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Spreading fronts of wetting liquid droplets: Microscopic simulations and universal fluctuations

J. M. Marcos ,1,2 P. Rodríguez-López,3 J. J. Meléndez ,1,2 R. Cuerno ,4 and J. J. Ruiz-Lorenzo 1,2

1Departamento de Física, Universidad de Extremadura, 06006 Badajoz, Spain
2Instituto de Computación Científica Avanzada de Extremadura (ICCAEx), Universidad de Extremadura, 06006 Badajoz, Spain

3Área de Electromagnetismo and Grupo Interdisciplinar de Sistemas Complejos (GISC), Universidad Rey Juan Carlos, 28933 Móstoles, Spain
4Departamento de Matemáticas and GISC, Universidad Carlos III de Madrid, 28911 Leganés, Spain

(Received 23 July 2021; accepted 21 April 2022; published 10 May 2022)

We have used kinetic Monte Carlo (kMC) simulations of a lattice gas to study front fluctuations in the
spreading of a nonvolatile liquid droplet onto a solid substrate. Our results are consistent with a diffusive growth
law for the radius of the precursor layer, R ∼ t δ , with δ ≈ 1/2 in all the conditions considered for temperature
and substrate wettability, in good agreement with previous studies. The fluctuations of the front exhibit kinetic
roughening properties with exponent values which depend on temperature T , but become T independent for
sufficiently high T . Moreover, strong evidence of intrinsic anomalous scaling has been found, characterized by
different values of the roughness exponent at short and large length scales. Although such a behavior differs from
the scaling properties of the one-dimensional Kardar-Parisi-Zhang (KPZ) universality class, the front covariance
and the probability distribution function of front fluctuations found in our kMC simulations do display KPZ
behavior, agreeing with simulations of a continuum height equation proposed in this context. However, this
equation does not feature intrinsic anomalous scaling, at variance with the discrete model.
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I. INTRODUCTION

The expansion of nonvolatile liquid droplets deposited
onto flat surfaces (to which we will refer hereafter simply as
spreading) appears in many processes of scientific or techno-
logical relevance [1]. This fact justifies the intensive research
that fluid spreading has originated during the past decades.
Being critically conditioned by the wetting properties of the
chosen fluid-substrate combination which is considered in
each case, the dynamics of spreading is a complex phe-
nomenon that has been studied from a number of approaches
[2]. At the macroscopic scale, the radius of a droplet, Rd,
depends on time t as a power law, Rd ∼ t δd , where δd de-
pends on the physical-chemical characteristics of the droplet
and the substrate, and ranges between δd = 1/10 (a result
known as Tanner’s law [3]) and δd = 1/7 [4]. In general, the
macroscopic behavior of the system is accurately described
by hydrodynamics, except in the complete wetting regime.
For this case, experimental results evince the occurrence of
a so-called precursor layer, with a microscopic thickness of
about one or a few molecules across, which precedes the
macroscopic droplet and spreads out ahead of it [5]. The
radius of the precursor layer, R(t ), grows as R ∼ t δ with
δ ≈ 1/2 [6,7], thus featuring much faster growth than that
of the droplet itself. Besides, there is a wide consensus about
the universality of the behavior of the precursor layer, in the
sense that its phenomenology does not depend much on the
geometry of the experimental setup or on the composition
of the wetting liquid [4]. Actually, precursor dynamics has
been identified in systems of a very different nature, such as,
e.g., the expansion of cellular aggregates [8]. On the other
hand, the spreading behavior of ultrathin liquid precursor

films is recently being shown to enable experimental control
at very small distances, as demonstrated, e.g., for precise po-
sitioning of sub-10-nm particles into lithographically defined
templates [9].

The occurrence of the precursor layer at molecular scales
poses limitations to the theoretical description of the process
by hydrodynamics, and has motivated the development of
more detailed (and sophisticated) microscopic models; see,
e.g., Ref. [5] for a review. Depending on the type of property
which needs to be addressed and the degree of quantitative
precision which is required, these range from molecular dy-
namics [10,11] to Monte Carlo (MC) simulations [5]. The
latter are particularly well suited to study the effect of fluctua-
tions in the large-scale (long time and large distance) behavior
of the system, which is the focus of our present work.

Following the pioneering work by de Gennes and Cazabat
[12], most MC studies of fluid spreading model the short-
ranged interaction between the substrate and the liquid by a
van der Waals–like term which decreases in absolute value
with the vertical distance Z from the substrate, typically in
the form −AZ−3, where A is the Hamaker constant.1. Here,
we will focus on a lattice gas model developed originally
by Lukkarinen et al. [13]: in essence, it is a modification of
the Ising model with an external field, with the occupation
numbers of the lattice sites, n(r), playing the role of the spins.

1To avoid confusion with standard notation for the so-called dy-
namic exponent z to be introduced below, we capitalize the vertical
coordinate Z in 3D space.
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The modified Hamiltonian is written as

H = −J
∑
〈r,s〉

n(r, t )n(s, t ) − A
∑

r

n(r, t )

Z3
, (1)

where the first term describes the interactions between the
liquid particles and their nearest neighbors, the second one
accounts for the interaction with the substrate, character-
ized by a Hamaker constant A > 0, and r = (x, y, Z ) denotes
position in a three-dimensional (3D) square lattice. This
model is consistent with the R ∼ t1/2 law for the precur-
sor layer, as demonstrated by kinetic Monte Carlo (kMC)
simulations by Abraham et al. [14]. These simulations also
showed that the spatiotemporal fluctuations of the front po-
sition display so-called kinetic roughening behavior [15,16]
and identified the associated critical exponent values in the
low-temperature regime. Moreover, agreement was assessed
with predictions from a nonlinear continuum equation for the
front position, which was derived from a stochastic moving
boundary formulation of the problem, in which the celebrated
Kardar-Parisi-Zhang (KPZ) nonlinearity [15–17] played a
conspicuous role. Note that several theoretical and experi-
mental breakthroughs, precisely in the context of the KPZ
universality class of surface kinetic roughening, have boosted
during the past decade our understanding of this type of crit-
ical behavior far from equilibrium; see, e.g., Refs. [18,19]
for reviews. Thus nowadays universal behavior is known
in this context to reach beyond the values of the critical
exponents, extending to universal forms of the probability
density function (PDF) (one-point statistics) and covariance
(two-point statistics) of front fluctuations. In the case of the
one-dimensional (1D) KPZ universality class, these are re-
lated with the Tracy-Widom family of PDFs for extremal
eigenvalues of random matrices [20,21] and with the covari-
ance of the so-called Airy processes [18,19], respectively.
Moreover, such a strong form of universality extends to
classes other than 1D KPZ, both linear and nonlinear [22,23].
And, remarkably, it applies to the spatiotemporal fluctuations
of a host of low-dimensional nonequilibrium systems with
strong correlations, which are not necessarily interfaces, from
active matter [24] to quantum matter [25] and from quantum
dots to human cells [26].

With respect to the results of Ref. [14], Harel and
Taitelbaum [27,28] have very recently performed additional
extensive kMC simulations of the modified Ising model,
Eq. (1), to study the influence of the Hamaker constant and
temperature (T ) on the dynamics of wetting. The results of
these studies differ noticeably from those in [14]. Now the
R ∼ t1/2 growth law is not obtained, but rather a relation of
the form R ∼ t δ , with δ depending strongly with A and T
and far from the diffusive 1/2 value. Such a lack of uni-
versality affects the front fluctuations as well, whose scaling
exponents also depend sensitively on the system parameters
in the simulations of [27,28]. These results are unexpected,
as they conflict with independent simulations of the same
model published by different authors [13,14,29]. Moreover,
the conclusion in [27,28] that 0.13 � δ � 0.28 for the various
parameters studied directly challenges the very suitability of
the modified Ising model to describe the spreading process, as

these values are well off the experimentally measured δ ≈ 1/2
value [4].

In view of the recent progress in the characterization of
kinetic roughening universality classes—which is suscepti-
ble of experimental assessment, as exemplified by the KPZ
universality class of 1D [30] and 2D [31–33] interfaces—we
believe that a thorough study is needed for the spreading of
thin films, in which the R ∼ t δ law is correlated with and
complemented by the type of front fluctuations that can be
expected as a function of system parameters. To this end, note
the following:

(i) We revisit the lattice gas model, Eq. (1), by performing
new extensive kMC simulations for wide ranges of values for
the Hamaker constant A and temperature T . We will compute
the front position and its fluctuations in time and space both
for the precursor layer and for the next layer on top of it,
usually called supernatant [14].

(ii) From these variables we will investigate the dynamical
evolution of the layers and its dependence on the values of A
and T , addressing the occurrence of universal behavior in the
light of recent developments for the KPZ universality class
and also of the results reported in [27,28].

(iii) While universal behavior does take place, its full un-
derstanding will require introducing certain refinements over
its simplest manifestations, in particular the so-called anoma-
lous kinetic roughening [16,34] behavior.

(iv) Some unexpected behaviors, like the occurrence of
KPZ one- and two-point statistics together with non-KPZ
exponent values, will be contrasted with similar behav-
ior obtained from continuum descriptions of spreading
dynamics [14].

(v) Our results on kinetic roughening behavior will be
brought into context in the light of analogous behavior found
for other systems displaying kinetic roughening.

To address all these points we have organized the pa-
per as follows. Section II recalls basic details on simulation
procedures for the discrete model, Eq. (1), and provides the
definitions of the quantities that will be measured. Our nu-
merical results are reported and discussed in Sec. III, which is
finally followed by a summary and our conclusions in Sec. IV.
Details on the parameter values considered in our simulations,
our statistical data analysis, and some of our numerical results
on exponents’ values are provided in the Appendix.

II. SIMULATION DETAILS AND DEFINITIONS

The microscopic driven Ising lattice gas model consid-
ered here consists of two overlapping 2D rectangular layers,
of dimensions Lx × Ly. Each node of the square lattice r =
(x, y, Z ) can be occupied by at most one particle at any time,
so the occupation number n(r, t ) may take the values 0 or
1. The lower (Z = 1) and upper (Z = 2) layers are called
precursor and supernatant, respectively, and the substrate
on which the droplet expands is located at Z = 0. Periodic
boundary conditions are employed in the y direction, as in
Refs. [14,27,28]. Note the choice of boundary conditions is
known not to influence universal properties, such as the values
of exponents like δ [5], or those characterizing the kinetic
roughening behavior [15,16] that may occur in the system.
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(a) (b) (c)

FIG. 1. Top views of three snapshots of the lattice gas model for
increasing values of the Hamaker constant A, left to right. Occupied
cells in the precursor and supernatant layers are in gray and black, re-
spectively, with the red and green lines delimiting the corresponding
fronts; empty cells are uncolored. Parameters used are J = 1, T = 1,
Ly = 100, Lx = 50, and (a) A = 0.1, (b) A = 1, and (c) A = 10. The
three snapshots were taken at the same simulation time. All units are
arbitrary.

The first (x = 0) column of both layers represents a fluid
reservoir (the macroscopic droplet). Initially only these cells
are occupied. If, due to an exchange, any of the cells of the
reservoir becomes empty, it is instantaneously refilled. On the
other hand, if at any later stage a particle occupies the last
column of the lattice, the particle is assumed to escape from
the system.

The total energy of the system is given by Eq. (1), defined
in terms of A and J . From the physical point of view, the
most interesting values for the pairs (A, J ) are those for which
J/kBT is large enough to achieve a high degree of involatility
and A/kBT is large enough to be in the complete wetting
regime [14]. From Eq. (1), it is clear that the lowest energy is
achieved for the smallest value of Z , which indicates that the
occupation of the precursor layer is energetically favorable.
This preferential occupation is enhanced for A � J , in which
case one would expect the bottom layer to grow faster than the
upper one. On the contrary, when J is dominant, one could ex-
pect that both layers grow at the same speed. From now on, we
choose physical units such that kB = 1 and remain arbitrary
otherwise. Figure 1 shows top-view snapshots of the system
obtained for fixed J (or, alternatively, T ) and several values of
the Hamaker constant. Note how the front roughness, defined
in detail below, increases with the temperature of the system,
for a given value of A (Fig. 2).

The evolution of the system has been simulated by
continuous-time Monte Carlo Kawasaki local dynamics [35],
which is described in the Appendix. At each time, a particle
belongs to the precursor (or the supernatant) film if there are
nearest-neighbor connections filled with particles all the way
back to the droplet reservoir. Thus, for fixed y, the size of each
layer, or front, h(y, t, Z ) is defined as the highest value of x at
which a cell is occupied. The average distance of the interface
to the fluid reservoir (average front position or height) is then

h̄(t, Z ) = 1

Ly

∑
y

h(y, t, Z ). (2)

(a) (b) (c)

FIG. 2. Same as in Fig. 1 but for decreasing values of the temper-
ature T , left to right. Specifically, J = 1, A = 10, Ly = 100, Lx = 50,
and (a) T = 3, (b) T = 1, and (c) T = 1/3. All units are arbitrary.

On the other hand, the front width (or roughness) at each layer,
w(Ly, t, Z ), is defined as the standard deviation of the front
[15,16],

w2(Ly, t, Z ) = 〈[h(y, t, Z ) − h̄(t, Z )]2〉, (3)

where we have used the notation O(t, Z ) ≡
(1/Ly)

∑
y O(y, t, Z ) for the average of a given observable

O(y, t, Z ) defined at the position of the front on each layer.
Furthermore, we denote by 〈(· · · )〉 the average over different
realizations of the system. Hereafter, we will denote this
observable as w2(Ly, t ) or simply by w2(t ). Finally, we define
the skewness S and the kurtosis K as functions of the local
height fluctuation δh(y, t ) = h(y, t ) − h̄(t ), namely,

S = 〈δh(y, t )3〉c

〈δh(y, t )2〉3/2
c

(4)

and

K = 〈δh(y, t )4〉c

〈δh(y, t )2〉2
c

, (5)

where 〈(· · · )〉c denotes the cumulant average.
In what follows, we will omit the layer Z index, whose

value will be clear from the context.
To describe the dynamical evolution of the front, two

additional (equal-time) space correlation functions will be
considered, namely, the height covariance

C1(r, t ) = 1

Ly

∑
y

〈h(r + y, t )h(y, t )〉 − 〈h̄(t )〉2 (6)

and the height-difference correlation function

C2(r, t ) = 1

Ly

∑
y

〈[h(y + r, t ) − h(y, t )]2〉

= 2〈h̄2(t )〉 − 2

Ly

∑
y

〈h(r + y, t )h(y, t )〉, (7)

where the sum spans all y values. While C1(r, t ) will be used
to assess universal fluctuation properties, C2(r, t ) will allow us
to evaluate the correlation length ξ (t ) along the front profile.

Figures 1 and 2 show examples of fronts in both layers.
The average front [for Z = 1, our estimate for the radius R(t )
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of the precursor layer] is expected to grow as h̄(t ) ∼ t δ , with
δ = 1/2 for all parameter conditions [14,27]. On the other
hand, under kinetic roughening conditions, the roughness
w(Ly, t ) satisfies the so-called Family-Vicsek (FV) scaling
law [14–16,27]

w(Ly, t ) = tβ f
(
t/Lz

y

)
, (8)

where w ∼ tβ for t � Lz
y and the saturation value of the

roughness for larger times is wsat ∼ Lα
y for t � Lz

y, so that
α = βz. Here, α is the roughness exponent, which is related
with the fractal dimension of the front [15] and character-
izes the fluctuations of the front roughness at (large) scales
comparable with the system size, as implied by the wsat ∼ Lα

y
scaling. Further, β in Eq. (8) denotes the growth exponent
and z is the so-called dynamic exponent, which quantifies the
power-law increase of the lateral correlation length along the
front [15,36],

ξ (t ) ∼ t1/z. (9)

In the context of scaling behavior, a correlation function like
C2(r, t ), which is quadratic in the height, is expected to scale
with lateral distance as

C2(r, t ) ∼ r2αloc , (10)

for distances below the correlation length, i.e., such that
r � ξ (t ). Here, αloc is a roughness exponent which is mea-
sured at local distances smaller than the system size. Under
the FV scaling hypothesis, αloc = α [15,16]. However, there
are more complex scaling scenarios, termed anomalous scal-
ing [16,34,37–40], for which αloc 	= α. As will be discussed
below, our kMC simulations are consistent with so-called
intrinsic anomalous scaling, wherein the height-difference
correlation function behaves as [34]

C2(r, t ) = r2αg(r/ξ (t )), (11)

where g(u) ∼ u−2(α−αloc ) for u � 1 and g(u) ∼ u−2α for u �
1. For later use, we define α′ ≡ α − αloc. Simple FV scal-
ing corresponds to α′ = 0, so that gFV(u) ∼ const for u � 1
[15,16]. In this case the surface is a self-affine fractal and
there is a single roughness exponent which characterizes both
small- and large-scale fluctuations in space. In the presence
of intrinsic anomalous scaling, the condition of self-affinity is
not fulfilled and the local and global space fluctuations do not
scale with the same exponent. Note that in this case there are
three independent exponents (rather than two, e.g., α and z, for
FV scaling) characterizing the scaling behavior, e.g., α, αloc,
and z [34]. Anomalous scaling can be particularly well studied
by means of the surface structure factor S(k, t ) = 〈|δhk (t )|2〉
[34,41], where δhk (t ) is the Fourier transform of δh(y, t ) and k
is the 1D wave vector. In the case of a 1D interface displaying
intrinsic anomalous scaling, one has

S(k, t ) = |k|−(2α+1)s(|k|ξ (t )), (12)

where s(u) ∼ u2α+1 for u � 1 and s(u) ∼ u2α′
for u � 1

[34]. This scaling behavior implies that, for long enough
times, the structure factor scales with wave vector as S(k, t ) ∼
|k|−(2αloc+1), which depends on the local roughness exponent
[34] and not on the global one as for the FV case [15].

TABLE I. Parameters used for the runs reported herein. NE is the
total number of the exchanges performed and the last column shows
the number of runs launched in each case.

Lx Ly T A NE Number of runs

10 10 1.5 × 108 100
10 5 1.5 × 108 100

1000 256 10 1 1.0 × 108 100
10 0.1 1.0 × 108 100
10 0.01 1.0 × 108 100
3 10 1.0 × 108 100
3 5 1.0 × 108 100

1000 256 3 1 1.0 × 108 100
3 0.1 1.0 × 108 100
3 0.01 1.0 × 108 100
1 10 2.0 × 108 100
1 5 2.0 × 108 100

1000 256 1 1 2.0 × 108 1000
1 0.1 2.0 × 108 100
1 0.01 2.0 × 108 100

3/4 10 4.0 × 108 100
3/4 5 4.0 × 108 100

1000 256 3/4 1 4.0 × 108 100
3/4 0.1 4.0 × 108 100
3/4 0.01 4.0 × 108 100
1/2 10 7.5 × 108 100
1/2 5 7.5 × 108 100

1000 256 1/2 1 7.5 × 108 100
1/2 0.1 7.5 × 108 100
1/2 0.01 7.5 × 108 100
1/3 1 1.25 × 1010 100

1000 256 1/3 0.1 1.25 × 1010 100
1/3 0.01 1.25 × 1010 100

1000 64 1/3 10 5.0 × 109 100
1000 64 1/3 5 5.0 × 109 100
1000 128 1 1 1.0 × 108 250
1000 512 1 1 4.0 × 108 250

In practice, Eq. (11) allows one to compute the correlation
length at a given time t [42]. Indeed, we can define a correla-
tion length ξa(t ) by means of

C2(ξa(t ), t ) = aC2(Ly/2, t ), (13)

where a is a constant, typically a � 0.8. In other words, the
correlation length at a given time t is defined as the distance
along the front at which the correlation function C2 takes
on the a fraction of its plateau value C2(Ly/2, t ). As will be
shown below, the particular value of a does not modify the
scaling of the correlation length.

The uncertainties of the fluctuations and the correlation
functions have been calculated following the jackknife pro-
cedure [43,44]; see also Appendix B of Ref. [42] for more
details.

III. RESULTS AND DISCUSSION

In what follows, all the figures shown correspond to the dy-
namical evolution of the precursor layer. We refer the reader to
the Appendix, in particular Table I, for a complete description
of all the runs that we have performed.

054801-4



SPREADING FRONTS OF WETTING LIQUID DROPLETS: … PHYSICAL REVIEW E 105, 054801 (2022)

FIG. 3. Average front position 〈h̄(t )〉 as a function of time for
J = 1, T = 1, Lx = 1000, Ly = 256, and several values of A. The
solid black line corresponds to the reference scaling 〈h̄(t )〉 ∼ t1/2.
All units are arbitrary.

A. Front position and roughness

We have computed the mean front position as a function
of time for two different system sizes, namely Ly = 64 and
Ly = 256, with Lx = 1000 in both cases. Figure 3 shows the
behavior of 〈h̄(t )〉 for five different choices of the parameters.
For all values of A and T , the mean front position grows as
〈h̄(t )〉 ∼ t δ , as expected, with exponent values δ ≈ 1/2, as
detailed by Table II provided in the Appendix. As for the
roughness, it scales as w2(t ) ∼ t2β ; this behavior is shown
in Fig. 4.

We notice that no evidence of eventual saturation to a
steady-state value [15,16] has been observed, due to the large
lattice sizes of the simulated systems. Conversely, we should
also remark that we have not detected any substantial time
dependence of the exponent values that will be reported below
at our long times. Thus we have avoided entering the very-
long time regime explored in Ref. [14] in which the precursor
film has grown so wide that diffusion is no longer able to
communicate its front with the liquid reservoir efficiently,
and the front evolves effectively as if there were no external
driving.

Table III in the Appendix reports the growth exponent
values obtained for both layers in this study. This table in-
dicates that the detailed value of β depends on the physical
parameters A and T . The same data are summarized graphi-
cally in Fig. 5 (bottom). At high temperatures (approximately,
T > 1), β ≈ 0.26 takes essentially the same value for the
precursor and supernatant layers, and does not depend on

FIG. 4. Squared roughness w2(t ) as a function of time, as ob-
tained for J = 1, T = 3, Lx = 1000, Ly = 256, and several values of
A. The corresponding values of 2β are given in Table III. As a visual
reference, the solid black line corresponds to w2(t ) ∼ t1/2. All units
are arbitrary.

the Hamaker constant A. At low temperatures (T < 1), the
growth exponent is slightly higher for the precursor layer and
seems more sensitive to the value of A both for the precursor
and for the supernatant layers. As a reference value in the
low-temperature regime, the kMC simulations of Ref. [14]
obtained β � 1/6 for the precursor layer using J = 1, A = 10,
and T = 1/3, which is compatible with our results.

Overall, Figs. 3 through 5 already indicate a nontrivial
dependence of scaling exponents with temperature, while
their dependence on the Hamaker constant is comparatively
much weaker. Thus two main scaling regimes seem to ex-
ist, a low-temperature and a high-temperature one, with
temperature-dependent exponents for intermediate values of
T . As will be seen below, further exponent estimates confirm
this picture.

At this point and regarding the identification of universal
scaling behavior, we must note that our kMC results are
unavoidably limited due to the finite size of the systems em-
ployed and the statistics assessed. From a theoretical point of
view, crossover effects are known to occur very frequently in
kinetic roughening processes [45,46]. In the renormalization
group framework [15,36], these are induced by the existence
of more than one attracting fixed point (FP), i.e., universality
class, for the nonequilibrium system under study. For finite
parameter values, system size, and simulation times, renor-
malization towards the most relevant FP may be incomplete,
inducing, e.g., effective values for the scaling exponents that

TABLE II. Values of the exponents δ1 and δ2, for the precursor and supernatant layers, respectively, for all the conditions studied.

10 3 1 3/4 1/2

A/T δ1 δ2 δ1 δ2 δ1 δ2 δ1 δ2 δ1 δ2

10 0.4804(7) 0.471(1) 0.4911(4) 0.4721(8) 0.5091(4) 0.4887(9) 0.5165(4) 0.4945(9) 0.5503(4) 0.491(1)
5 0.4781(8) 0.472(1) 0.485(6) 0.4719(9) 0.5079(5) 0.4892(9) 0.5169(3) 0.4952(9) 0.5502(4) 0.490(1)
1 0.4751(9) 0.4742(9) 0.4799(5) 0.4771(5) 0.489(1) 0.493(1) 0.4891(8) 0.5061(7) 0.4985(4) 0.5181(4)
0.1 0.474(1) 0.474(9) 0.4798(6) 0.4792(6) 0.4909(8) 0.4929(8) 0.4897(6) 0.4920(6) 0.5103(5) 0.5113(5)
0.01 0.4754(9) 0.4753(9) 0.4766(8) 0.4768(8) 0.4889(9) 0.4890(9) 0.4931(6) 0.4933(6) 0.5131(7) 0.5132(7)
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TABLE III. Just as in Table II for the growth exponents 2β1 and 2β2.

10 3 1 3/4 1/2

A/T 2β1 2β2 2β1 2β2 2β1 2β2 2β1 2β2 2β1 2β2

10 0.539(4) 0.538(3) 0.536(3) 0.541(3) 0.516(7) 0.530(3) 0.489(8) 0.489(4) 0.29(1) 0.318(9)
5 0.537(4) 0.537(3) 0.533(3) 0.539(3) 0.517(7) 0.526(4) 0.483(6) 0.479(4) 0.28(2) 0.314(8)
1 0.536(4) 0.533(4) 0.538(3) 0.538(3) 0.544(8) 0.537(8) 0.536(9) 0.503(8) 0.26(1) 0.29(1)
0.1 0.543(4) 0.542(4) 0.538(3) 0.536(3) 0.475(9) 0.476(9) 0.343(9) 0.347(9) 0.30(2) 0.30(2)
0.01 0.537(4) 0.539(4) 0.538(4) 0.538(4) 0.497(9) 0.494(9) 0.34(1) 0.34(1) 0.33(3) 0.34(3)

are measured, which may not coincide with any of the ex-
pected universality classes. In many cases, it is at most these
effective exponents which are the ones accessible experimen-
tally [45,46]. From the practical point of view of our present
numerical simulations, we are unable to control the (subdomi-
nant) scaling corrections of the data due to the high correlation
(in time) of the observables which we measure and to the
lack of precise theoretical predictions in the various parameter
regions that we study. Without this kind of control, stronger
numerical arguments regarding universal behavior can hardly
be provided. In spite of these limitations, the values we report
for the critical exponents show compatibility in a wide range
of parameters, from a statistical point of view (differences at
most less than two standard deviations). Moreover, the long
simulated times gives us some confidence that the contribution
of the subdominant terms can be safely neglected.

FIG. 5. Values of α (top) and β (bottom) taken from Table V and
Table III vs T for J = 1 and for A = 0.01 (circles), A = 1 (squares),
and A = 10 (triangles). Lines are guides to the eye. All units are
arbitrary.

B. Height-difference correlation function: Computation of α

and z exponents

In this section we will study the height-difference correla-
tion function. As described in Sec. II, the correlation length
at a given time t , ξ (t ), can be estimated from the plateau of
the C2(r, t ) curves at large enough r for different values of a.
From Eq. (9), the double logarithmic plots of these correlation
lengths as functions of time should fit straight lines whose
slopes are the same 1/z exponent. Figure 6 shows ξa(t ) vs t
in log-log plots for the precursor layer, calculated for a = 0.8
and a = 0.9, with an exponent 1/z ∼ 0.3.

On the other hand, Eq. (11) yields C2(r, t ) = ξ 2α (t ) for
r � ξ (t ). Thus the α exponent may be calculated from the
slope of the best-fit lines in a C2(r, t ) versus ξ (t ) log-log
plot; for simplicity, we have plotted the correlation functions
evaluated at r = Ly/2. In Fig. 7 we plot C2(Ly/2, t ) against
ξa(t ) for the precursor layer and the same values of a with
2α ∼ 1.75.

The complete set of 1/z and 2α exponents, calculated for
a = 0.8 and a = 0.9, are given in Tables IV and V, respec-
tively, in the Appendix. From these data, one may easily check
that the expected scaling relation α = βz holds. A represen-
tative choice of these results for the α and β exponents is
displayed graphically in Fig. 5.

Analogous to what was anticipated above regarding β,
while the dependence of α and z with the Hamaker constant
is relatively marginal, their dependence with temperature is
much more substantial and similarly suggests a transition

FIG. 6. Estimates ξ0.8(t ) and ξ0.9(t ) as functions of time, obtained
for J = 1, T = 1, A = 1, and Lx = 1000. As a visual reference, the
solid black line corresponds to ξ (t ) ∼ t0.3. All units are arbitrary.
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FIG. 7. Height-difference correlation function C2(Ly/2, t ) versus
ξ0.8(t ) and ξ0.9(t ) at different times. Conditions are J = 1, T = 1,
A = 1, Lx = 1000, and Ly = 256. As a visual reference, the solid
black line corresponds to C2(Ly/2, t ) ∼ t1.75. All units are arbitrary.

from a low-temperature to a high-temperature regime, with
T -dependent exponents for intermediate temperatures around
T = 1. In general, notice that both α and z change quite
abruptly with T from their low-T values into α ≈ 0.9 and
z ≈ 3.4 for the high-T regime.

C. Anomalous scaling of the height-correlation function

Values of the global roughness exponent α � 1, as ob-
tained here for T � 1/2, speak of large fluctuations in the
front position. In our present case, they turn out to be asso-
ciated with intrinsic anomalous scaling. An indication of this
fact is apparent in the inset of Fig. 8. Indeed, the fact that
C2(r, t ) curves obtained for different times displace system-

FIG. 8. Data collapse of the height-difference correlation func-
tion obtained for different values of time, for J = 1, T = 1, A = 1,
Lx = 1000, and Ly = 256, using α = 0.9. The curve onto which
collapse occurs is the function g(r/ξ (t )) of Eq. (11), with the solid
black line representing the theoretical behavior for large u, g(u) ∼
u−2α , and the solid gray line representing the behavior for small u,
g(u) ∼ u−2α′

(see Tables IV and VI in the Appendix). All units are
arbitrary. Inset: height-difference correlation function as a function
of r for times increasing from 20 to 100 bottom to top at regular
intervals.

(a)

(b)

FIG. 9. Structure factor calculated for the precursor layer at
(a) J = 1, T = 0.5, A = 0.1 and (b) J = 1, T = 3, A = 1, for times
increasing bottom to top in both panels. The scaling behavior at
fixed time is S(k, t ) ∼ |k|−(2αloc+1), where αloc has been evaluated
as α − α′; see Tables IV and VI in the Appendix. The power laws
represented by the solid lines are indicated in the corresponding
legends. All units are arbitrary.

atically with time and do not overlap is a landmark behavior
of anomalous scaling which, in principle, can be originated
by different causes, large values of α (so-called superrough-
ening) being one of them [34]. In our case, it stems from
the fact that αloc 	= α, there being two independent roughness
exponents. This is unambiguously shown in the main panel
of Fig. 8, which displays a consistent data collapse of the
height-difference correlation function according to Eq. (11),
for a representative parameter choice.

If the scaling behavior were of the standard FV type,
the scaling function g(u) would be u independent at small
arguments u � 1; on the contrary, our data agree with a
scaling law of the form g(u) ∼ u−2α′

, with 2α′ ≈ 0.9, so that
αloc ≈ 0.45 while α = 0.89, implying the occurrence of in-
trinsic anomalous scaling [34]. Analogous behavior is found
for other parameter choices; see Table VI in the Appendix for
specific exponent values.

As indicated above, the anomalous shift of the height-
difference correlation function curves with increasing time
illustrated in the inset of Fig. 8 could be alternatively induced
by a mere large roughness exponent. However, the collapse
of the same data in Fig. 8 with α′ 	= 0 unambiguously identi-
fies the origin of this behavior, rather, as intrinsic anomalous
scaling. It is still worth examining further the system behavior
by means of the structure factor. This is because it allows us
to reinterpret previous results from Ref. [14] based on this
observable and because the behavior we presently obtain for
S(k, t ) further confirms the occurrence of intrinsic anomalous
scaling. In Fig. 9 we show the structure factor, calculated for
various times and two representative temperatures, namely
T = 0.5 and T = 3. Note that the S(k, t ) curves also shift
upwards systematically with time in agreement with Eq. (12),
this being another landmark of intrinsic anomalous scaling
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FIG. 10. Fluctuation histograms calculated according to Eq. (14)
for J = 1, A = 1, T = 1, and several system sizes, as indicated in
the legend. The solid line corresponds to the GOE Tracy-Widom
distribution. All units are arbitrary.

[34]. As a result, as noted above S(k, t ) ∼ |k|−(2αloc+1) for long
enough times [34], so that the roughness exponent that can
be read off from the power-law behavior of S(k, t ) seen in
Fig. 9 is αloc, and not α. This applies in particular to the results
in Ref. [14]: while the systematic time shift of the structure
factor can be unambiguously seen in Fig. 3(a) of that paper,
this issue on the interpretation of the scaling exponents was
overlooked there. Hence we interpret that the low-temperature
roughness exponent obtained in Ref. [14] was the local rather
than the global one.

D. Additional universal properties of the fronts: Probability
distribution function and front covariance

As noted in the Introduction, recent developments on sur-
face kinetic roughening, mostly in the context of KPZ scaling,
have shown that universal behavior goes beyond the val-
ues of the critical exponents for many important universality
classes. Specifically, by normalizing the fluctuations of the
front around its mean by their time-dependent amplitude as

χ (y, t ) = h(y, t ) − h̄(t )

tβ
, (14)

the probability density function (PDF) of these χ random vari-
ables becomes time independent and is shared by all members
of the universality class [18–20,22,23]. This effect is demon-
strated in Fig. 10, which shows that the PDF corresponding to
various system sizes collapses into a single curve in a range of
front fluctuations.2

2In particular, using the formulas given in Eqs. (4) and (5), we find
the skewness and excess kurtosis for the PDF in Fig. 10 to be S =
0.221(3), K = 0.239(5) for Ly = 128, S = 0.236(2), K = 0.249(1)
for Ly = 256, and S = 0.264(2), K = 0.239(4) for Ly = 512; see,
e.g., Refs. [18,20] for definitions of S and K . These values suggest
that, while K seems to change little with system size, S does increase
with Ly. For reference, in Fig. 10 we have plotted the Tracy-Widom
distribution for the largest eigenvalue of a random matrix in the

FIG. 11. R(x̃, t ) ≡ C1(x̃t1/z/a2 )
a1t2β versus x̃ ≡ a2r/t1/z for t = 60, 80,

and 100, calculated for parameters as in Fig. 10, using 1/z =
0.32, 2β = 0.544, a1 = 1.834 × 10−4, and a2 = 8.985 × 10−3. The
solid line corresponds to the exact Airy1(x̃) function. All units are
arbitrary.

It has been shown that the TW-GOE PDF describes accu-
rately the fluctuations of fronts in the KPZ universality class
when periodic boundary conditions are employed, as in our
simulations; see additional references, e.g., in Ref. [42]. In
view of the fact that the kinetic roughening of our kMC fronts
is intrinsically anomalous (while it is standard FV type for
the KPZ equation [17]) and with non-KPZ exponents, the
agreement of our numerical PDF with the TW distribution for
|χ | � 2.5 is unexpected.

The front covariance C1(r, t ), defined in Eq. (6), also ex-
hibits KPZ behavior. In general, this function is expected to
behave as

C1(r, t ) = a1 t2β f (a2r/t1/z ), (15)

where f (u) is a universal function and a1 and a2 are
nonuniversal constants [48–50] to be computed in our sim-
ulations. For the specific case of a system described by
the one-dimensional KPZ equation with periodic bound-
ary conditions, f (u) ≡ Airy1(u), where Airy1(u) denotes
the covariance of the Airy1 process [18,19,51]. The com-
putation of a1 and a2 follows the same procedure as in
Ref. [42].

Figure 11 shows the collapsed height covariance func-
tions C1(x̃t1/z/a2)/(a1t2β ) vs x̃ for several time intervals. This
figure shows that the universal behavior implied by Eq. (15)
holds with f (u) = Airy1(u), even if the exponent values are
not those of 1D KPZ and in spite of the fact that the scaling is
intrinsically anomalous. We must note that this agreement de-
teriorates as the temperature decreases, so that for T � T∗ =
3/4 our numerical two-point statistics substantially deviates
from the Airy1 form.

Gaussian orthogonal ensemble (TW-GOE) [18,20], whose precise
skewness and excess kurtosis values are S = 0.293 464 524 08 and
K = 0.165 242 9384, respectively [47].
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IV. CONTINUUM EQUATION IN THE
HIGH-TEMPERATURE REGIME

The 1D KPZ behavior of the front fluctuations that we have
just discussed can be partly rationalized by considering a con-
tinuum equation which is expected to describe the large-scale
properties of the spreading fronts that we are addressing here.
Specifically, it was observed in Ref. [14] that matter transport
in the lattice gas model is dominated by diffusion of particles
on the supernatant layer from the reservoir to the spreading
front, and by diffusion of holes in the precursor layer from
its edge back to the reservoir. Based on this observation, a
continuum model was put forward in which such transport
processes were coupled with the motion of the precursor edge.
Finally, under various approximations a single stochastic con-
tinuum equation was put forward for h(y, t ) in [14], which was
then favorably compared with the kMC simulations reported
in that reference. For our present discussion, we simplify such
an equation to a form expected to be relevant to the high-T
regime of our present simulations. Specifically, we consider

∂t ĥk (t ) = −ν|k|3ĥk (t ) + λ√
t
F̂k[(∂yh)2] + η̂k (t ),

〈η̂k (t )η̂k′ (t ′)〉 = Dδk+k′δ(t − t ′), (16)

where ĥk (t ) is the space Fourier transform (F̂k) of the h(y, t )
front of the precursor layer, ν > 0, λ are parameters related
with those of the original moving boundary problem [14] (dif-
fusion coefficients of particles and holes, temperature, etc.),
and η̂k (t ) is the Fourier transform of zero-average, Gaussian
white noise η(y, t ). Equation (16) is a particular case of the
more complex interface equation derived in [14], and retains
key features which are relevant to the high-T regime of our
kMC simulations. On the one hand, the nonlinear term of
Eq. (16) is precisely the KPZ nonlinearity, which directly
brings KPZ scaling into the discussion. The peculiarity here
is that, rather than being time independent as in the standard
KPZ equation, the coupling of the nonlinear term is inversely
proportional to t1/2. Physically, this fact originates in the dif-
fusive coupling between the fluid reservoir and the front of the
precursor film. Akin to the Lucas-Washburn law in fluid imbi-
bition systems [52], it is such a diffusive coupling which leads
to the expected motion of the average front 〈h̄(t )〉 ∼ t δ with
δ ≈ 1/2. In turn, such a growth law implies an average front
velocity V (t ) = d〈h̄(t )〉/dt ≈ 1/t1/2, and indeed in the KPZ
equation V (t ) is proportional to the coupling of the nonlinear
term [15–17]. Further distinctive features of Eq. (16) are the
nonlocal linear term with parameter ν and the nonconserved
noise [14]: the former stems from effective surface tension
of the front (arising from evaporation or condensation of
particles and holes there), combined with nonlocal (geometric
shadowing) effects which are well known in diffusion-limited
growth systems [53]. In the present system, this nonlocal lin-
ear term implies that a depression in the shape of the precursor
front will be filled by liquid preferentially over the growth of
a protrusion, and this tends to smooth out fluctuations of the
front shape. Finally, as long as the precursor edge does not
decouple effectively from the reservoir at very long times in
the sense noted in Sec. III A, the front is subjected both to
conserved and nonconserved noise [14], the latter being more
relevant than the former at large scales.

FIG. 12. Average front position (left vertical axis, circles) and
squared roughness (right vertical axis, triangles) as functions of t , as
obtained from numerical simulations of Eq. (16) for ν = λ = 1. The
solid red line corresponds to power law 〈h̄(t )〉 ∼ t δ and the dashed
green line to w2(t ) ∼ t2β with exponent values as in the legend. All
units are arbitrary.

As noted above, Eq. (16) is a simplification of the highly
complex front equation derived in Ref. [14], which is in-
tended to address the high-T regime of the spreading process
unveiled by our kMC simulations. In order to study this non-
linear equation, we resort to numerical simulations of it in
which we employ a pseudospectral scheme with integrating
factor, previously described in [53]. We set ν = λ = D = 1
and Ly = 213 = 8192, with lattice and time spacings �x = 1
and �t = 10−2. We have carried out N = 504 iterations of
the code to obtain the averages we are going to discuss in
what follows. Results for the average front position and
front roughness are provided in Fig. 12. The time evolution
of the average front position turns out to be of the expected
power-law form, 〈h̄(t )〉 ∼ t δ , with δ � 0.58. Hence the aver-
age velocity of the front decays with time, as expected due
to the time-decreasing KPZ coupling in Eq. (16). However,
the amplitude of front fluctuations does increase with time
as indicated by the power-law behavior of the roughness,
w(t ) ∼ tβ with β � 0.35, seen in Fig. 12. For reference, recall
that for the 1D KPZ universality class one has βKPZ = 1/3
[15–17]. However, we believe closeness of the growth expo-
nent to the KPZ value is coincidental, as it does not occur for
other exponents. This is confirmed by Fig. 13, which shows
the structure factor S(k, t ) for different times. Note that the
large-k behavior of the various curves is time independent
and exhibits no anomalous shift with time, in contrast with
the kMC results shown, e.g., in Fig. III C. Hence scaling
behavior is the standard Family-Vicsek type for Eq. (16), as
further confirmed by the data collapse performed in Fig. 13(b)
according to Eq. (12), whereby the u-independent behavior
obtained for large u in the numerical scaling function implies
α = αloc � 1. Hence neither α = 1 nor the z � 2.65 value
implied by the collapse are anywhere close to the 1D KPZ
values (αKPZ = 1/2 and zKPZ = 3/2), in spite of the fact that
their ratio β = α/z � 0.37 is not so far from βKPZ.

Recalling the results of our kMC simulations at high T
(αkMC � 0.90, βkMC � 0.26, zkMC � 3.3, δkMC � 0.47), the
exponent values predicted by Eq. (16) (αeqn � 1, βeqn �
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(a) (b)

FIG. 13. (a) Structure factor of the front, S(k, t ), as a function of wave-vector modulus k for increasing times as indicated by the color
scale, from numerical simulations of Eq. (16) using parameters as in Fig. 12. (b) Collapse of the data of panel (a) following Eq. (12). The
u-independent behavior at large u = kt1/z indicates standard FV scaling with α = αloc � 1. All units are arbitrary.

0.37, zeqn � 2.65, δeqn � 0.58) are somewhat off, especially z
and hence β, while δ and especially α compare better.

We assess the front statistics predicted by the continuum
model, whose behavior is also similar to that obtained for
the high-T kMC case. Results from numerical simulations
of Eq. (16) are provided in Fig. 14. Panel (a) of the fig-
ure shows the PDF of normalized χ fluctuations, Eq. (14),
as obtained from numerical simulations of Eq. (16), for two
different times—an early and a long one. At short times (t �
1), the PDF is well described by a Gaussian form, which is
indicative of the small relevance of nonlinear effects [16] due
to the relatively small values of the average surface slope at
those times. Indeed, the roughness remains w(t ) � 1 during
such a time regime; see Fig. 12(b). However, for long enough
times, and in spite of the fact that the amplitude of the nonlin-
earity decreases monotonously with time in Eq. (16), the PDF
evolves into the characteristic TW-GOE form. Further detail
on this behavior is given in the inset of Fig. 14(a), where we
show the time evolution of the skewness and excess kurtosis
of front fluctuations, which get close to their 1D KPZ values
for times t � 50. The numerical cumulant values ultimately
decrease for the longest times prior to the eventual steady-
state saturation of the system [54].

Finally, and in parallel with the behavior of the one-point
statistics (front PDF), the two-point statistics estimated by the
front covariance also shows a nontrivial time evolution for
Eq. (16). This is seen in Fig. 14(b), which shows the behavior
of the data collapse described in Eq. (15) for different values
of time. In parallel with the behavior just discussed for panel
(a) of the same figure, 1D KPZ behavior, i.e., convergence
to the Airy1 covariance, is achieved in the growth regime.
We can note here that Airy1 covariances have been also re-
cently found [23] for the linear Edwards-Wilkinson (EW)
equation [15,16] in which the 1D KPZ is remarkably absent,
perhaps related with the fluctuation-dissipation relation which
the KPZ equation satisfies exceptionally in 1D. However, in
that case the PDF is Gaussian, as the EW equation is lin-
ear, while in our present case the PDF is also of the (TW)
KPZ form.

Summarizing, the scaling behavior just discussed for
Eq. (16) is qualitatively quite similar to that found in our high-
T kMC simulations of the discrete model, Eq. (1), including
the following.

(i) A Washburn-like law 〈h̄(t )〉 ∼ t δ for the average front
position, with an exponent value close to that of diffusive
behavior.

(a) (b)

FIG. 14. (a) PDF of front fluctuations as obtained from numerical simulations of Eq. (16) using parameters as in Fig. 12, for t = 10−2

(green points) and for t = 2621.44 = 218 × 10−2 (red points). The dashed line shows a Gaussian distribution, while the solid line corresponds
to the exact TW-GOE form. Inset: time evolution of the skewness and excess kurtosis corresponding to the same set of simulations as the main
panel. The TW-GOE values are the abscissas of the corresponding horizontal lines and are shown for reference. (b) Data collapse according to
Eq. (15) for the same simulations as in panel (a). For reference, the exact Airy1 covariance is shown as a dashed line. All units are arbitrary.
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TABLE IV. Values of the exponents 1/z and 2α for the precursor layer, calculated with a = 0.8.

10 3 1 3/4 1/2

A/T 1/z 2α 1/z 2α 1/z 2α 1/z 2α 1/z 2α

10 0.299(5) 1.83(2) 0.309(5) 1.77(2) 0.286(3) 1.78(2) 0.251(6) 1.92(3) 0.202(9) 1.33(5)
5 0.299(5) 1.83(2) 0.304(6) 1.79(3) 0.289(3) 1.76(2) 0.224(6) 1.95(4) 0.203(8) 1.35(4)
1 0.299(6) 1.83(3) 0.304(3) 1.81(2) 0.303(4) 1.78(2) 0.259(6) 2.06(5) 0.27(1) 1.15(5)
0.1 0.309(5) 1.80(2) 0.304(3) 1.81(1) 0.257(4) 1.89(3) 0.236(6) 1.43(3) 0.28(2) 1.07(5)
0.01 0.301(5) 1.82(3) 0.307(5) 1.79(3) 0.260(5) 1.88(3) 0.245(9) 1.40(5) 0.25(2) 1.23(6)

(ii) A non-KPZ set of values for the scaling exponents α,
z, and β, in spite of the occurrence of KPZ-like nonlinear
behavior at the front.

(iii) Fluctuation statistics (PDF and covariance) of the front
as for the 1D KPZ universality class, in spite of (ii). This result
is to be noted as it strengthens the general conclusion (see,
e.g., Ref. [55] and references therein) that the precise charac-
terization of a kinetic roughening universality class requires
characterizing both traits (set of scaling exponents and fluc-
tuation statistics) explicitly, as implied by previously known
cases. Indeed, KPZ exponents do not imply KPZ statistics, as
a suitable linear equation (hence with a Gaussian PDF) has
been shown to have KPZ exponents [56]. Conversely, PDF
and covariance of the KPZ type do not imply by themselves
KPZ exponent values (as in our present case), as has already
been shown for a family of nonlinear equations [57] having
non-KPZ exponents concurrent with Airy1 fluctuations [50].

Nevertheless, differences exist between the discrete and the
continuum models, the most salient ones being (i’) the precise
numerical values of the scaling exponents, most notably β and
z, and (ii’) FV scaling for the continuum model vs intrinsic
anomalous scaling in the discrete model, as follows.

(i’) As we noted in Sec. IV, Eq. (16) is an approximation
of the full stochastic equation derived in Ref. [14], which
contains additional deterministic (linear and nonlinear) terms,
as well as additional contributions to the noise. While incor-
porating some of those contributions explicitly may increase
the value of the dynamic exponent z, hence decreasing the
value of the growth exponent β, bringing both exponent val-
ues numerically closer to those obtained in our high-T kMC
simulations, they make simulations much more costly while
not changing the main qualitative features from the point of
view of scaling behavior.

(ii’) In other interface growth systems in which transport is
also limited by diffusion as in our present system, such as thin
film production by chemical vapor or electrochemical deposi-
tion, discrete models [analogous of Eq. (1) here] also display

intrinsic anomalous kinetic roughening [58,59], while their
continuum counterparts [analogous of Eq. (16) here] conspic-
uously display FV scaling [53,60,61], in full parallel with our
present case. In this context, the occurrence of anomalous
scaling is expected to be a nonasymptotic feature of the dis-
crete model, which is currently believed not to be a property
of the true asymptotic scaling [62]. For example, simulations
of a discrete model of diffusion-limited growth showed a
crossover at extremely long times in which anomalous scal-
ing was seen to be followed by FV scaling asymptotically
[58,59]. At any rate, anomalous scaling might perfectly well
be found as an extremely long transient for (finite) experimen-
tal systems, as has been the case in electrodeposition of thin
films [57].

V. CONCLUSIONS

Summarizing, we have studied the spatiotemporal be-
havior of the fronts of liquid drops which spread out on
planar substrates by means of numerical simulations. We
have considered a discrete model of the system based on the
Ising lattice gas, whose behavior with parameters (Hamaker
constant, i.e., wettability, and temperature) we have addressed
via extensive kinetic Monte Carlo simulations. Specifically in
the context of behavior seen at high temperatures, we have
additionally considered numerical simulations of a continuum
stochastic equation for the front.

For wide ranges of the model parameters, we have studied
classic morphological observables like the mean position of
the front and its roughness. In addition, we have systemat-
ically studied two-point correlation functions in real and in
Fourier space together with their time evolution, and we have
assessed the statistics (probability distribution function) of the
fluctuations of the front, which are unavoidable at the small
physical scales associated with the process.

We can sum up the main results that we have obtained for
the discrete lattice gas model as follows.

TABLE V. Same as in Table IV, but for a = 0.9.

10 3 1 3/4 1/2

A/T 1/z 2α 1/z 2α 1/z 2α 1/z 2α 1/z 2α

10 0.296(6) 1.85(4) 0.305(7) 1.79(3) 0.285(4) 1.79(3) 0.251(8) 1.91(6) 0.22(3) 1.2(1)
5 0.294(7) 1.85(4) 0.301(6) 1.80(3) 0.288(5) 1.76(3) 0.247(7) 1.93(5) 0.21(1) 1.30(7)
1 0.295(6) 1.86(3) 0.299(3) 1.84(2) 0.307(5) 1.75(3) 0.261(9) 2.04(7) 0.30(3) 1.0(1)
0.1 0.306(8) 1.81(4) 0.301(4) 1.82(3) 0.258(5) 1.87(4) 0.245(9) 1.36(6) 0.3(1) 0.7(3)
0.01 0.296(7) 1.85(4) 0.304(7) 1.80(4) 0.263(7) 1.85(5) 0.25(2) 1.33(8) 0.18(4) 1.5(3)
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TABLE VI. Values of the exponents 2α′ for the precursor layer,
calculated with a = 0.8.

A/T 10 3 1 3/4 1/2

10 0.89(2) 0.86(3) 0.87(2) 1.00(3) 0.44(5)
5 0.90(2) 0.86(2) 0.85(2) 1.03(4) 0.47(3)
1 0.89(3) 0.88(1) 0.87(2) 1.13(4) 0.36(5)
0.1 0.87(2) 0.88(1) 1.01(3) 0.61(3) 0.37(5)
0.01 0.89(3) 0.87(3) 0.99(3) 0.60(5) 0.53(6)

(i) The scaling properties of the fronts of the precursor and
supernatant layers are the same.

(ii) The δ ≈ 0.50 value of the exponent characterizing the
mean position of the front seems to be universal for all the
parameter values considered.

(iii) The front displays intrinsic anomalous scaling irre-
spective of parameter values, in such a way that the roughness
exponents quantifying front fluctuations at large (α) and small
(αloc) length scales are different.

(iv) The critical exponent values β, α, and z depend more
strongly on temperature than on the Hamaker constant.

(v) The values of the critical exponents show a transition
from a low-temperature to a high-temperature regime.

(vi) For the lowest temperatures we have studied, we obtain
exponent values which are close to those previously reported
for the same model [14]: α � 0.6, αloc � 0.38, z � 3.3, and
β � 0.18.

(vii) The exponent values change rapidly with T and be-
come T independent for T � 1 at α � 0.90, αloc � 0.45, z �
3.3, and β � 0.26.

(viii) In spite of the exponent values and of the in-
trinsic anomalous scaling behavior, the statistics of front
fluctuations (height PDF and covariance) agree with those
characteristic of the one-dimensional KPZ universality class
for T � T∗ = 3/4.

Our results on critical exponent values agree with (and
generalize) those reported by different groups of authors
for the same model [13,14,29], while differing from others
[27,28] which feature nonmonotonic behavior of the expo-
nents with system parameters. We find it reassuring that
the scaling behavior we obtain [in particular, the R(t ) ∼
t1/2 law] coincides with results from alternative modeling
and simulation approaches [4,5,10], and in particular with
the continuum evolution equation for the front, Eq. (16).
With respect to this, let us summarize the main aspects as
follows.

(i) Equation (16) features exponent values not unlike
those obtained in the high-temperature regime of our discrete
model, δ � 0.58, α � 1, z � 2.65, and β � 0.37, with devia-
tions being larger for δ, and especially z and β.

(ii) These exponents are close to, but differ from, those of
the linearized version of Eq. (16) in which λ = 0, which are
α = 1 and z = 3. For such a linear equation, the front does not
move on average, i.e., 〈h̄(t )〉 = 0 [16].

(iii) The scaling behavior displayed by Eq. (16) is not
anomalous; in particular, αloc = α � 1.

(iv) Although the scaling exponents predicted by Eq. (16)
differ from those of the 1D KPZ equation, the front statistics

(PDF and covariance) are those of the 1D KPZ universality
class.

In general, we believe that the comparison between the
discrete and the continuous models that we have simu-
lated underscores the occurrence of universal behavior in the
spreading of thin fluid films, which is particularly clear-cut at
high temperatures. Surprisingly, the front fluctuations in such
a regime displays properties that make it qualify as another
instance of 1D KPZ behavior (although not of KPZ expo-
nents), as is currently being found in the dynamics of many
low-dimensional, strongly correlated, nonequilibrium systems
[19]. It would be extremely interesting to assess if this con-
clusion from our “microscopic” simulations can be confirmed
by simulations of a different nature (e.g., molecular dynamics
or lattice-Boltzmann approaches), and/or in experiments on
spreading of precursor films.
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APPENDIX: SIMULATION PARAMETERS
AND DETAILS

In the Kawasaki local dynamics two adjacent cells
are selected and their values are exchanged following the
Metropolis acceptance criterion, namely [35]

A(μ → ν) =
{

e−β�E , �E > 0,

1, �E � 0,
(A1)

where A(μ → ν) is the acceptance rate for the μ → ν transi-
tion, β = 1/kBT , and �E = Eν − Eμ is the energy difference
between the final and initial states. When the temperature is
very low, the system may eventually get pinned in a given state
due to a very low acceptance rate. Moreover, it is possible to
select two cells whose occupations are the same, in which case
the system remains the same upon exchange. To overcome
these problems we use a continuous time algorithm in which
we track all the nontrivial exchanges that may take place.
The starting point for the algorithm is to select one of these
exchanges, proportionally to their acceptance ratio, and to
carry out the exchange. The simulation time is then updated
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by adding the time interval [35]

�t = −1

lnP(μ → μ)
. (A2)

The probability of permanence in the initial state P(μ → μ)
can be calculated as

P(μ→μ)= 1

NP

[
no. trivial exchanges+

∑
ν 	=μ

[1−A(μ→ν)]

]
,

(A3)

where NP is the number of adjacent pairs in our system.
To compute P(μ → μ) we must take into account all the
trivial exchanges (between empty or full cells) that are ac-
cepted always but leave invariant the system, as well as all
the nontrivial exchanges that can be rejected when proposed.
Therefore, Eq. (A3) may then be reduced to

P(μ → μ) = 1

NP

[
NP −

∑
ν 	=μ

A(μ → ν)

]
. (A4)

In our simulations we do not fix the final time, but the total
number of exchanges that will take place. As each run has a
different seed, times between runs are not the same.

In all runs J was fixed to 1, so that we only modified the
value of the Hamaker constant A and the temperature T . As
we are interested in setups where both terms in the energy [see
Eq. (1)] are dominant, we selected a wide range of values of
the Hamaker constant and of temperature. Other than fixing
kB = 1, we keep the units of A and T arbitrary, as we are
only interested in the values of the ratios J/kBT and A/kBT
that control the acceptance rates. We fixed Lx = 1000 in all
runs, which was long enough to avoid the film to reach the
edge of the system. On the other hand, we choose Ly = 256 in
most of the simulations. In Table I we report all the simulation
conditions that we have considered.

Additionally, Tables II and III contain the results obtained
for the δ and β exponents defined in the main text, as mea-
sured from 〈h̄(t )〉 and w(t ), respectively. In these tables, given
an exponent ν, we use ν1 to denote its value for the front
of the precursor film (Z = 1) and ν2 to denote its value for
the front of the supernatant layer (Z = 2). Tables IV and V
collect the results for the dynamic and roughness exponents
obtained for the front of the precursor layer by analyzing the
height-difference correlation function C2(r, t ) as detailed in
Sec. III B of the main text. Finally, Table VI collects the values
of 2α′ = 2(α − αloc) as obtained from data collapses of the
height-difference correlation function analogous to that shown
in Fig. 8. Note α′ 	= 0, implying intrinsic anomalous scaling
for all parameter values.
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