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Energy barrier for ion field emission from a dielectric liquid sphere
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Ion field emission from the surface of a dielectric liquid is commonly modeled as a kinetic process with an
energy barrier lowered by the strength of the electric field. Expressions for the energy barrier exist for simplified
cases such as a planar surface and a conducting sphere. This article derives an analytical expression for the
more general case of a dielectric sphere, which is the continuum model and geometry for most cases of interest.
The energy barrier is computed using the method of image charges, and compared to existing expressions for
simpler models. The energy barrier increases at decreasing dielectric constant and decreasing radius of curvature.
Ion emission from typical systems (the ideal Taylor cone and charged nanodroplets) differs substantially when
calculated with either our model or with existing simpler models.
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I. INTRODUCTION

Ion evaporation is the spontaneous emission of ions from
a surface. The emission rate depends on the properties of the
surface, the emitted ion, and the temperature. It is enhanced
by the presence of an electric field, in which case the process
is referred to as ion field emission. Müller [1,2] first studied
ion field emission from metallic surfaces, explaining it as the
interaction between the ion and the electric field including
that of the image charge induced by the emitted ion. Gomer
[3] proposed an alternative model that regards the emission
as the transition between two competing energy states. This
approach is more challenging because it requires a quantum-
mechanical treatment of the process.

Ion field emission from dielectric liquids occurs naturally
in aerosols. It is a key element in electrospray mass spectrom-
etry [4], where the combination of ion emission and Coulomb
explosions from charged droplets in the aerosol determines
the net charge of the particle analyzed by the mass spec-
trometer, typically a macromolecule or a cluster [5]. Ion field
emission is routinely observed and investigated by electro-
spraying dielectric liquids with high electrical conductivity,
using both experimental and numerical approaches [6,7]. Two
distinct cases occur: electrosprays operating in the cone-jet
mode produce a thin jet that breaks into droplets, and ion
emission can take place from both the jet and droplets leading
to a mixed droplet-ion emission regime [8]; ion emission can
also take place from the tip of the liquid meniscus, or Taylor
cone, in the absence of jet and droplet formation, leading
to a purely ionic emission regime [9,10]. In either case the
electrospray provides a stationary geometry for the emission
of ions, and by measuring the emitted current and calculating
the electric field, field emission models can be studied [11,12].
This soft ionization technique does not require the use of a
plasma discharge chamber; it operates at a low power level
per emitter, it efficiently converts electric power into beam
kinetic power, and micromachining techniques can be used

to create dense emitter arrays. These properties make this
ion source ideal for space propulsion, especially for Small-
Sats (spacecrafts weighing less than 600 kg). The number of
launched SmallSats has grown significantly in the past few
years, from 126 in 2016 to 389 in 2019 and 1743 in 2021 [13],
and since most of them are intended for telecommunication
applications, onboard propulsion for orbit insertion and main-
tenance is an enabling capability [14]. Chemical propulsion is
not ideal because of its relatively low specific impulse, while
conventional electric propulsion cannot be scaled down to
operate at the power levels of SmallSats [15,16]. Electrospray
propulsion is expected to fill the propulsion need of SmallSats
[17–19], and a precise fundamental understanding of ion field
emission, which is one of its key ionization mechanism, is
needed to advance this technology.

Iribarne and Thomson [20] developed the following equa-
tion for ion field emission from a liquid:

J = kBT

h
σ exp

(
−�GS

0 − G(E )

kBT

)
, (1)

where J is the ion current density, h and kB are the Planck
and Boltzmann constants, T is the temperature at the emitting
surface, and σ is the surface charge density. �GS

0 is the free
enthalpy of solution of the ion, and G(E ) is the electrostatic
contribution to the enthalpy. The difference between these
two terms is the energy barrier that the ion must overcome
to escape the surface. �GS

0 is a property of the liquid and
ion pair, while G(E ) is a function of the electric field. As
the ion moves away from the surface, it is repelled by the
electric field induced by the net charge distributed over the
surface (it has the same polarity as the ion), and attracted
by the field of the image charge it induces. The combined
effect reduces the intrinsic energy barrier �GS

0 by the amount
G(E ). Iribarne and Thomson used the image charge method to
compute G(E ) for the case of a perfect conductor with a planar
surface, a calculation that is easily extended to dielectrics.
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Gamero-Castaño and de la Mora [5] used the same model to
compute G(E ) for a conducting sphere.

The ion evaporation rate depends exponentially on G(E ),
and therefore using a physical model that closely resembles
the emitting surface is key for accurate predictions. In the
case of dielectric liquids, the high electric fields required
for emission can only be produced from surfaces with radii
of curvature of at most a few tens of nanometers. Naturally
emitting geometries include the highly charged nanodroplets
and nanojets of electrosprays [21]. In these cases, retaining
both the curvature of the surface and the dielectric nature of
the liquid are key for computing G(E ). This article derives
this more general form of the energy barrier, and compares
it to existing formulations based on excessively simplifying
assumptions (e.g., a planar and/or equipotential surface).

II. EMISSION FROM A SURFACE WITH FINITE RADIUS
OF CURVATURE AND DIELECTRIC CONSTANT

To model the local behavior of a curved surface, we con-
sider an ion-emitting dielectric sphere of radius R, centered in
a spherical coordinate system {r, θ, φ}. The electric potential
induced by the charged sphere is given by

�surf(r) = R2Es

r
, (2)

where Es is the electric field on the surface associated with
the net charge. The emitted ion is modeled as a point charge
q located at {ri, 0, 0}. Under these conditions, the electric po-
tential of the image charge induced by the ion and distributed
inside the sphere is [22]

�imag(r, θ )

=
{− q

4πε0ri

∑∞
n=1

n(ε−1)
n(ε+1)+1

(
r
ri

)n
Pn(cos θ ), r < R,

− q
4πε0R

∑∞
n=1

n(ε−1)
n(ε+1)+1

(
R2

rir

)n+1
Pn(cos θ ), r � R,

(3)

where Pn are the Legendre polynomials of integer order n. The
net value of the image charge is zero, as can be shown by
applying Gauss’s law to the electric field associated with (3).
Since all the calculations are done along the line of sight of
the emitted ion, (3) is simplified by considering θ = 0. The
radial component of the electric field along the path of the ion
is then

Eimag(r) =
⎧⎨
⎩

q
4πε0ri

∑∞
n=1

n2(ε−1)
n(ε+1)+1

rn−1

ri
n , r < R,

− q
4πε0R

∑∞
n=1

n(n+1)(ε−1)
n(ε+1)+1

1
rn+2

(
R2

ri

)n+1
, r � R.

(4)
The total force acting on the ion is the repulsive, spherically
symmetric force induced by the net charge on the surface
of the sphere, plus the attractive force induced by the image
charge:

Fion(ri ) = q[Esurf(ri) + Eimag(ri )], (5)

Fion(ri ) = qR2Es

ri
2

− q2

4πε0R

∞∑
n=1

n(n + 1)(ε − 1)

n(ε + 1) + 1

R2n+2

ri
2n+3

. (6)

The force of the net charge repels the ion away from the
surface, while the force of the image charge attracts it and
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FIG. 1. Potential energy of an ion as a function of its distance
from the surface of a dielectric and charged sphere, for R = 10 nm,
ε = 10, Es = 1 V/nm, and �GS

0 = 2 eV. The red curve (Uion) is the
net potential energy, i.e., the sum of the potential energies induced by
the net charge (Usurf) and the image charge (Uimag). Near the surface,
the image charge model breaks down, and the interaction energy
tends to −�GS

0 (Ureal).

is the dominant term near the surface. The potential energy of
the ion as it moves away from the sphere is

Uion(r) = −
∫ r

∞
Fion(ξ )dξ

= qR2Es

r
− q2

8πε0R

∞∑
n=1

n(ε − 1)

n(ε + 1) + 1

(
R

r

)2n+2

. (7)

The steps taken from Eq. (3) to (7) are necessary to obtain
the correct potential energy of the ion. It would appear that
the successive differentiation and integration yielding (4) and
(7), respectively, are redundant and that the energy of the ion
could be directly obtained by adding (2) and (3). However,
note that (3) is larger than the term in (7) associated with the
image charge by a factor of 2. This is due to the use of the
radial coordinate r to perform the first differentiation yielding
the electric field (4), while the final integration leading to (7)
is instead done on the ion position ri, now with r = ri.

Figure 1 shows the potential energy of the ion, together
with its components associated with the image charge and the
net charge on the surface, as a function of the distance x from
the surface (r = R + x). The potential exhibits a maximum at
r∗. The energy barrier is the difference between this maximum
and the energy at the surface, Uion(r∗) − Uion(R). Note that
the potential induced by the image charge goes to minus
infinity as the ion approaches the surface, seemingly making
the energy barrier infinite. In reality, the use of the image
charge potential to model the interaction between the ion and
the uncharged dielectric breaks down within atomic distances
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from the surface, and more complicated models/potentials are
needed to obtain the correct value of the ion energy at the
surface, namely −�GS

0. This is illustrated in Fig. 1 with the
insertion of an ad hoc dashed segment that takes the interac-
tion between the ion and the uncharged dielectric to the correct
value at the surface. Figure 1 shows that, in the absence of net
charge, the energy barrier is simply �GS

0, and when net charge
is present on the surface, its associated electric field reduces
this energy barrier in the amount G(E ):

G(E ) = �GS
0 − [Uion(r∗) − Uion(R)]

= q
∫ r∗

R
Esurf(ξ )dξ + q

∫ r∗

∞
Eimag(ξ )dξ

=
(

1− R

r∗

)
qREs+q2(ε − 1)

8πε0R

∞∑
n=1

1

ε+1 + 1
n

(
R

r∗

)2n+2

.

(8)

This calculation of G(E ) assumes that the potential of the
image charge accurately describes the interaction between the
ion and the uncharged dielectric near r∗, i.e., near the position
of the maximum of the potential. We also note that the series
in (8) has a poor convergence for a large radius of curvature,
and its numerical calculation requires a large number of terms.
We can estimate the number of terms needed for a certain
accuracy by checking the relative magnitude of the first and
the “last” term of the series:

E ∼=
1

ε+1+ 1
n∞

(
R
r∗

)2n∞+2

1
ε+2

(
R
r∗

)4 . (9)

Assuming that n∞ is a large number and that the dielectric
constant is fairly bigger than 1, we obtain that to get an error
on the infinite sum of the order of E we need to consider
approximately

n∞ ∼= ln E
2 ln R

r∗
(10)

terms in the sum. It is clear that when R → ∞, the denomi-
nator of (10) goes to zero since r∗ = R + x∗, blowing up the
number of terms needed to evaluate the series. Under these
conditions, it may be computationally better to switch to the
classic dielectric plane approximation for G(E ).

III. COMPARISON WITH EXISTING MODELS

We next compare (8) with the values for limiting cases
frequently used in the literature. The potential energies of an
ion emitted from a planar conductor, a planar dielectric, and a
spherical conductor are given, respectively, by

U pc
ion(x) = qEsx + q2

16πε0x
, (11)

U pd
ion(x) = qEsx + (ε − 1)q2

16πε0(ε + 1)x
, (12)

U sc
ion(r) =

(
1 − R

r

)
qREs +

(
1

R
− R

r2
+ R

r2 − R2

)
q2

8πε0
.

(13)
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FIG. 2. Dimensionless reduction of the energy barrier, Eq. (16),
for several values of the dielectric constant. The reduction for a
planar dielectric and a spherical conductor are also plotted for com-
parison. We provide coordinates in physical units for an electric field
Es = 1 V/nm (for this condition, the characteristic energy and length
are Uc = 1.2 eV and Lc = 0.6 nm).

x stands for the distance between the ion and the emitting
surface. The electrostatic reductions of the energy barrier in
the first two cases are

Gpc(E ) =
√

q3Es

4πε0
, (14)

Gpd(E ) =
√

q3Es(ε − 1)

4πε0(ε + 1)
, (15)

while the electrostatic reduction for the spherical conductor,
Gsc(E ), needs to be obtained numerically. The comparison
is more easily done by making these functions dimensionless
using the electrostatic reduction for a planar conductor and its
position as the characteristic energy and length, respectively,
Uc = (q3Es/4πε0)1/2 and Lc = (q/16πε0Es)1/2. In particular,
the dimensionless form of (8) is

G̃(E ) =
(

1 − R̃

r̃∗

)
R̃

2
+ 1

R̃

∞∑
n=1

ε − 1

ε + 1 + 1
n

(
R̃

r̃∗

)2n+2

. (16)

Figure 2 plots G̃(E ) as a function of the dimensionless radius
of curvature and for several values of the dielectric constant.
It also shows the dimensionless values for a planar dielectric
with the same values of the dielectric constant, as well as for a
spherical conductor as a function of R̃. In all cases, the values
are smaller than 1, i.e., a flat conductor yields the largest
electrostatic reduction of the energy barrier. The electrostatic
reduction of the energy barrier decreases significantly as the
radius of curvature becomes smaller, and the smaller the di-
electric constant, the smaller is the reduction of the energy
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FIG. 3. Dimensionless distance between the energy maximum
and the surface as a function of the dimensionless radius of curvature
and dielectric constant. We also plot the distance in physical units for
an electric field on the surface Es = 1 V/nm (for this condition, the
characteristic energy and length are Uc = 1.2 eV and Lc = 0.6 nm).

barrier. The simplest planar conductor model is commonly
used to estimate ion field emission regardless of the dielectric
nature and curvature of the emitting substrate, but this choice
clearly overestimates the intensity of ion emission. Note also
that, for a given dielectric constant, the values of G̃(E ) at
large radius of curvature asymptote to the values for the planar
dielectric, and that the curve for the spherical conductor is an
upper limit for G̃(E ) at large dielectric constant. This is to
be expected because (8) is a general solution, and expressions
for limiting cases such as a perfect conductor and a planar
dielectric surface can be derived from it.

Figure 3 shows the dimensionless distance between the
emitting surface and the position of the energy maximum,
x̃∗. The distance increases with the dielectric constant and
as the radius of curvature becomes smaller. As mentioned
earlier, the calculation of G(E ) assumes that the image charge
potential is a valid description of the interaction between
the ion and the uncharged dielectric near the maximum of
the potential energy. Thus, Fig. 3 suggests that the smaller
the radius of curvature and the larger the dielectric constant,
the more valid the classical formulation of ion emission. We
expect the classical formulation to be valid in most cases of
ion emission from liquids of interest. For example, EMI-Im,
a typical ionic liquid used in electrospray research [21], has a
dielectric constant of 12, and for a typical ion-emitting droplet
with a radius of 10 nm, the separation between the potential
maximum and the surface is 0.58 nm. The estimated radius
of the EMI-Im molecule is 0.3 nm [23,24]. Thus, although
within a distance of 0.3 nm from the surface the image charge
potential is probably a poor approximation of the interaction,
the separation of 0.58 nm between the energy barrier and the
surface suggests that the image charge potential is a valid ap-

proximation to compute G(E ). Finally, note that the values of
x̃∗ are generally close to 1. In this case, (16) can be simplified
by taking r̃∗ = R̃ + 1, yielding an expression with an explicit
dependence on R̃ and ε,

G̃(E ) ∼= 1

2(1 + 1/R̃)
+ 1

R̃

∞∑
n=1

ε − 1

ε + 1 + 1
n

(
1

1 + 1/R̃

)2n+2

,

(17)

and for which, unlike in (16), there is no need to first compute
numerically r̃∗(R̃, ε) to evaluate G̃(E ).

IV. EFFECT OF THE ENERGY REDUCTION MODEL
IN THE EMISSION FROM TYPICAL GEOMETRIES

In this section, we analyze the differences in ion emission
associated with our model and the previous planar/conductor
models. We consider two analytic scenarios: ion emission
from the tip of an ideal Taylor cone, and ion emission from
a spherical droplet charged at the Rayleigh limit. In both
cases, the radius of curvature of the emitting surface can be
a few nanometers, i.e., in the range where Eq. (8) departs
significantly from the frequently used planar approximations.

A Taylor cone is an analytic solution for a static and
electrified liquid meniscus where the electric and capillary
stresses are perfectly balanced [25]. The meniscus adopts a
semi-infinite conical shape with a half-angle θT = 49.29◦.
The liquid meniscus is equipotential, and the electric field on
the surface is

ET
s (ρ) =

√
2γ

ε0

cos θT

ρ
, (18)

where γ is the surface tension of the liquid, and ρ is the radial
coordinate in a cylindrical frame of reference centered at the
vertex. The surface charge is equal to ε0ET

s , and the average
radius of curvature of the cone is

RT (ρ) = 2ρ

cos θT
. (19)

These values for the electric field, radius of curvature, and
surface charge, inserted in Eq. (1), and the expressions for
G(E ) yield the ion current emitted from an ideal Taylor cone.
Figure 4 shows the current density as a function of the radial
distance (cylindrical coordinates) from the tip, computed with
our spherical dielectric model for the reduction of the energy
barrier and several values of the dielectric constant. For com-
parison, the ion current density is also calculated using the
planar dielectric and the spherical conductor models. Table I
provides the total ion current emitted in each case. The electric
field on the surface of an ideal Taylor cone scales as ρ−1/2,
tending to infinity towards the vertex. On the other hand, the
mean radius of curvature scales as ρ. When both limiting
behaviors are inserted in our spherical dielectric model, e.g.,
using Eq. (17) for an explicit approximation, the reduction of
the dimensionless energy barrier scales as G̃(E ) ∝ R̃, while its
dimensional form scales as G(E ) ∝ ρ1/2. Thus, as the vertex
is approached, the reduction of the energy barrier tends to
zero even though the electric field tends to infinity, effectively
suppressing ion field emission. On the other hand, Fig. 2
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FIG. 4. Ion current density along the surface of an ideal Taylor
cone. We use a temperature of 25 ◦C, a surface tension of 0.05 J/m2,
and a free enthalpy of solution �GS

0 = 1.7 eV.

shows that the planar dielectric and spherical conductor mod-
els predict substantial energy barrier reductions at zero radius
of curvature, and this, coupled with the singular electric field,
leads to infinite current densities as well as an infinite total
current. In addition to this calculation for the ideal conical
geometry, we note that the tips of physical ion-emitting Taylor
cones are not infinitely sharp, but instead should end in a
spherical cusp with a small but finite radius of a few nanome-
ters. Therefore, the effects of the curvature and the dielectric
constant on the reduction of the energy barrier will also be
significant in actual Taylor cones, and our model will provide
a better estimate of ion emission than the previous planar and
spherical conductor models.

A droplet charged above its Rayleigh limit [26],

QRay = 8π
√

ε0γ R3, (20)

is unstable and will undergo a Coulomb explosion to give
rise to smaller, stable droplets [27]. An electrosprayed droplet
can reach the Rayleigh limit as its liquid phase evaporates
while retaining its net charge, or as a section of the cylindrical
jet evolves into the droplet during the jet breakup [21]. If
a droplet that is at the Rayleigh limit is small enough, ion

TABLE I. Total current emitted from an ideal Taylor cone for
different ion emission models and values of the dielectric constant.

ε Spherical Planar Spherical
dielectric dielectric conductor

5 0.014 nA ∞
10 1.966 nA ∞ ∞
20 28.10 nA ∞
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FIG. 5. Time required to evaporate 10% of the charge of a droplet
that initially is at the Rayleigh limit. We consider our spherical
dielectric model and the previous planar dielectric and spherical con-
ductor models. The liquid temperature is 25 ◦C, the surface tension
is 0.05 J/m2, and �GS

0 is 1.7 eV.

evaporation may reduce its charge before it becomes unstable,
preventing the Coulomb explosion. We next evaluate the char-
acteristic emission time of a droplet charged at the Rayleigh
limit as a function of its radius, using our and previous models
for the reduction of the energy barrier. We consider a spherical
droplet with its net charge Q distributed on its surface. Con-
servation of charge, the electric field at the surface, and the
ion emission equation

dQ

dt
= −4πR2J, (21)

Es = Q

4πε0R2
, (22)

J = kBT

4πh

Q

R2
exp

(
G(E ) − �GS

0

kBT

)
, (23)

together with (20) as an initial condition, yield Q(t ) as ions
are field-emitted. Figure 5 shows the time needed to evaporate
10% of the charge when considering our model and previous
models for the reduction of the energy barrier. As expected,
the emission time computed with our model (8) converges
to the planar model as R → ∞. However, for these large
droplets, the field-emitted current is so small and the emission
time so large that ion emission is irrelevant. On the other
hand, when the droplets are small enough so that ion emission
becomes a factor [21], the effect of the radius of curvature
is significant. Figure 5 shows that in this case, the use of
either the planar dielectric model or the spherical conductor
model greatly overestimates the intensity of ion field emis-
sion, leading to emission times 2–10 orders of magnitude
smaller than those computed with the more physical model
that includes the radius of curvature and the dielectric constant
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of the droplet. This difference will have a significant impact
on the prediction of the distributions of droplets and ions in
these complex beams [21].

V. CONCLUSION

The radius of curvature and the dielectric constant of a
liquid medium play a significant role in the intensity of ion
field emission. We have developed a model that accounts
for both factors, and provides an analytical solution for the
reduction G(E ) of the energy barrier impeding ion emission.
Since ion emission is an exponential function of G(E ) and
typical ion emitting surfaces are characterized by both small
radii of curvature and their dielectric nature, the model derived
in this article is important for obtaining physical results in
actual problems. G(E ) is lowered, and therefore ion emission
diminished, at decreasing dielectric constant and decreasing
radius of curvature. Ion emission from typical systems differs
substantially when calculated with either our model or with
existing simpler models (which assume an infinite radius of
curvature or emission from a perfect conductor). In the case
of an ideal Taylor cone, our model yields a finite value for the
ion current despite the singular behavior of the electric field

at the vertex; conversely, planar or perfect conductor models
yield an unphysically infinite ion current. In the case of ion
emission from a nanodroplet charged at the Rayleigh limit,
the simpler models predict characteristic emission times 2–10
orders of magnitude smaller than the times obtained with our
model. It is also worth noting that obtaining the free enthalpy
of solution of an ion is a problem of considerable interest
[28]. Although �GS

0 can be estimated with the continuum
Born model [29] and with molecular-dynamics calculations
[30,31], a more direct and accurate method involves the use of
a well-defined geometry from which the intensity of ion-field
emission is measured [11]. The model developed in this article
will be important for this direct, experimental measurement of
�GS

0, because an error in the calculation of G(E ) yields the
same error in the determination of �GS

0.
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