sites and unitary lattice spacing, at randomly chosen sites.
Periodic boundary conditions are used in both directions of the
substrate. In the RSOS model, these particles are monomers
(with size 1 × 1 × 1), and the aggregation at a given site i
is accepted only if it does not generate steps larger than 1 at
the surface. Namely, the aggregation only occurs if it yields
(hi − h j ) � 1 for all nearest neighbor (NN) j of site i; other-
wise, the particle is rejected. In the SS model the particles are
vertical dimers, and they only aggregate at a given site, say i,
if hi is a local minimum (i.e., if hi < h j ∀ NN’s j).

To study these models on flat substrates, the growth is
started with hi(t = 0) = 0 for i = 1, . . . , (LxLy) in the RSOS
case, while for the SS model a checkerboard initial condition
(IC), with hi(t = 0) alternating between 0 and 1, is used.
In this fashion, the SS surfaces evolve with all local steps
satisfying |hi − h j | = 1. As usual, the time is defined such
that we attempt to deposit one monolayer of particles per time
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unity. This means that, in systems with fixed size, t → t + 
t ,
with 
t = 1/(LxLy) after each deposition attempt.

However, here, we are interested in investigating the case
where the substrate enlarges isotropically and nonlinearly
in time, with 〈Lx〉 = 〈Ly〉 = L0 + ωtγ . In order to do this,
we follow the method introduced in Ref. [25] and recently
generalized in [43] to the present case, consisting in stochas-
tically mixing particle deposition with random duplications
of lattice rows and columns to make its (average) size vari-
ate at a given rate. So, we will consider this rate as δ =
d〈Lx〉/dt = d〈Ly〉/dt = γωtγ−1 and, at each step in our ki-
netic Monte Carlo (kMC) simulations, we randomly choose
one of three events: a particle deposition [with probability
Pdep = LxLy/(LxLy + 2δ)], a row duplication [with probability
Pdup = δ/(LxLy + 2δ)], or a column duplication (also with
probability Pdup). Hence, now 
t = 1/(LxLy + 2δ). The row
(column) duplication is performed by randomly sorting a
given row r (column c) and creating a new and identical one
at position r + 1 (c + 1), after shifting all rows (columns) at
its right-hand side one position to the right [25,43]. In the SS
model, we have to duplicate a pair of NN rows or columns to
avoid a breakdown of the SS condition |hi − h j | = 1. So, in
this case we use δ/2 in the equations above.

Although we will present some results in what follows for
the growth starting on substrates with size L0 > 0, to avoid
undesired crossovers introduced by this initial size [25,46],
most of our simulations will be performed for L0 = 0. In this
case, the system starts with a single site in the RSOS model at
the initial time t0 = (1/ω)1/γ . Since Lx and Ly have to be even
in the SS model, we start its growth with a 2 × 2 checkerboard
lattice at time t0 = (2/ω)1/γ to mimic L0 = 0.

III. RESULTS

A. Roughness scaling

Previous studies on the KPZ [43,47] and other universal-
ity classes [48] on 1D substrates enlarging as L ∼ tγ have
demonstrated that, if L enlarges faster than the correlation
length, ξ ∼ t1/z, the roughness increases asymptotically as
W2 ∼ t2β . Namely, for any γ > 1/z, the system stays for-
ever in the growth regime (GR), as it does in the widely
investigated case of circular interfaces evolving on the plane
(γ = 1). When γ < 1/z, on the other hand, the system may
be found in the GR (with W2 ∼ t2β) at short times, but it be-
comes completely correlated at long times and then W2 ∼ L2α .
Therefore, the Family-Vicsek [5] scaling holds also for these
1D expanding systems, but, instead of the saturation observed
in fixed-size substrates, the roughness keeps increasing as
W2 ∼ t2αγ in the correlated regime. Note that γ = 1/z is a
kind of “critical” situation where the growth and correlated
regimes have the same scaling: W2 ∼ t2α/z ∼ t2β .

As demonstrated in Figs. 2 and 3 the scenario above is also
found for 2D KPZ interfaces deposited on square substrates,
whose lateral size L = 〈Lx〉 = 〈Ly〉 varies as L = L0 + ωtγ .
In fact, Fig. 2(a) shows an example of the temporal evolution
of W2 for γ < 1/z—we will consider here that z ≈ 1.613
[13], so that 1/z ≈ 0.620—and two clear scaling regimes are
found: W2 ∼ t2β at short times (during the GR) and W2 ∼ t2αγ

asymptotically (in the correlated regime). As expected, by

FIG. 2. Squared roughness, W2, as a function of time, t , for the
RSOS model with (a) ω = 2, γ = 0.2, and initial sizes (from bottom
to top) L0 = 0, 4, 8, 16, 32, 64, and 128; and (b) ω = 2, L0 = 0,
and (from bottom to top) γ = 1/z, 0.8, 1.0, and 1.1. The insertion in
(a) shows the data in the main plot rescaled according to the Family-
Vicsek scaling. In (b), the inset displays the temporal variation of the
rescaled roughness W2/t2β . The exponents α = 0.387 and β = 0.24
were used here.

increasing the initial size L0 the duration of the GR aug-
ments. Moreover, the crossover to a clean scaling W2 ∼ t2αγ

becomes very slow for large L0. Despite this, rescaled curves
of the roughness W2/L2α versus t/Lz present a good col-
lapse, as shown in the inset of Fig. 2(a), confirming that the
Family-Vicsek scaling is followed by these expanding 2D
KPZ surfaces.

Figure 2(b) presents examples of the roughness behavior
for γ � 1/z and no crossover to the correlated regime is
observed there. Instead, the roughness simply increases ap-
proximately as W2 � Ct2β at long times, as expected for the
GR. It is worth recalling that the substrate expansion yields
a correction of type θt1−γ in the “KPZ ansatz” for the one-
point height in the GR, such that h � v∞t + sλ(�t )βχ + η +
θt1−γ , where η and θ are expected to be stochastic variables
[43]. While this last term is irrelevant for γ > 1, for 1/z <

γ � 1 it may introduce important corrections to the roughness
scaling. This is consistent with the results in Fig. 2(b), where
one indeed observes stronger deviations from the expected
scaling for this range of γ ′s. Similarly to what happens in the
1D case, we find evidence here that the scaling amplitude C =
W2/t2β presents a small variation with γ , when L enlarges
faster than ξ , as indicated by the insertion in Fig. 2(b). A simi-
lar dependence is observed also on ω. In the correlated regime
found for γ < 1/z, on the other hand, the scaling amplitude
B = W2/L2α seems to be independent of the parameters γ , ω,
and L0.

Note that the asymptotic behavior of the roughness for
γ < 1/z provides a route to estimate the roughness exponent
α from a temporal scaling. In order to do this, it is important to
avoid the slow crossover introduced by an initial size L0 > 0,
as seen in Fig. 2(a). So, hereafter we will work only with
L0 = 0. Furthermore, as discussed in Ref. [49], an additive
and constant correction to scaling, i.e., an intrinsic width, w∗

2 ,
is always expected in growing systems; and it is given by
the variance, 〈(δh)2〉c, of the probability distribution, Pi(δh),
for the height increment δh = h(�x, t + 
t ) − h(�x, t ) in each
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FIG. 3. (a) Squared roughness subtracted of the intrinsic width
(W2 − w∗

2) as a function of time t , for the RSOS model with γ = 0.5
and several values of ω, as indicated by the legend. The dashed
line has the indicated slope. (b) Effective roughness exponents αeff

against t̄−
, for the SS (two upper curves) and RSOS (four lower
curves) models, with several values of ω [following the same symbol
and color schema as in (a)] for γ = 0.2 (open) and 0.5 (closed
symbols). The solid lines are linear fits used in the extrapolations.
All results here are for an initial size L0 = 0.

deposition attempt. Indeed, at relatively short times one ob-
serves that 〈(δh)2〉c → const. = w∗

2 [49]. For the RSOS
model, one has asymptotically that Pi(0) = 1 − v∞, Pi(1) =
v∞ and Pi(k) = 0 for k � 2, leading to w∗

2 = v∞(1 − v∞)
[49]. For the SS model, one has Pi(0) = 1 − v∞/2, Pi(1) = 0,
Pi(2) = v∞/2, and Pi(k) = 0 for k � 3, so that w∗

2 = v∞(2 −
v∞). From Ref. [23] one knows that v∞ = 0.31270 for the
RSOS model and v∞ = 0.341437 in the SS case on 2D
substrates, which are not affected by the substrate expan-
sion. Thereby, this yields w∗

2 = 0.215 and w∗
2 = 0.566 for the

RSOS and SS model, respectively.
We remark that previous works analyzing the roughness

scaling of these models have never considered the intrinsic
width. Since w∗

2 is small for them, it has indeed only a mild
effect on the scaling if one considers large substrate sizes
and long times, such that W2 � w∗

2 . In our expanding sys-
tems, however, the maximum value attained by the squared
roughness is W2 ∼ 10 and, thus, it is important to account
for the intrinsic width. In this way, in the correlated regime
we have W2 � Bt2αγ + w∗

2 , so that one has to focus on the
scaling of W2 − w∗

2 to estimate the exponent α. Examples of
the temporal variation of W2 − w∗

2 for the RSOS model are
displayed in Fig. 3(a), where one sees that the curves (in
log-log scale) are still not so linear, indicating the existence
of further corrections to scaling. Similar results are found
for other parameters, as well as for the SS model. Therefore,
we calculate effective exponents, αeff , through the successive
slopes of curves of log(W2 − w∗

2 ) × log t . Such slopes were
determined in time windows of one decade—i.e., extending
from tmin to tmax, with tmax/tmin = 10—and to each window we
associate a characteristic time t̄ = (tmin + tmax)/2. By starting
with the window for tmax equal to the maximum deposition
time, we choose the new windows by decreasing both tmin

and tmax by a factor three (tmin,max → tmin,max/3). This process
is repeated until we get a reasonable number of points to
extrapolate.

Examples of the resulting effective exponents are depicted
in Fig. 3(b) as a function t̄−
, with 
 being the exponent that
best linearizes the data in each case. From linear fits of these

TABLE I. Summary of the roughness exponents α obtained from
extrapolations of effective exponents as done in Fig. 3(b).

ω RSOS (γ = 0.2) RSOS (γ = 0.5) SS (γ = 0.5)

1 0.389 0.386 0.387
2 0.389 0.387 0.388
3 0.386 0.388 0.386
4 0.388 0.387 0.385

data we obtain the extrapolated values (for t → ∞) summa-
rized in Table I. It is quite remarkable that these asymptotic
estimates, obtained for different growth conditions and mod-
els, are so close. In fact, they yield α = 0.387(1), which is in
striking agreement with the value estimated by Pagnani and
Parisi [13] [α = 0.3869(4)] using large scale simulations of
the RSOS model with multisurface coding. It is worth noticing
here that the robustness of the exponents in Table I is lost if the
intrinsic width is disregarded in the scaling, with extrapolated
exponents ranging from 0.382 to 0.399 being found consider-
ing the “pure” Family-Vicsek scaling. Anyhow, the average of
such exponents gives α = 0.389(5), which is not so different
from the more reliable result above.

B. Height distributions

Now, we investigate the effect of the nonlinear expansion
of the substrate on the height distributions (HDs). All results
presented here, and in the next subsection, are for L0 = 0,
so that L = 〈Lx〉 = 〈Ly〉 = ωtγ . To quantitatively characterize
the HDs, we will analyze the adimensional ratios of their first

central moments Wn = 〈(h − h)n〉, focusing on the skewness
S = W3/W 3/2

2 and (excess) kurtosis K = W4/W 2
2 − 3.

Figures 4(a) and 4(b), respectively, show S and K versus
time for systems enlarging slower than the correlation length
(i.e., for γ < 1/z). In both graphs, we present the ranges
of values numerically established in the literature for the
skewness and kurtosis of the GR HDs for flat (L = const.)
and curved (L ∼ t) geometries, being S(flat) = 0.423(9),
K (flat) = 0.34(1), S(curved) = 0.33(2), and K (curved) = 0.21(1)
[22,23,25]. The ranges for the moment ratios of the HDs for
the steady-state regime (SSR) are also shown, where S(ssr) =
0.26(1) and K (ssr) = 0.13(2) [13,50–52]. In Fig. 4(a) we see
that at long times the values of S agree with S(ssr), except
the result for the SS model with γ = 0.2, which is still a
bit smaller than the lower bound for S(ssr) even at the final
simulation time. The extrapolation of this data to t → ∞,
however, makes it clear that it converges to the SSR HD
skewness [see the insertion in Fig. 4(a)]. A similar behavior
is found in the extrapolations (not shown) for all data. In the
same way, despite a slower convergence in the data for the SS
model, the kurtoses always converge to K (ssr) at long times, as
seen in Fig. 4(b). Similar results are found for other values
of γ < 1/z analyzed here, regardless of the ω considered,
strongly suggesting that systems enlarging slower than the
correlation length (γ < 1/z) always have the same asymptotic
HD as that for the steady-state regime of flat KPZ systems,
even though the roughness does not saturate here, as seen in
Fig. 2(a).
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FIG. 4. Temporal evolution of the skewness S (left) and kurtosis
K (right panels) of the HDs for the RSOS and SS models. (a) and
(b) show results for γ < 1/z, while in (c) and (d) data for γ > 1/z
are presented, as indicated by the legends. In all panels, the shaded
regions represent the ranges of values found in the literature for S and
K of the GR HDs in flat and curved geometries, and these moment
ratios for the SSR HDs, for the 2D KPZ class. All data shown here
are for ω = 2, except that for γ = 1.1, for which ω = 1.

When L enlarges faster than the correlation length (i.e.,
with γ > 1/z), we find that both S and K converge to the
values expected for the HDs of curved 2D KPZ interfaces
(i.e., the 2D counterpart of the TW-GUE distribution), as
demonstrated in Figs. 4(c) and 4(d). Note that this is true
even for γ > 1. Although the convergence is slower in this
case, particularly for the SS model, it is clear from the ex-
trapolations in the insertions that these data also converge to
S(curved) and K (curved). Similar extrapolations show the same
behavior whenever γ > 1/z, for all values of ω analyzed here.
Therefore, this strongly indicates that systems enlarging faster
than the correlation length always have the same asymptotic
GR HD, which is the one for radial KPZ growth.

Finally, we analyze the case where the substrate enlarges
in close competition with the correlation length, namely with
γ ≈ 1/z ≈ 0.620. When L(t ) = ωt1/z and ξ (t ) = ct1/z, one
may expect that the amplitude ω shall determine the asymp-
totic behavior. In fact, Fig. 5(a) shows S versus t for the
RSOS model and several values of ω, and one sees that as
ω increases from 0.25 to 4, the data converge to a set of
values varying from S(ssr) to S(curved). A similar behavior is
found for the kurtosis. Since we do not know the exact value
of z, we have verified that the variation of γ = 0.620 at
the third decimal place (where it is the uncertainty in 1/z)
as a negligible effect on the data when compared with the
fluctuations observed in Fig. 5(a). The asymptotic values of
S and K [obtained from extrapolations of the data in Fig. 5(a),
and analogous ones for K , to t → ∞] for both the RSOS and
SS models are depicted in Fig. 5(b) as a function of ω/c ≈
L(t )/ξ (t ). This strongly indicates that a universal crossover

FIG. 5. (a) Temporal evolution of the skewness S for the RSOS
model with γ ≈ 1/z and different values of ω, as indicated by the
legend. (b) Asymptotic values of S (top) and K (bottom) for both
models as a function of ω/c. The shaded regions represent the inter-
vals estimated in the literature for S and K for the SSR HD and the
GR HDs for flat and curved geometries.

exists, with a family of asymptotic HDs continuously inter-
polating between the SSR HD and the one for the 2D curved
KPZ subclass, depending solely on the ratio ω/c. We recall
that c = (|λ|√A)1/z for KPZ systems, where A is the ampli-
tude of the height-difference correlation function G2(r, t ) =
〈[h(�x + �r, t ) − h(�x, t )]2〉 � A|�r|2α [53]. Thereby, from the es-
timates for λ and A reported in Ref. [25], we obtained c =
0.61(1) and c = 0.71(1) for the RSOS and SS models, respec-
tively.

C. Spatial covariances

In this subsection we analyze the effect of the substrate ex-
pansion on the spatial covariance, defined in Sec. I. In general,
it is expected to scale as CS (r, t ) � W2�[x], with �[x] assum-
ing different, but universal, forms in the GR and SSR, where
x = r/ξ (t ) ∼ Ar2α/W2. Then, since W2 ∼ AL2α ∼ A(ωtγ )2α

in the correlated regime found in our systems, we might ex-
pect that

CS (r, t ) � A(ωtγ )2α�cr[(r/ωtγ )2α], (1)

where �cr[x] is a universal scaling function. This is in-
deed confirmed in Fig. 6(a), which shows rescaled curves of
CS/[A(ωtγ )2α] versus (r/ωtγ )2α calculated at the correlated
regime, where one observes a striking collapse of data for
both models, for different parameters ω and γ < 1/z, and for
several times. Along with the data for the expanding systems,
there is also the curve of CS/(AL2α ) versus (r/L)2α calculated
at the SSR of the SS model deposited on a square lattice
substrate of fixed size L = 256. The agreement of this curve
with the other ones demonstrates that the covariance in the
correlated regime of the enlarging systems is the same as that
for the SSR of the 2D KPZ class.

As an aside, we notice that in the SSR the one-point height
is expected to evolve as h = h̄ + sλA

1
2 Lαζ + · · · , with ζ be-

ing a fluctuating variable given by the underlying SSR HD
[54]. Therefore, since CS (r = 0) = W2 � A(ωtγ )2α〈ζ 2〉c, one
shall have the rescaled curves of CS/[A(ωtγ )2α] starting at the
variance 〈ζ 2〉c for long times. From such starting points in
Fig. 6(a), we obtain 〈ζ 2〉c = 0.103(3), which agrees quite well
with the value recently found for the SSR HDs of 2D KPZ
models deposited on fixed-size substrates: 〈ζ 2〉c = 0.1027(5)
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FIG. 6. (a) Rescaled spatial covariances CS/[A(ωtγ )2α] against
[r/(ωtγ )]2α for both models and several values of γ � 1/z, as in-
dicated by the legend. Curves measured at several times are shown,
the longest time ones being denoted by symbols. The dashed line
is the covariance for the SSR of fixed-size systems, for which
(ωtγ ) → L was used in rescaling. Rescaled spatial covariances
CS/W2 versus r/a for: (b) both models with ω = 2 and the in-
dicated γ ′s; (c) the RSOS model with γ = 0.8 and several ω′s;
and (d) the SS model with γ ≈ 1/z and several values of ω. Re-
sults for ω ∈ [0.25, 4], increasing in the direction of the arrows,
are shown in (c) and (d), where the insertions highlight the re-
gions inside the boxes in the main panels. Data in (b)–(d) are for
times yielding the deposition of ∼3 × 109 particles, which are com-
pared with covariances for the SSR, for the GR in curved geometry
(γ = 1), and for a random deposition (RD) on expanding substrates
(with γ = 1.1, γ = 0.8, and γ ≈ 1/z, respectively), as indicated by
the legend in (b).

[54]. This provides additional, and very strong, evidence that
the height fluctuations (about the mean) for the correlated
regime found here and the SSR of flat systems are given by
the same HD.

Since the roughness amplitude presents a variation with
both ω and γ when γ > 1/z, to compare the covariances in
this case we will adopt the same strategy used in Ref. [43],
consisting in analyzing �[y] = CS/W2, with y = r/a, where
the factor a is chosen to make CS/W2 = 0.2 at r = a. In
this way, all curves start at �[0] = 1 and coincide also at
�[1] = 0.2, collapsing thus whenever they follow the same
universal function. Figure 6(b) presents examples of such
rescaled curves, where a clear dependence with γ is observed,
while data for both models collapse well, particularly for not
so large values of r/a. Interestingly, these curves depart from
close to the SSR one (when γ → 1/z) and approximate to
the covariance for a random deposition (RD) performed on
substrates expanding as L ∼ tγ for large γ . (For long times,
the covariances for such RD have a negligible dependence on
t and ω, when one considers L = ωtγ .) This demonstrates
that, when the system enlargement becomes very fast, the

correlations generated by the column and row duplications
dominate on those coming from particle deposition. When γ

is not so large, the competition between these two sources of
correlations is certainly the reason for the γ -dependency in
�[y]. In the same token, we might expect some dependence in
�[y] also on ω, for systems expanding faster than ξ (t ). This is
confirmed in Fig. 6(c), where rescaled covariances for several
ω′s are shown, for γ = 0.8, and they are indeed different.
Similar results are found for other γ > 1/z. Note that, just
as in Fig. 6(b), the curves start close to the SSR one and move
towards the RD covariance (for γ = 0.8) as ω increases.

Covariances for γ ≈ 1/z and a small ω (= 0.25) are dis-
played in Fig. 6(a), collapsing quite well with those for the
correlated regime (γ < 1/z). As ω increases, however, they
present a variation, as demonstrated in Fig. 6(d), and seem
to tend to the covariance of curved interfaces (γ = 1), once
the one for the RD (with γ ≈ 1/z) is considerably far from
them. Note that this behavior is similar to what we have seen
in Fig. 5(b), where the statistics also changes from the SSR
to the GR curved subclass as ω increases. We remark that
only results for the longest deposition times simulated here
are shown in Figs. 6(b)–6(d), but we have verified that they
display only mild finite-time effects, so that the ω- and γ -
dependences observed there are asymptotic features of these
spatial covariances.

IV. CONCLUSION

We have numerically investigated discrete KPZ models
deposited on square (on average) substrates, whose lateral size
increases as L = 〈Lx〉 = 〈Ly〉 = L0 + ωtγ . By changing these
parameters, we find a very rich scenario for the asymptotic
fluctuations of these expanding systems depending on whether
L enlarges faster, at the same rate, or slower than the correla-
tion length parallel to the substrate, ξ � ct1/z.

For instance, when γ < 1/z the surfaces become com-
pletely correlated at long times, once ξ/L ∼ t1/z−γ → ∞ as
t → ∞, but the roughness does not saturate, because W2 ∼
L2α ∼ t2αγ . Despite this non-stationarity of the roughness,
the asymptotic HDs and spatial covariances are consistent
with those for the steady-state regime of 2D KPZ surfaces
deposited on fixed-size substrates. A careful analysis of the
scaling W2 ∼ t2αγ , correcting it with an intrinsic width and
extrapolating effective exponents, allowed us to estimate the
roughness exponent of the 2D KPZ class as α = 0.387(1).
Considering that α + z = 2, this gives the dynamic expo-
nent z = 1.613(1) and, then, the growth exponent β = α/z =
0.2399(8). These values are in remarkable agreement with the
best estimates for these exponents in the literature, coming
from large-scale simulations performed on fixed-size sub-
strates. For example, our value for α differs by less than
0.03% from the one estimated by Pagnani and Parisi [13]
[α = 0.3869(4)]. Moreover, our indirect result for β is very
close to (and agrees within the error bars with) the value
obtained from the scaling W2 ∼ t2β by Kelling and Ódor
[12] [β = 0.2415(15)]. Notably, in contrast with these works,
we are not considering very long times and/or very large
substrate sizes—for some parameters, the maximum sizes,
Lmax, attained in our systems are actually small. Notwithstand-
ing, instead of dealing with a few sets of L′s, the substrate
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enlargement naturally samples the roughness for all sizes
ranging from L0 to Lmax. This certainly explains the ac-
curacy and robustness (once it is an average over results
for different models and several growth conditions) of the
α estimated here. One interesting application of this ap-
proach is in determining the KPZ exponents for higher
dimensions, where simulations are limited to small sizes and
short times.

For γ > 1/z one has ξ/L ∼ t1/z−γ → 0 as t → ∞, so that
the growth regime lasts forever, with the squared roughness
increasing asymptotically as W2 ∼ t2β . Importantly, our re-
sults strongly indicate that the HDs are asymptotically given
by the same distribution previously found in the literature for
the 2D curved KPZ subclass, for all γ > 1/z. The spatial
covariances, on the other hand, depend on both γ and ω, as
a consequence of the correlations introduced by the substrate
expansion, which compete with those from the deposition
process. This demonstrates that the one-point fluctuations are
more robust than the two-point spatial correlators in these ex-
panding systems. Moreover, the covariance previously found
for the 2D curved KPZ subclass seems to be only a particular
case (for γ = 1) of a family of continuously varying covari-
ance curves for L ∼ ωtγ .

Interestingly, the roughness scaling for the growth and
correlated regimes become identical at γ = 1/z, once
W2 ∼ t2αγ ∼ t2β . In this case, the system stays in a kind of
crossover state (between the growth and correlated regime)

and a continuous class of HDs can be found depending on
the ratio ω/c � L/ξ , which interpolates between the SSR HD
(for ω/c → 0) and the GR HD of the curved subclass for
ω/c � 1. The spatial covariances display a similar variation
with ω/c, agreeing with that for the SSR when ω/c → 0 and
moving towards the CS of curved interfaces as ω/c becomes
large.

The overall scenario above is very similar to the one pre-
viously found for KPZ systems deposited on 1D substrates
expanding as L ∼ ωtγ [43]. In fact, a diagram summarizing
the behaviors found here in terms of γ would be very similar
to the one reported in Fig. 5 of Ref. [43], but with the Gaus-
sian and GUE distributions, as well as the Airy2 covariance
replaced by their counterparts for the 2D case. Substantially,
this confirms that the behavior of the one-point fluctuations
and two-point correlators of KPZ systems is far richer and
interesting than a simple division among few subclasses, also
in higher dimensions.
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