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Analytical modeling of the evaporation of sessile drop linear arrays
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An analytical model for predicting the competitive evaporation of two and three sessile drops is proposed,
based on an analytical solution, in terms of Mehler functions, of the steady species and energy conservation
equations for the gaseous phase. The assessment through a comparison with accurate numerical solutions of
the species conservation equations is reported in order to quantify the accuracy of the analytical solution. The
model is validated against three available sets of experiments on two and three sessile drops on a line array.
The decrease of the evaporation rate caused by the vicinity of sessile drops is reported in terms of a screening
coefficient given by a relatively simple analytical expression. The influence of wall wettability on the evaporation
of pairs of sessile drops is analyzed, and a parameter is proposed to quantify the effect of geometry in a unified
way.
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I. INTRODUCTION

Evaporation of liquid drops deposited on substrates is a
phenomenon playing a crucial role in many scientific, biolog-
ical, and industrial applications, such as ink-jet printing [1],
pesticide spraying [2], micro- and nanofabrication [3], film
coatings [4], spray cooling [5], deposition of DNA/RNA
micro-arrays on solid surfaces [6], and many others.

This has motivated extensive analytical, experimental, and
numerical investigations on sessile drop evaporation (refer
to [7–9] for recent reviews on this topic) addressing the com-
plexity of the many phenomena occurring, such as thermal
Marangoni effects [10], contact line instabilities [11], drop
shape [12], effect of substrate conductivity [13], effect of
particle suspensions [14], etc.

Two limiting modes of drop evaporation were evidenced
(see, for example, [12,15]), which depend upon the motion
of the triple-phase contact line: the constant-contact-radius
(CCR) mode, where the drop contact line is pinned and the
contact angle decreases during evaporation, and the constant-
contact-angle (CCA) mode, characterized by the motion of
the contact line while the contact angle remains constant.
Transitions between these limits are generally observed, and
a third mode, called stick-slip mode [16], characterized by
simultaneous variations of the contact angle and the contact
line, is observed. Experiments of water droplets deposited
on metal and polymer substrates shows that the evaporation
follows a different behavior on weakly pinning (polymer) and
strongly pinning (metallic) surfaces [17]. When deposited on
polymer surfaces, the droplet evaporates according to a stick-
slip sliding motion, characterized by the oscillation of the
contact angle around some value as the drop radius decreases,
steadily or with jumps, while on strong-pinning metallic sur-
faces an extremely large contact-angle hysteresis is observed.
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Moreover, the substrate characteristics, in particular the wetta-
bility, are shown to be responsible for the mode of evaporation
and the overall lifetime of the vaporizing drops [18].

When a drop vaporizes in a gaseous environment the diffu-
sion of vapor from the droplet is the main physical mechanism
controlling the evaporation, then a “diffusion-limited model”
is used to describe the process [19]. When the timescale of
evaporation is orders of magnitude higher than the diffusion
timescale, the quasisteady assumption may become accept-
able and the problem of the species transport from a liquid
spherical cap into the gaseous phase reduces to the solution of
the Laplace equation, which has an explicit analytical form
in toroidal coordinates [20] that has been widely used in
analytical modeling.

The focus of the research on sessile drop evaporation
has been expanded to the study of multiple droplets, due
to the many applications where this phenomenon is encoun-
tered [8,21]. The presence of neighboring droplets on the
same substrate increases the local vapor concentration then
decreasing the evaporation rate of each individual droplet,
depending on the closeness of the surrounding droplets. This
is often referred to as a “shielding” effect, which has been
shown to influence the drop lifetime, the flow structure, and
in some cases the morphology of the final deposits, and it can
lead to asymmetric deformation of the drops [22] and alter-
ation of evaporation modes [23]. The shielding effect reduces
as the separation distance between droplets increases, and
beyond a certain threshold value, which depends also on the
properties of the hydrophobic substrate [24], it may become
negligible. The effect of interdrop spacing on the dynamics of
drop evaporation and condensation has been experimentally
investigated by many authors. An increment of the number
of drops in ordered drop arrays was shown to increase the
lifetime of the central and outer droplets [21], and the decrease
of drop spacing in large drop arrays causes a modification
of the evaporation behavior. When drops become very close,
the evaporation mode approaches that of a continuous film,
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with uniform vapor flux and drop volume reducing linearly
with time, in contrast with the behavior of isolated drops,
where the drop volume changes with time as V ∝ t3/2 [25].
Experiments on evaporation of isolated and interacting water
drops on a polystyrene surface, with contact angle equal to
94◦, showed the inception of an instability, already observed
by [26], caused by the collective evaporation, which leads to
nonuniform evaporation starting at the array boundary [27].

The analytical modeling of drop array evaporation has
been approached in different ways. For example, time-
dependent cooperative drop evaporation has been analyzed
for quasi-one-dimensional [28] and two-dimensional [26]
drop arrays through the solution to the Cahn-Hilliard equa-
tion. Quasisteady evaporation of groups of sessile drops is
commonly modeled as a diffusion-limited phenomenon, re-
ducing the complexity of the problem to the solution of
the Laplace equation. Since the same mathematical prob-
lem appears in different fields of physics, methods used to
model different phenomena and applications, like the diffu-
sion mechanism from biological membranes [29], electrical
conductance through multiple discrete contact interfaces [30],
and diffusion of gas from pairs of nanobubbles on a flat sur-
face [31], can be transferred to the modeling of sessile drop
array evaporation. As an example, an asymptotic analytical
model of evaporation for multiple sessile drops was recently
proposed by [32], based on the integral approach of [29]. The
model was derived for thin drops with circular basis, but it
was shown by [33] that it can be extended to spherical caps in
the hydrophilic range, a comparison with experimental inter-
ferometric measurements of structured and random 2D sessile
drop arrays on hydrophilic surfaces (contact angle equal to
64◦ ± 4◦) showed a rather satisfactory agreement.

The present work proposes a simple analytical model for
the diffusion-limited vaporization from pairs and triplets of
interacting liquid spherical caps on a solid substrate, by su-
perposing existing solutions for single drops [20]. The model
accounts for the presence of the Stefan flow and for the ef-
fect of temperature dependent thermophysical properties, by
extending an existing analytical approach [34] to model the
case of sessile drops. The next section describes the math-
ematical derivation of the model, followed by its numerical
assessment, the comparison with experimental data from the
literature and a collection of results to quantify the shielding
effect for different drop pair configurations on hydrophobic
and hydrophilic substrates.

II. MATHEMATICAL MODEL

The shape of a sessile drop is governed by gravity and
surface wettability, which is defined by the contact angle,
θc = π − ψ0, (see Fig. 1). In the following, the size of the
drop will be assumed to be small when compared to the
capillary length (σ/gρL )1/2, where σ is the surface tension,
g is the gravitational acceleration, and ρL is the liquid density,
so that the drop shape can be approximated by a spherical cap.

Moreover, the terms hydrophilic and hydrophobic will be
used to describe drop-substrate configurations where θc <

π/2 and θc > π/2, respectively.
The sessile drops will be taken as single component and

the gaseous phase is assumed to be an ideal binary mixture

FIG. 1. Schematic of a sessile drop: (left) hydrophilic substrate
and (right) hydrophobic substrate.

made by the evaporating species (vapor) and the ambient
gas. Quasisteadiness will be assumed, and the heat and mass
transfers in the gas mixture can then be modeled by solving
the steady-state species and energy conservation equations:

∇ jN
(p)
j = 0 (p = 0, 1), (1)

ρv j∇ j
(
c(1)

p T
) = ∇ j (k∇ jT ), (2)

where T is the gas temperature, N (p)
j are the molar fluxes

defined as

N (p)
j = N (T )

j y(p) − cD10∇ jy
(p), (3)

where y(p) is the molar fraction of species p (p = 0 for the am-
bient gas and p = 1 for the evaporating component), c is the
molar gas density, D10 is the binary mass diffusion coefficient,
and N (T ) = N (0) + N (1). The steady-state energy equation (2)
takes into account interdiffusional terms, but it neglects dis-
sipation by viscous stresses and further minor terms (refer
to [35], p. 465, or [36], p. 589, for more complete forms for
this equation), v j is the mass average mixture velocity, ρ is the
mass density, k is the gaseous mixture conductivity, and c(1)

p

is the vapor-specific heat capacity. Mass fluxes, n(p)
j , can be

recovered form the molar fluxes by n(p)
j = Mm(p)N (p)

j , where
Mm(p) is the molar mass of species p. External convection
is neglected with the exception of the fluid motion caused
by the Stefan flow, which is then the only cause of the gas
velocity v j .

Uniform Dirichlet boundary conditions on the drop surface
are considered for both temperature and molar fractions, and
the wall is assumed adiabatic. Under these conditions an an-
alytical solution of the problem set by Eqs. (1) and (2) can
be obtained also when the thermophysical properties are as-
sumed to depend on temperature [37] (with some simplifying
assumptions on the kind of dependence; see also [34]). The
quasisteadiness assumption implies that the drop surface can
be considered still, and since the absorption of the ambient gas
into the liquid can safely be taken as negligible, the flux N (0)

is nil on the surface and, in the absence of external convection,
it is nil everywhere. Introducing the nondimensional quantity
H = ln(1 − y(1) ), the species conservation equations, when
thermophysical properties are independent of temperature,
yield the following Laplace equation:

∇2H = 0. (4)
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In [34] it was shown that the problem set by Eqs. (1) and (2)
can still be analytically solved also for thermophysical proper-
ties depending on temperature by power laws, by introducing
a harmonic auxiliary function �, which satisfies the Laplace
equation, and it is nil at infinity and equal to 1 on the drop
surface, whatever the shape of the liquid-gas interface. In that
case the fields H and T are given, in implicit form, in terms
of �, but the heat flux, q j , and the vapor flux, n(1)

j , can be
obtained (see also [37]) through the following relations:

n(1)
j = f (1)

n ∇ j�, (5)

q j = fq∇ j�, (6)

where f (1)
n and fq are constants defined by the thermophys-

ical properties, while the gradient ∇ j� depends only on
the geometry of the problem. To notice that when the ther-
mophysical properties are assumed constant, the auxiliary
function becomes � = H−H∞

Hs−H∞
, where Hs = ln(1 − y(1)

s ) and

H∞ = ln(1 − y(1)
∞ ) are the boundary values on the drop sur-

face and at infinity, respectively, and

f (1)
n = Mm(1)cD10(Hs − H∞), (7)

fq = c(1)
p (Ts − T∞)

eY

1 − eY
f (1)
n , (8)

where Y = Hs−H∞
LeM

and LeM = k
Mm(1)cD10c(1)

p
is the modified

Lewis number; see [34]. The evaporation rate, mev , and the
sensible heat rate, Q, exchanged with the surrounding gas can
then be found by integrating the normal component of the
fluxes over the drop surface S:

mev = f (1)
n

∫
S
∇n� dS, (9)

Q = fq

∫
S
∇n� dS. (10)

The analytical solution to the Laplace equation in the outer
field of a single sessile drop (for the geometry reported in
Fig. 1) was first proposed by [20] making use of the toroidal
coordinate system (ξ, ψ, ϕ):

x = a
sinh (ξ )



cos ϕ, (11a)

y = a
sinh (ξ )



sin ϕ, (11b)

z = a
sin (ψ )



, (11c)


 = cosh (ξ ) − cos ψ, (11d)

where (x, y, z) are the Cartesian coordinates and a is the size
parameter, which is equal to the drop base radius Rc (see
Fig. 1). In this system the spherical cap shape can be repre-
sented by the simple equation ψ = ψ0 and the function � as

� =
√

2
1/2
∫ ∞

0
Piτ−1/2(cosh ξ )

× cosh [(π − ψ0)τ ] cosh (ψτ )

cosh (πτ ) cosh (ψ0τ )
dτ, (12)

FIG. 2. Schematic of a pair of sessile drops: geometric parameters.

where Piτ−1/2(x) are the Legendre functions of first kind with
complex index, which are sometimes called conical or Mehler
functions [38]. Equation (12) and some simplified forms were
widely used to model the evaporation of sessile drops (see, for
example, [39,40]), under the assumption of constant thermo-
physical properties and nil Stefan flow.

A. Model for two interacting drops

Let now consider a pair of identical sessile drops, which
centers are separated by a distance L (refer to Fig. 2 for the
geometric description).

An explicit analytic form of the auxiliary function � for
this kind of geometry, satisfying uniform Dirichlet conditions
on drop surfaces, is not known. However, a possible solution
to the Laplace equation can be found by superposing existing
solutions of single drops. Let �(x, y, z) be the solution for
the case of a single sessile drop positioned at the origin, as
shown in Fig. 1, i.e., such that its value on the surface ψ = ψ0

(in toroidal coordinates) is equal to 1 and it is nil at infinity.
Then �1 = �(x + x0, y, z) and �2 = �(x − x0, y, z) are the
solutions for the case of a drop shifted left and right by a
distance x0 along the x axis, respectively (as in Fig. 2). The
linear combination

�12 = γ (�1 + �2) (13)

is still a solution to the Laplace equation and it is nil at infin-
ity, but it cannot satisfy the condition � = 1 over the whole
surface of the two drops. However, it is possible to choose γ

such that the condition is satisfied at least on some points of
the drop surfaces. A similar method is used, for example, to
model the evaporation of free drop arrays and clouds by means
of the point source approach (see, for example, [41]). To find
a value for γ , it can be assumed that the boundary condition
� = 1 is satisfied on both drop apexes, and this can be better
written in a shifted coordinate system, such that one of the
drops is positioned at the origin and the other one is shifted by
2x0 along the x axis, i.e.,

1 = γ [�(0, 0, Rd + z0) + �(2x0, 0, Rd + z0)], (14)

where Rd is the drop curvature radius (see Fig. 2) and z0 is
the coordinate of the drop apex. Observing that �(0, 0, Rd +
z0) = 1, the coefficient γ can be found as

γ = 1

1 + �(2x0, 0, Rd + z0)
. (15)
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FIG. 3. Average values of the difference between the values of
�12 on one of the drop surfaces and the correct boundary condition,
as a function of drop interdistance λ2 = x0

Rd
, for different contact

angles.

It is now possible to check the discrepancy between the
actual value of �12 over the surface of one of the two drops
and the exact boundary condition �12 = 1. The results are
reported in Fig. 3, in terms of the average difference between
the actual value of �12 on the surface and the exact boundary
condition, for five values of the contact angle varying between
30◦ and 150◦, as a function of the drop interdistance λ2 = x0

Rd
.

To notice that this range of contact angles covers differ-
ent surface wettability conditions. It is worth notice that the
characterization of PTFE (Teflon) surfaces has shown that
typical contact angles (for water drops) between 116◦ [42]
and 122◦ [43] can be reached with an untreated surface having
roughness of the order of 150 nm [42]. However, there exist
treatments that can increase PTFE wettability over 150◦ [44]
using ion beam irradiation maintaining the roughness below
about 400 nm, and up to 165◦ [45] by surface extension (up to
190%) due to fibrous crystals’ structure modification.

It is worth notice that the solution (12) for the case of a
single sessile drop can be written in terms of simple analytic
functions making use of the method of images, when ψ0 = π

2N
and N is a positive integer (see also [46] and [47]), and then
for these cases the calculation of �12 [Eq. (13)] is easy (see
also [37]). For the other values of ψ0 the numerical evaluation
of � from Eq. (12) can be obtained by numerical integration,
although computationally more expensive (see also [46] for a
different approach).

For a comparison with available data, which are reported
in the next section, the proposed method can be extended to
the case of three drops on a line (see Fig. 4).

Considering again the solution for the single drop case
�(x, y, z; ψ0), let us take the superposition of the three fields
corresponding to three drops separated by a distance 2x0:

�12 = [γs�(x − 2x0, y, z) + γc�(x, y, z)

+ γs�(x + 2x0, y, z)], (16)

FIG. 4. Schematic of a triplet of sessile drops: three drops on a
line configuration.

where the symmetry of the problem is used to diminish the
number of coefficients. As above, the boundary condition can-
not be uniform over the drop surfaces, and again let us impose
the value �12 = 1 on the drop apexes. Using the symmetry of
�, the condition at the apex of the central drop yields

1 = γc + 2γs�(2x0, 0, Rd + z0), (17)

while that on the outer drops can be written, by shifting one
of the outer drop at the origin, as

1 = γs + γc�(2x0, 0, Rd + z0) + γs�(x + 4x0, 0, Rd + z0).
(18)

Defining for simplicity

�2x0 = �(2x0, 0, Rd + z0), (19a)

�4x0 = �(4x0, 0, Rd + z0), (19b)

the solution of the system (17) and (18) yields

γs = 1 − �2x0(
1 + �4x0

) − 2
(
�2x0

)2 , (20)

γc = 1 + �4x0 − 2�2x0(
1 + �4x0

) − 2�2x0�2x0

. (21)

The coefficients γs and γc can be directly related to the so-
called screening factors, as discussed in the next subsection.

It is important to notice that once �12 is found, the method
proposed in [34] can be used to find the distribution of vapor
concentration and temperature taking into account the Stefan
flow and the dependence of gas thermophysical properties on
temperature. Since this method has been described in [34], it
will not be discussed further here.

B. Evaporation rates

For the following analysis we can assume that the solution
on the half space z � 0 can be extended to z < 0 by simply
observing that �(x, y, z) = �(x, y,−z), and consequently the
drop shape can be intended as the actual drop plus its reflec-
tion on the lower half-space (see Fig. 5).

FIG. 5. Inner boundaries of the domain for the solution of the
Laplace equation over all the space; � is a generic closed surface
surrounding one of the inner boundaries.
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Consider now any closed surface surrounding one single
drop (surface � in Fig. 5). Since � is harmonic, the integral of
the normal component of the gradient, ∇n�, over this surface
is independent of the choice of the surface, as far as it contains
only one drop, and it is equal to the same integral taken over
the drop surface. If the closed surface does not contain any
drop, its value is nil. Referring to Fig. 5, let us then calculate
the integral of ∇n�12 over the surface �:∫

�

∇n�12 dS = γ

[∫
�

∇n�1 dS +
∫

�

∇n�2 dS

]
, (22)

where Eq. (13) is used. Since the closed surface does not
contain the drop on the right, the integral

∫
�

∇n�2 dS is nil,
while

∫
�

∇n�1 dS is that relative to the single sessile drop.
Then, observing that the evaporation rate is proportional to
those integrals [see Eq. (9)], the ratio

γ =
∫
�

∇n�12 dS∫
�

∇n�1 dS
(23)

is equal to the ratio mev,1

mev,is
between the evaporation rate of one of

the sessile drops, mev,1, and the evaporation rate of the same
drop evaporating alone, mev,is. This quantity can be defined
(as is done for free drops) as the screening coefficient, which
accounts for the screening to the evaporation of one drop
caused by the presence of the other one.

A similar argument can be used to show that, for the case of
three drops on a line, γc and γs are the screening coefficients
for the central and the side drops, respectively.

III. NUMERICAL ASSESSMENT

To evaluate the accuracy of the proposed analytical model
for the evaporation of a pair of interacting sessile drops, the
auxiliary function � was calculated through a 3D numerical
approach using COMSOL Multiphysics® and compared with
the analytical predictions for some conditions. The numeri-
cal solution of the Laplace equation is found using a finite
element discretization approach, imposing uniform Dirichlet
conditions on the boundaries corresponding to the drop-gas
interface and to free stream conditions. Various configura-
tions of single and a couple of interacting drops have been
tested, varying the separation parameter λ2 = x0

Rd
(refer to

Fig. 1) from 2 to 10. The cases of a suspended drop (i.e., free
spherical drops, formally identical to the case of a drop with
contact angle equal to π/2) and of single sessile drops, with
contact angle equal to 135◦ and 45◦, have been considered,
to represent hydrophobic and hydrophilic conditions. Taking
advantage of the double symmetry of the problem, only one-
eighth of the domain is simulated.

The main problem is encountered when setting boundary
conditions at infinity, which must be substituted with bound-
ary conditions at a finite distance from the drops, and this
clearly affects the solution. The method used here to mitigate
this problem is based on an iterative procedure, which can
be described as follows. The boundary condition at infinity,
which in this case is a nil value of the function �, is substituted
with a finite uniform value of �

(0)
∞ on an outer spherical sur-

face of radius R∞. After the first calculation, the values of the
gradient ∇n�, normal to the outer surface, are calculated and

used to evaluate a new boundary condition �
(1)
∞ = �(1)(R =

R∞), where R is the distance from the origin, through the
relation

�(1)(R = R∞) = −(∇R�)R=R∞R∞. (24)

The procedure is then repeated till a convergence criteria
is satisfied; in the present case the criteria are given by a
difference of the integral

I1 =
∫

∇n� dS (25)

over the drop surface, calculated in two subsequent steps,
lower than 10−5.

To notice that for a perfectly spherically symmetric prob-
lem, it can be easily shown that the method converges to the
exact solution. For nonspherically symmetric problems, like
those analyzed here, the value �

(n)
∞ to be imposed at the nth

step on the outer surface is taken as a surface average of the
distribution given by Eq. (24), and the procedure converges
to an approximate solution. To check the accuracy of this
method, numerical solutions are first compared with exact an-
alytical solutions for the case of a single sessile drop [Eq. (12)]
and of a pair of identical suspended (free) drops, which can be
found, for example, in [48,49].

The size of the computational domain, i.e., the value of R∞,
was set assuring that the boundary conditions at free stream
are sufficiently accurate, compromising between the desirable
grid refinement and the approximated uniform boundary con-
ditions at free stream. Comparison with analytical solutions
available for a single sessile drop and a pair of free drops
shows that the choice of imposing the free stream conditions
at a radial distance from the domain center is equal to 30 drop
radii (i.e., R∞ = 30Rd ) yields an acceptable accuracy.

For the case of isolated drops, both suspended and sessile
ones, with contact angle equal to 135◦ and 45◦, exact analyti-
cal solutions of the problem are available [Eq. (12)] and used
as benchmark for the numerical calculations. A grid inde-
pendence analysis was performed, refining the computational
mesh up to 1.54 million elements. The discrepancy between
the evaporation rate predicted by the numerical calculations
and by the exact analytical solution was lower than 7 × 10−5

for the single suspended drop and lower than 6 × 10−5 and
1 × 10−4 for the sessile drop with contact angle equal to
135◦ and 45◦, respectively. An excellent agreement among
the numerical predictions and the exact analytical solutions
is obtained also in the more critical case of hydrophilic con-
dition, where the vapor flux on the drop surface, which is
proportional to the gradient of the function �, becomes in-
finite approaching the triple line (see, for example, [50]), as
shown in Fig. 6.

To test the accuracy of the numerical solution for the case
of a drop pair, the case of two suspended identical drops
(formally identical to the case of a drop pair with contact
angle equal to π/2) with drop separation distance λ2 = x0

Rd

(refer to Fig. 1) varying from 2 to 10 was considered since an
exact analytical solution of the Laplace equation is available,
as mentioned above.

Table I reports the results in terms of the screening co-
efficient, defined as the ratio between the evaporation rate
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FIG. 6. Surface nondimensional flux as function of angular posi-
tion, α (see Fig. 1), from numerical (line) and analytical (symbols)
solutions; hydrophilic substrate with θc = 45◦.

from one of the two interacting drops and the corresponding
value from a single drop [49], as predicted by the analytical
solution and by the numerical model. The results confirm that
the accuracy of the numerical solution is better than 7 × 10−4

for all the test cases selected.
Having assessed the accuracy of the numerical solution for

the cases relevant to the present investigation, the numerical
solution is now taken as reference for the assessment of the
analytical model proposed in the previous section.

Again two contact angles equal to 135◦ and 45◦ and three
values of the separation distance λ2 from 2 to 10 have been
analyzed. The results are reported in Table I, showing a good
agreement among the numerical and the analytical predic-
tions, with an average relative difference of 2.8 × 10−3 and
a maximum relative difference of the order of 7 × 10−3. Fig-
ure 7 summarizes the previous results, reporting the three
curves corresponding to the screening coefficients for the
three sessile drop configurations with varying drop interdis-
tance from 2 to 10, as predicted by the analytical solutions
and the corresponding values from the numerical model, con-
firming the rather good agreement among the results for the
range of operating conditions selected.

This comparison shows the capability of the simple analyt-
ical model, Eq. (15), to predict the effect of neighboring drops
on their evaporation characteristics.

TABLE I. Screening coefficient calculated by the analytical so-
lution, γ a, and by the numerical model, γ n, for three sessile drop
configurations and three nondimensional distance, λ2.

θc = 90◦ θc = 135◦ θc = 45◦

λ2 γ a γ n γ a γ n γ a γ n

2 0.8024 0.8026 0.7670 0.7728 0.8859 0.8829
5 0.9086 0.9092 0.8853 0.8873 0.9506 0.9497
10 0.9524 0.9524 0.9393 0.9395 0.9766 0.9742

FIG. 7. Screening coefficient as function of nondimensional dis-
tance λ2 for three drop configurations as predicted by the analytical
model (line) and by the numerical calculation (symbols).

IV. COMPARISON WITH SOME EXPERIMENTAL
RESULTS

The predictions of the proposed model can be compared
to available experimental data, like those reported in [23],
where pairs of deionized water sessile drops deposited on hy-
drophobic substrates (polydimethylsiloxane) were observed to
evaporate in air at ambient conditions (25 ◦C and 40%–50%
relative humidity). Contact angles, θc, contact radii, Rc, and
drop volumes, V , were measured for single drops and for three
different center-to-center drop pair distances (see Table II).
Measurements of the ratios θc/θc,0, Rc/Rc,0, and V/V0 (where
Rc,0, θc,0, and V0 are the initial contact radius, contact angle,
and volume, respectively) are reported in the paper versus
nondimensional time τ = t/t1d , where t is the time and t1d is
the evaporation time of the single sessile drop. The initial con-
tact angle is 115◦, but during evaporation the drops undergo
different evaporation regimes; precisely the constant contact
radius (CCR) regime is observed at the beginning, followed
by the constant contact angle (CCA) and the mixed regimes.
In the time period τ ∈ (0–0.6) the contact angle changes
from the initial value to about 0.77 times the initial angle
(i.e., �90◦), and the nondimensional distance L/D (where
D = 2Rd is the drop equatorial diameter) changes, due to drop
shrinking caused by evaporation. The value of λ2 = x0

Rd
(see

Fig. 2) was reported to change [Fig. 4(d) of [23]], and an

TABLE II. Initial nondimensional distance λ2,0, average time
derivative of V/V0, linear correlation coefficient R2, average nondi-
mensional distance λ̄2, screening coefficient; data from [23].

λ2,0 = L/D d (V/V0 )
dτ

R2 λ̄2 γ

∞ 1.3365 0.9586
1.6 1.1132 0.9392 1.84 0.83
1.3 0.7702 0.993 1.40 0.58
1.2 0.7491 0.9872 1.23 0.56
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FIG. 8. Value of the ratio V/V0 as reported in Fig. 4(a) of [23],
for the nondimensional time interval τ ∈ (0 − 0.6).

average value over the evaporation period can be calculated
from the reported data (see Table II).

The variation of V/V0 with time for the single sessile drop
case shows a nonlinear behavior; however, when the time
interval τ ∈ (0, 0.6) is considered, linearity may be assumed
as a first approximation, for the single drop and for the other
cases as well, as reported in Fig. 8 [data are obtained from
Fig. 4(a) of [23]].

The average values of d (V/V0 )
dτ

over the time period τ ∈
(0, 0.6) can be estimated as best linear fit, and the results are
reported in Table II, where the values of the linear correlation
coefficient, R2, are also reported, and their high values (from
0.96 to 0.99) justify the procedure. Table II also reports the
value of λ2 = x0

Rd
averaged over the period τ ∈ (0, 0.6).

Since d (V/V0 )
dτ

is proportional to the mean evaporation rate,
the ratio between the values corresponding to the three dif-
ferent drop pair configurations and that corresponding to the
single drop case yields an estimation of the average screening
coefficient γ (see Table II). Figure 9 reports the values of γ as
a function of the average nondimensional distance λ̄2 and the
corresponding values calculated from the proposed analytical
model for both the initial and final contact angles (115◦ and
90◦, respectively).

The discrepancies between measured and estimated values
should be judged considering the simplifying assumptions of
the proposed model and the variability of the measured data,
in particular the reported asymmetry of the configuration dur-
ing evaporation and the possible presence of free convection
effects due to the low molar mass of the evaporating species
with respect to air.

Two sets of experimental data on a linear array made of
three evaporating sessile drops (see Fig. 4) are found in the
literature, and the reported information allows a comparison
with the proposed model.

In [21] measurements of θc/θc,0, Rc/Rc,0, and V/V0 are
reported for the central drop, as a function of the nondi-
mensional time τ = t/t1d (where again t1d is the lifetime
of a single sessile drop) for initial values of λ2 = L

D = x0
Rd

FIG. 9. Comparison between the screening factors γ as obtained
from the experimental data reported in [23] and those calculated by
the proposed model.

ranging from 1.1 to 2.6 and for a single sessile drop. Poly-
dimethylsiloxane (PDMS) substrate was used, which yields an
initial contact angle θc = 110◦ ± 2◦. The initial drop volume
(V0 = 2 μl) yields an initial value of Rc (the radius of the
sessile drop base; see Fig. 2) of about 0.75 mm. Also in
the present case, the initial evaporation mode is CCR (as
can be observed from the measurements reported in [21]),
followed by some period of CCA and mixed regimes.

The drop volume variation with time V (t ) is reported in
Fig. 10 (from [21]), and it can again be linearly fitted, over
the whole evaporation period for all the cases with quite high
values of the linear correlation coefficient (see Table III). Fol-
lowing the above mentioned procedure, an average value of
dV/V0

dτ
can be obtained by a linear interpolation for all reported

cases (see Table III).

FIG. 10. Transient profiles of drop nondimensional volume for
a single drop and seven values of drop interdistance configurations,
from [21].
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TABLE III. Initial nondimensional distance λ2,0, average time
derivative of V/V0, linear correlation coefficient R2, average nondi-
mensional distance λ̄2, screening coefficient of the central drop from
experiments and the numerical model setting θc equal to 88◦ and
110◦; data from [21].

λ2,0 = L/D dV/V0
dτ

R2 λ̄2 γc(exp) γc(88◦) γc(110◦)

∞ 1.018 0.9942 — — — —
2.6 0.9055 0.9891 3.25 0.889 0.755 0.723
2.3 0.8678 0.9857 2.87 0.852 0.726 0.692
1.9 0.8448 0.9861 2.15 0.830 0.662 0.620
1.5 0.7272 0.9952 1.92 0.714 0.626 0.588
1.3 0.7486 0.989 1.63 0.735 0.582 0.539
1.2 0.6909 0.9923 1.46 0.679 0.546 0.505
1.1 0.6237 0.9972 1.30 0.613 0.514 0.472

The initial angle is reported to be 110◦, while the final
one is about 0.8 times (i.e., 88◦), as can be deduced by the
data reported in Fig. 3(b) of [21]. Also the values of λ2

are not constant, since they increase with time due to drop

shrinking. Direct measurements of λ2 during the evaporation
are not available, but considering that the ratios θ̂ = θc/θc,0

and R̂ = Rc/Rc,0 are reported and

λ2(t ) = L

D(t )
= L

D0
Rd

Rd,0

= λ2,0
sin θ

Rc sin θ0
Rc,0

= λ2,0
sin(θ̂ θ0)

R̂ sin θ0

(26)
a time average value of λ2 can be calculated, for each drop
configuration, from the measurements and the values are listed
in Table III.

The screen factors γc obtained from the experiments can be
compared to those calculated from the model, for the range of
contact angles between the initial (110◦) and the final (88◦),
as shown in Table III.

Measurements on evaporating drop arrays with different
configurations are reported in [24], for a contact angle equal
to 90◦ (maintained constant by electrowetting methods), and
the cases of single drop and three drops configuration are
considered, together with more complex configurations. The
measurement results are given in their Fig. 4 in terms of
the square of the contact radius as a function of time, and

FIG. 11. Experimental values of V/V0 = (Rd/Rd,0 )3 versus time, as obtained from the data reported in Fig. 4 of [24], for a single drop
(solid circle) and for the central drop of a triplet (open squares), for four different confinements (see [24] for details).
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TABLE IV. Initial nondimensional distance λ2,0, average time
derivative of V/V0, linear correlation coefficient R2, average nondi-
mensional distance λ̄2, screening coefficient of the central drop from
experiments and the numerical model; data from [24].

Case λ2,0
dV/V0

dt (s−1) R2 λ̄2 γc(exp) γc (mod.)

a ∞ 1.1056 10−3 0.982 — — —
4.75 0.9457 10−3 0.977 5.161 0.867 0.831

b ∞ 0.855 10−3 0.997 — — —
4.75 0.7455 10−3 0.951 5.046 0.831 0.827

c ∞ 0.6779 10−3 0.977 — — —
4.75 0.5511 10−3 0.980 4.959 0.804 0.825

d ∞ 0.8183 10−3 0.966 — — —
4.75 0.5088 10−3 0.991 4.997 0.650 0.826

they are reproduced in Fig. 11, in terms of V/V0 = (Rc/Rc,0)3

(since in this case Rc = Rd ) as a function of time.
The four cases refer to different drop confinements, ob-

tained by positioning a lid over the drops at various distances
(see [24] for the details). The time profiles for some of the
cases show an evident nonlinearity; however, limiting the
analysis at the time interval 0–500 s the data can be linearly
fitted to evaluate the average time derivative of V/V0, which
is proportional to the average evaporation rate, with good
values of the linear correlation coefficient R2, which spans
from 0.966 to 0.997, justifying the approach. The results are
reported in Table IV.

The initial value of λ2 was 4.75, but the drop shrinking
causes an increase of λ2 since

λ2 = L

D
= L

D0
Rd (t )
Rd0

= λ2,0
Rd (t )
Rd,0

(27)

that can be calculated from the data available in [24], and
the average value over the interval t ∈ (0–500 s) is also re-
ported in Table IV for the four cases. Table IV also shows
the experimental values of the screening coefficient γc (central

drop), calculated again as the ratio between the values of dV/V0

dt
for the central drop and the single drop case obtained from
the experiments, as well as the values calculated from the
analytical model. It can be observed that for the last case (d)
the experimental value of the screening coefficient is much
lower than the others and it is worth mention that this case
corresponds to the presence of an horizontal lid positioned at
3 mm over the drop, which may alter the evaporation charac-
teristics (see [24] for details of the experiments).

The values of the screening coefficients for the three-drop
configuration, calculated from the measurements reported
in [21] and [24], are shown in Fig. 12, together with the
predictions from the model.

Again, the discrepancies should be judged taking into ac-
count the simplifying hypotheses of the analytical model and
the inherent variability of the measured data.

V. EXTENSION TO ARRAYS OF IDENTICAL
SESSILE DROPS

The model above proposed can be extended to an arbitrary
number of sessile drops, and this section reports a guideline

FIG. 12. Values of the screening coefficient γc for the central
drop of a triplet of sessile drops, as obtained from the data reported
in [21] (solid circles) and [24] (open squares) and calculated through
the analytical approach (lines).

to such an extension, considering N identical sessile drops
over a substrate. Let us assume than the coordinates of the
kth sessile drop center (intended as the center of the circular
contact surface) are given by (xk, yk ). The exact solution to the
Laplace equation for a single drop positioned at (xk, yk ) is

�k (x, y, z) = �(x − xk, y − yk, z), (28)

where �(x, y, z) is the solution for the same drop centered at
the origin. The superposition

�T (x, y, z) =
∑

k

γk�k (x, y, z) (29)

is still a solution of the Laplace equation, which is nil at
infinity. It is possible to choose γ j such that the boundary
condition on the liquid surface (� = 1) is satisfied at least
on some points of the drop surfaces. Following the method
previously adopted for the drop pairs and triplets, the values
of γ j can be found assuming that the boundary condition
�T = 1 is satisfied on all drop apexes, yielding the system
of N equations:

1 =
∑

k

γk�k (xp − xk, yp − yk, z0 + Rd ). (30)

Defining

�pk = �k (xp − xk, yp − yk, z0 + Rd ), (31)

the linear system can be written as∑
k

�pkγk = 1, (32)

and an inversion of the matrix �pk yields the values of all γk

and then the solution.
To notice that �pk=�kp, and since �k (0, 0, z0 + Rd ) = 1,

then the values on the diagonal are all unitary, thus only
(N−1)N

2 values of the function � must be calculated.
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FIG. 13. Screening factor γ predicted by the analytical model as a function of (a) λ2 = x0/Rd and (b) λ1 = x0/Rc, for different values of
the contact angle.

The model can also be extended to nonidentical drops
following a similar path; however, analysis and validation of
the model for drop arrays are beyond the scope of the present
paper and will not be discussed here.

VI. RESULTS AND DISCUSSION

In the previous sections it has been shown that the evapo-
ration of two adjacent drops interferes in such a way that one
drop screens the other and the evaporation rate is then reduced
with respect to a single drop under the same conditions. The
screening coefficient, γ , defined as the ratio of the evaporation
rate of one of the two drops and that of the single evaporating
drops, is shown to be, at least in the absence of external
convection but under the effect of the Stefan flow, a geometric
quantity, since the effects of the thermophysical properties are
wiped out. Also the dependence on the drop size is canceled
out by the linear dependence of the evaporation rate on the
drop radius, and then the remaining quantities can be grouped
into two nondimensional parameters that define the screening
coefficient of a pair of identical sessile drops: the contact
angle, θc, and the nondimensional drop separation. This last
parameter can be defined in at least two different ways, i.e.,
as the ratio of the distance between the two drop centers and
the contact radius, Rc, or the curvature radius, Rd . To maintain
a connection with the same quantity defined for free drops
(see, for example, [48,49,51]) the following two definitions
are considered:

λ1 = L

2Rc
, (33a)

λ2 = L

2Rd
, (33b)

which are related to each others by (see Fig. 1)

λ1 = L

2Rc
= L

2Rd sin (ψ0)
= λ2

sin (θc)
. (34)

From a geometric point of view the two definitions are equiv-
alent; clearly for drops on hydrophobic substrates λ2 has an
evident lower boundary independent of the contact angle and
equal to one (which is not true for λ1 in this case), whereas for
the case of sessile drops on hydrophilic substrates it is λ1 that
has a lower boundary independent of the contact angle, and
again equal to one. In any case the screening coefficient, under
the assumptions made in the present analysis, is a function of
θc and λ1 or λ2.

Using Eq. (15), which, as above described, has been nu-
merically assessed and tested against experimental values, the
screening factor γ was evaluated for different values of the
contact angle and different nondimensional separations λ1 and
λ2, and the results are reported in Fig. 13.

It can be observed that for sessile drops on hydrophilic
substrates the parameter λ1 groups the resulting curve better
than λ2 and vice versa for hydrophobic substrates.

Drops on hydrophobic substrates show a larger screening
effect than drops on hydrophilic ones, which could possibly be
connected to the larger protrusion of these drops in the vapor
field when compared to drops with lower contact angle. How-
ever, a more consistent comparison should be done between
drops with the same volume deposited on different substrates.
To this end, consider a drop with a given volume V ; under
the assumption of negligible effect of gravity the following
relations hold:

V = πR3
c

2 − 3 cos (θc) + cos3 (θc)

3 sin3 (θc)
, (35)

Req =
(

3V

4π

)1/3

= Rc

(
2 − 3 cos (θc) + cos3 (θc)

4 sin3 (θc)

)1/3

,

(36)

where Req is the radius of a spherical drop having the same
volume of the sessile one.

Given two drops of a given volume V at a distance L
from each other, it is then possible to analyze the effect of
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FIG. 14. (a) Values of the screening factor γ as a function of the contact angle, for different values of λ3 = x0/Req. (b) Values of the
screening factor γ as a function of the nondimensional drop distance λ3 = x0/Req, for different values of the contact angle.

wettability on screening. Defining λ3 = L
2Req

the screening
coefficient can be calculated for any value of λ3 as a function
of wettability. To notice that for each value of λ3 there exists
an angle θc,min under which the sessile drops interfere.

Figure 14(a) reports the values of screening coefficient γ

as a function of the contact angle for different values of λ3,
showing that for a given volume and distance, the screening
factor is lower for drops on hydrophilic substrate, i.e., the
opposite of what could be simplistically inferred from Fig. 13.

The effect becomes larger for smaller values of λ3, i.e.,
smaller drop interdistances.

The effect of wettability on the screening can be interpreted
observing that for any given drop volume, the outer edges of
drops are closer for drops on hydrophilic substrates; moreover
the evaporation fluxes diverge on the triple line [50], and this
causes a stronger interaction between the evaporation fluxes.

It can also be noticed from Fig. 14(b) that the curves col-
lapse together when using λ3 as the nondimensional measure
of the drop interdistance, particularly for hydrophobic drops:
the difference between the screening factors at θc = 150◦ and
θc = 90◦ is less than 0.6% for λ3 � 2. This finding may
suggest the use of λ3 = L

2Req
, rather than other nondimensional

distances, to better compare the effect of distance on drop
evaporation screening for different substrate wettability.

As a final analysis, a comparison with the asymptotic so-
lution proposed for thin drops in [32] can be done. In the
theoretical work of [32], the evaporation of arrays of thin
drops of circular shape were considered, and explicit analyt-
ical expressions for the local and integral vapor fluxes were
given. This kind of shape is found where the drop size is larger
than the capillary length so that the drop spread under the
effect of gravity forms a thin film. The solution for case of a
pair of identical drops was reported and an explicit expression
for the screening coefficient of the drop pair can be deduced
from their Eq. (3.4), and it can be written as

γ = 1

1 + 2
π

arcsin
(

1
2λ1

) . (37)

It should be noticed that in [32] the mass transfer is mod-
eled as purely diffusive and the Stefan flow is neglected;
however, the ratio between the evaporation rate from one of
the twin drops and that of an isolated drop, which is the
screening coefficient, yields a correct value since the Stefan
flow is neglected in both cases. The resulting values of the
screening coefficient for different drop interdistance are com-
pared in Fig. 15 with that obtained by the present modeling,
for drops on hydrophilic substrate with vanishing contact an-
gle (from 30◦ to 10◦). It can be clearly observed that the results
of [32] represent an asymptote, for θc → 0, for the values
predicted by the present modeling.

It is then of a certain interest to note that the present
approach, in connection with the cited modeling of thin drops
evaporation [32], may allow to extend the range of application

FIG. 15. Values of the screening factor γ as a function of the
nondimensional drop distance λ1 = x0/Rc, for three values of the
contact angle (30◦, 20◦, 10◦) and the thin film prediction from [32].
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of multiple drop evaporation analytical modeling, from very
low to very high contact angle conditions.

VII. CONCLUSIONS

The paper reports a simple analytical approach to model
the evaporation of pairs and triplets of sessile drops. The
solution to the gas phase species and energy conservation
equations in toroidal coordinates is extended to the case of
two and three identical sessile drops.

The evaporation rates from each sessile drop in the ar-
ray are compared to those for single drops with the same
contact angle to yield a screening coefficient that quantifies
the evaporation reduction due to drop vicinity. The analytical
solution is assessed by comparison with accurate numerical
solutions. The discrepancy between the analytical values of
the screening coefficients and the numerical ones is compara-
ble to the accuracy of the numerical solutions for interdistance
larger than about 5 times the base drop radius for drops on
hydrophobic substrates, while for closer drops the maximum
discrepancy is of the order of 7 × 10−3. The cases of drops on
hydrophilic substrates present a criticality due to the flux that
becomes infinite at the triple line, although the discrepancy
among the analytical values of the screening coefficients and

the numerical ones is always lower than 3.5 × 10−3 for all the
selected operating conditions.

The model is validated against three sets of experimental
data, for two and three evaporating drops on a line. The
average screening coefficient obtained from the available ex-
perimental data is compared to that predicted by the model
and the comparison appears satisfactory, despite the simplify-
ing assumptions of the model and the reported experimental
uncertainties.

The model is then used to quantify the shielding effect on
drop evaporation for pairs of sessile droplets as a function of
drop interdistance and contact angle, in a relatively wide range
of values. It was observed that for hydrophobic substrates the
decrease of evaporation rate is larger than 5% even when the
drop interdistance is equal to 10 drop equatorial diameters.
For hydrophilic substrates a comparable effect is found when
the drop interdistance is equal to 10 times the diameter of
the drop base. The use of a nondimensional drop separation
parameter, defined as the ratio between the drop interdistance
and the equivalent volume diameter, λ3 = L

2Req
, allows us to

quantify the effect of drop neighboring on drop pair evapora-
tion in a way that is almost independent of wall wettability.

A way to extend the proposed analytical model to the case
of an arbitrary number of drops is reported.
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