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Conical surfaces, with a δ function of Gaussian curvature at the apex, are perhaps the simplest example of
geometric frustration. We study two-dimensional liquid crystals with p-fold rotational symmetry (p-atics) on
the surfaces of cones. For free boundary conditions at the base, we find both the ground state(s) and a discrete
ladder of metastable states as a function of both the cone angle and the liquid crystal symmetry p. We find that
these states are characterized by a set of fractional defect charges at the apex and that the ground states are in
general frustrated due to effects of parallel transport along the azimuthal direction of the cone. We check our
predictions for the ground-state energies numerically for a set of commensurate cone angles (corresponding to a
set of commensurate Gaussian curvatures concentrated at the cone apex), whose surfaces can be polygonized as
a perfect triangular or square mesh, and find excellent agreement with our theoretical predictions.
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I. INTRODUCTION

Liquid crystals with p-fold rotational symmetry (symme-
try with respect to rotations by 2π/p, where p is a positive
integer), also known as p-atics, make up a wide range of
physical systems. Two of the most well-studied p-atics are
two-dimensional triangular crystals, which can exhibit an
intermediate hexatic phase (p = 6) between the liquid and
solid phases [1–3], and thermotropic liquid crystals, which
most commonly exhibit nematic (p = 2) ordering [4]. More
recently, colloidal experiments have been able to access other
p-atics, including monolayers of sedimented colloidal hard
spheres in the hexatic phase [5], pentatic (p = 5) and triatic
(p = 3) colloidal platelets [6–8], and tetratic (p = 4) suspen-
sions of colloidal cubes and square platelets [9,10].

Studies of p-atics have also become increasingly rele-
vant in the context of active and biological systems. Active
nematic order [11–13] is exhibited by two-dimensional sus-
pensions of cytoskeletal filaments and motor proteins [14,15]
and epithelial monolayers [16–18]. Most recently, fourfold
orientationally ordered living tissue was discovered in the
crustacean Parhyale hawaiensis [19]. Computational models
of epithelia have also been shown to exhibit a hexatic phase,
where biological cells are orientationally ordered and yet
able to flow [20]. (Continuous hexatic-to-crystal transitions
as found in Ref. [20], and also in equilibrium simulations
of two-dimensional (2D) Lennard-Jones particles [21], are
especially interesting because they are accompanied by a con-
tinuously diverging 2D shear viscosity η2D ∼ ξ 2

T , where ξT is
the translational correlation length [2].)

In this work, we focus on the behavior of p-atics on the
surfaces of cones. Orientational order on curved surfaces have
been studied both experimentally, from liquid crystals on
shells [22,23] to films of microtubules and molecular motors
on lipid bilayer vesicles [24], and theoretically [25], by con-
sidering equilibrium textures of nematic shells [26] and the

ground-state configurations of hexatic order on the surfaces of
vesicles and torii [25,27]. These studies have focused primar-
ily on smoothly curved surfaces. In contrast, there have been
fewer studies on the behavior of general p-atic liquid crystals
on surfaces with curvature singularities, such as occurs at the
apex of a cone or along the seam joining two cones together to
make a bicone. As shown in this paper, such concentrations of
Gaussian curvature can have drastic consequences on the sur-
rounding surfaces, even if these have zero Gaussian curvature
locally and are thus nominally flat. Conical surfaces, with a δ

function of Gaussian curvature at the apex, are in fact the sim-
plest example of “geometrical frustration,” the incompatibility
of curved surfaces with various types of order [28].

We focus here on cones, which are flat everywhere except
at the apex, where the Gaussian curvature positively diverges.
Conic geometries have been examined as substrates of smectic
textures [29] and elastic ground states of nematic solids in
response to patterned disclinations [30–34]. They have also
been studied as candidate artificial quantum hall structures,
where the points of singular curvature trap charge carriers
orbiting in the presence of a magnetic field applied normal
to the surface [35,36]. Cones are also of interest in biologi-
cal morphogenesis, where defects or anisotropic growth can
facilitate the buckling of soft and initially flat plant tissues
into conventional cones or hyperbolically curved anticone
surfaces [37,38], and where feedback between apex defects
and intrinsic geometry can facilitate growth in the basal ma-
rine invertebrate Hydra [39]. Here, we seek to understand the
effect of conic substrates on the textures of p-atics. Note that
a perfectly sharp apex is not necessary to generate the physics
that we describe. As will become clear below, truncated cones
can exhibit very similar features. The key ingredient is not
associated with an arbitrarily sharp tip but with the sloped
shape of the cone flanks, which leads to the effective Gaus-
sian curvature at its center and distinguishes the cone from a
cylinder.
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FIG. 1. Schematic illustrating the notations used in this paper.
Positions on the cone are parameterized by the coordinates (r, θ ).
Blue arrows are local surface unit tangent vectors and the red arrow
is a local surface normal vector.

A. Summary of results

We examine p-atic textures on cones with free (uncon-
strained) boundary conditions at the base, and with apex half
angle β, where β → π/2 in the limit of a flat disk and β → 0
in the limit of a very narrow cylinder [see Fig. 1(a)]. In
Sec. II, we derive in a simple pedagogical fashion the key
geometrical quantities of a cone, in particular the rotation
angle induced on a vector parallel transported around the
apex. In Sec. III, we introduce a simple generalization of
the Maier-Saupe model [40], which we use to numerically
simulate liquid crystals on a lattice.

For any given cone angle β, we predict theoretically in
Sec. IV the ground state and a ladder of quantized higher-
energy metastable states for different integer values of p =
1, 2, . . . , 6. To check these results, we perform numerical
energy minimizations on a computationally convenient set of
“commensurate” cone angles such that a triangular or square
lattice can be perfectly tiled on the flanks. We find a nearly
perfect match between theory and numerics. The ground-state
configurations are characterized by an intriguing table of de-
fect charges (Table I) localized at the cone apex, where the
charge depends on both the cone angle and the symmetry p of
the liquid crystal order. In this paper, we neglect for simplicity
“crystal field” couplings between the order parameter and
the curvature tensor, which can be important for p = 1 and
p = 2 [41–43].

The physical picture of the ground state for cones
with free boundary conditions can be described as follows.

TABLE I. Ground-state apex defect charges qA according to
Eq. (56) for cone angles commensurate with the triangular and square
lattices, in agreement with the numerics.

sin(β ) p = 1 p = 2 p = 3 p = 4 p = 5 p = 6

5/6 − 1
6 − 1

6 ± 1
6

1
12

1
30 0

3/4 − 1
4 ± 1

4
1

12 0 − 1
20 ± 1

12
4/6 − 1

2
1
6 0 − 1

12
1
15 0

3/6 or 2/4 ± 1
2 0 ± 1

6 0 ± 1
10 0

2/6 1
3 − 1

6 0 1
12 − 1

15 0
1/4 1

4 ± 1
4 − 1

12 0 1
20 ± 1

12
1/6 1

6
1
6 ± 1

6 − 1
12 − 1

30 0

Suppose we start from a flat disk β = π/2, whose ground
state is simply a uniform texture aligned everywhere. Since
the direction is arbitrary, there is a 2π degeneracy in the
order parameter orientation. As we decrease β to make an
increasingly sharper cone, we expect that defects enter the
liquid crystal from the base of the cone and go to the apex,
to better match the increasing Gaussian curvature at the cone
tip [44]. When a complete cancellation is possible, the energy
of the frustration-free system vanishes. Generally, however,
there is a remaining fractional defect charge at the apex due
to incomplete cancellation, leading to a frustrated ground state
with nonzero energy that (in the absence of extrinsic curvature
effects) diverges logarithmically with system size.

We also find above the ground state a ladder of metastable
twist states, induced by the sloped periodic boundary con-
ditions of the cone. The physics of these metastable states
resembles an XY model with twisted Möbius strip boundary
conditions, reviewed in the next section.

B. Metastability of an XY model on a Möbius strip

To set the stage for liquid crystal textures on cones, con-
sider a one-dimensional (1D) string of spin vectors interacting
on a Möbius strip with a natural twisting frequency of q0. The
spins are tangent to this surface and directed along the short
direction of a twisted ribbon. The Hamiltonian of this system
is given in the continuum limit by

H = J

2

∫ L

0
dx

(
dω(x)

dx
− q0

)2

, (1)

where J represents the coupling strength between neighboring
spins, q0 is a preferred pitch for the ribbon, L is the length of
the Möbius strip, and ω(x) is the scalar field indicating the
angle of the vector spin order parameter at position x along
the strip and obeys periodic boundary conditions ω(x + L) =
ω(x) + 2πn, where n = 0,±1,±2, . . . .

Upon taking a functional derivative of Eq. (1), the con-
figurations corresponding to the local minima of the energy
landscape obey ∂2

x ω = 0, which, under the imposed periodic
boundary conditions, leads to

ω(x) = 2πn

L
x, n = 0,±1,±2, . . . . (2)
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The configurations in Eq. (2) give rise to a discrete set of
energies,

E (n) = 2π2J

L

(
n − q0L

2π

)2

. (3)

Thus, for a given pitch q0, the ground state corresponds to the
value of n = n0 which minimizes the argument, E0 = E (n0),

n0 = argmin
n

(
n − q0L

2π

)2

, (4)

and the remaining configurations where n �= n0 correspond to
metastable states. Like supercurrents in a one-dimensional su-
perconductor [45], the metastability of these states originates
from the fact that, to transition into the nearest lower-energy
local minimum, the one-dimensional spin texture ω(x) has to
either twist or untwist itself by one entire revolution, which
requires that the spin magnitude goes to zero at some point.

The metastable states that we find for textures of p-atics
on a cone are similar in spirit to a stack of Möbius strips
of variable circumferential length enclosing the apex of the
cone. The cone angle, which determines the amount a vector
turns under parallel transport around the cone apex, controls
the analog of the natural twisting frequency q0 of the Möbius
strip. Unlike the 1D Möbius strip [where the energy of frus-
trated twists typically grow linearly with length, see Eq. (3)],
however, we find a topological singularity with fractional
charge at the apex whose energy grows logarithmically with
the system size.

II. DIFFERENTIAL GEOMETRY OF THE CONE

In this section, we summarize the geometrical quantities
for the cone essential to our calculations in the rest of the
paper.

Consider a cone with apex angle 2β with coordinates la-
beled in Fig. 1, where θ is the azimuthal angle around a plane
perpendicular to the cone axis and r is the longitudinal length
along the cone surface starting from its tip, located at the
origin in space.

The surface of a cone can be parameterized as (see Fig. 1),

�R(r, θ ) =

⎛
⎜⎝

r sin β cos θ

r sin β sin θ

−r cos β

⎞
⎟⎠. (5)

In the limit that the cone half-angle β → π
2 , the cone becomes

a flat sheet, and in the limit β → 0, the cone approximates an
extremely thin cylinder. The unnormalized tangent vectors of
the conic surface are given by

∂θ �R =

⎛
⎜⎝

−r sin β sin θ

r sin β cos θ

0

⎞
⎟⎠, ∂r �R =

⎛
⎜⎝

sin β cos θ

sin β sin θ

− cos β

⎞
⎟⎠, (6)

and the corresponding metric tensor is

gαβ = ∂α �R · ∂β �R =
(

r2 sin2 β 0

0 1

)
, (7)

where x1 = θ, x2 = r, with an inverse given by

gαβ =
( 1

r2 sin2 β
0

0 1

)
. (8)

The outward surface normal vector is then

n̂ = −(�eθ × �er ) =

⎛
⎜⎝

cos β cos θ

cos β sin θ

sin β

⎞
⎟⎠. (9)

To reveal and quantify the Gaussian curvature at the apex,
consider a curve on the surface of the cone �R(s), where the
path parameter s has units of length. The total curvature of
this curve is given by [46]

�k = dT̂ (s)

ds
= κnn̂ + κg(n̂ × T̂ ), (10)

where n̂(s) is the surface normal and the unit tangent is T̂ (s) =
�R′(s)

| �R′(s)| , with �R′(s) = d �R(s)/ds, and κn and κg are the normal
and geodesic curvatures, respectively. We can obtain the nor-
mal and geodesic curvatures by taking the appropriate dot
product with the total curvature vector �k: κn = T̂ ′ · n̂, κg =
T̂ ′ · (n̂ × T̂ ). Upon defining s ≡ r0θ as our path parameter, a
loop at constant longitudinal coordinate r0 around the apex
indicated in Fig. 1 is parameterized by

�R(s) = r0

⎛
⎜⎝

sin β cos (s/r0)

sin β sin (s/r0)

− cos β

⎞
⎟⎠. (11)

The unit tangent vector T̂ of the curve is then

T̂ (s) =

⎛
⎜⎝

− sin (s/r0)

cos (s/r0)

0

⎞
⎟⎠, (12)

which has a derivative given by

�k = T̂ ′(s) = −1

r0

⎛
⎜⎝

cos (s/r0)

sin (s/r0)

0

⎞
⎟⎠. (13)

Upon using the normal vector in Eq. (9), we have

n̂ × T̂ =

⎛
⎜⎝

− sin β cos (s/r0)

− sin β sin (s/r0)

cos β

⎞
⎟⎠, (14)

and on taking the appropriate dot products, we obtain the
normal and geodesic curvatures as

κn = −cos β

r0
, κg = sin β

r0
. (15)

(Note that if the curve was instead a straight line along the
longitudinal direction of the cone, then we would fix θ → θ0

to be constant and take r0 → r in Eq. (11) to be the path
parameter s = r.) Similar calculations then show that both
the normal and geodesic curvature vanish on this path. The
integrated Gaussian curvature of the surface enclosed by the
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curve is given by the Gauss-Bonnet theorem as [47]∫
M

KdA +
∫

∂M
κgds = 2πχ, (16)

where K is the Gaussian curvature, ∂M is the curve around the
apex parameterized by Eq. (11), M is the surface of the cone
enclosed by the curve, and χ = 1 is the Euler characteristic of
the portion of the cone surface inside the curve. Thus, the total
Gaussian curvature S due to the apex of the cone is given by

S ≡
∫

M
KdA = 2π (1 − sin β ), (17)

independent of r0. Although we worked with a perfect loop
around the waist of the cone, we could have arrived at
Eq. (17) by considering any arbitrary curve enclosing the
apex: Upon approximating the curve as a sum of infinitesimal
line segments traveling along the azimuthal direction and the
longitudinal direction, all contributions from the longitudinal
segments to the second term in Eq. (16) vanish since the
geodesic curvatures there are zero.

We stress that the Gaussian curvature at any point on the
cone away from the apex is nevertheless zero. This fact is
evident from the curvature tensor Kαβ = n̂ · �Rαβ , where �Rαβ ≡
∂α∂β �R, α, β = θ, r, which in the cone coordinates defined
above, reads

Kα
β = gασ Kσβ =

( cos β

sin β r 0

0 0

)
. (18)

Thus, the Gaussian curvature K = det(Kα
β ) = 0 vanishes and

the radii of curvature R̄i are given by

R̄θ = tan(β ) r, R̄r = ∞. (19)

Note that in the flat sheet limit (β → π/2), R̄θ → ∞, and in
the cylindrical limit, R̄θ is the cylinder radius. Although the
Gaussian curvature is only nonzero at the apex, we’ll see that
its effects on liquid crystal ground states persist all the way
down the flanks of the cone, as exemplified by the parallel
transport equations in the next section.

A. Parallel transport

In this section, we solve the parallel transport equations for
the orientation field m̂ (e.g., the orientation of a dense liq-
uid of p-fold symmetric molecules) along the θ̂ (latitudinal)
and r̂ (longitudinal) directions of the cone surface. These
differential equations allow us to extract the rotation angle
experienced by an orientational vector m̂ attached to these
molecules upon parallel transporting from the local frame at
some initial position to that of another. Henceforth, we will
set γ ≡ sin β.

The parallel transport of the orientational vector mβ em-
bedded in a p-fold symmetric molecule along a curve with
unit tangent uβ is given by [48]

uαDαmβ = uα (∂αmβ + �β
αγ mγ ) = 0, (20)

where Dα is the covariant derivative, we use the Einstein sum-
mation convention and �β

αγ are the connection coefficients
given by

�
μ

νλ = 1
2 gγμ(∂νgγ λ + ∂λgνγ − ∂γ gνλ). (21)

FIG. 2. Parallel transport of a vector m̂ on a circuit around the
apex on the surface of a cone with cone angle γ = sin β = 2/3
(a) and γ = sin β = 1/2 (b). The vector m̂ suffers rotations of 240◦

and 180◦ in these two cases respectively. These rotations are inde-
pendent of the height and orientation of these circuits. The twist in
the p-atic order parameters as it circumnavigates the cone apex is
analogous to the twisted Möbius strip discussed in Eqs. (1)–(4).

On the surface of a cone, the only nonvanishing connection
coefficients are

�θ
rθ = �θ

θr = 1

r
, �r

θθ = −rγ 2. (22)

As detailed in Appendix A, the rotation angle Aθ√gθθ dθ =
Aθγ rdθ due to parallel transport in the azimuthal direction by
an amount dθ , when dθ is small, is given by

Aθγ rdθ = γ dθ. (23)

In contrast, the angle of rotation due to parallel transport along
the longitudinal direction by dr, given by Ar√grrdr = Ardr,
is always zero,

Ardr = 0. (24)

The latter relation reflects the fact that the dot product of a
vector with the tangent vector of a geodesic is preserved when
parallel transported along a geodesic.

The total rotation angle of an orientational vector upon
parallel transporting one revolution around the apex �A =∮ �A · d�l = ∫ 2π

0 Aθγ rdθ is thus given by

�A = 2πγ . (25)

By decomposing the parallel transport trajectory into az-
imuthal and longitudinal segments, it is easy to show that this
result holds for a smooth loop of arbitrary shape encircling the
cone apex. The geometrical frustration embodied in Eq. (25)
is illustrated for a polar vector in Fig. 2 for sin β = 2

3 and
sin β = 1

2 . Note that for a flat disk, where γ = sin β = 1, r
corresponds to the radial coordinate and θ corresponds to
the polar angle, so the Cartesian axes of a local frame at
(r, θ ) coincides with the polar coordinates r̂, θ̂ , respectively.
A constant orientation vector in the disk plane, with compo-
nents projected onto these local frames thus appears to rotate
by 2π back to itself after one revolution around the origin.
However, if we subtract off this artifact of polar coordinates
from Eq. (25), then we get the rotation caused by the deviation
of the cone apex from flatness, �eff

A ≡ �A(γ ) − �A(γ = 1) =
2π (γ − 1), which is, up to a sign, the integrated Gaussian
curvature in Eq. (17).
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(a) (b)

FIG. 3. Coordinates r, θ of the cone (a) can be isometrically
transformed onto a sector of the polar disk (b) periodic for every
fixed r in φ → φ + �, where � = 2π sin β = 2πγ .

There is a useful alternative representation of parallel trans-
port in terms of an angular representation of the unit vector
mα (r, θ ), which guarantees that its norm, gαβmαmβ = 1, is
preserved by parallel transport, namely,

(mθ , mr ) =
[

sin ω(r, θ )

γ r
, cos ω(r, θ )

]
. (26)

The parallel transport equations derived in Appendix A for
(mθ , mr ),

∂θmr − γ 2rmθ = 0, (27)

∂θmθ + 1

r
mr = 0, (28)

∂rmr = 0, (29)

∂rmθ + 1

r
mθ = 0, (30)

when re-expressed in terms of the angular variable ω(r, θ ),
simplify to

∂θω(r, θ ) = −γ , ∂rω(r, θ ) = 0, (31)

with the solution

ω(r, θ ) = ω0 − γ θ. (32)

B. Commensurate cone angles

For cones with certain apex angles, one can lay down
a regular triangular or square mesh on the flanks of the
cone without needing to introduce artifacts such as grain
boundaries in the mesh lattice. We take advantage of these
commensurate cone angles in our numerical simulations, de-
scribed in Sec. III.

We say a cone is commensurate with a triangular lattice
when a section of the lattice in flat space that is a multiple
of 60◦ can be cut out and the remainder wrapped around to
smoothly form the cone. In other words, the cone can be cut
along the longitudinal direction and rolled out into a part of a
regular triangular lattice.

Mathematically, we implement this rolling out procedure
by a change of variables, where we can map the cone iso-
metrically onto the polar plane (see Fig. 3), where the local

post-transformation metric is manifestly flat. More specifi-
cally, upon defining

φ = γ θ, (33)

the metric in Eq. (7),

ds2 = r2 sin2 βdθ2 + dr2, (34)

can be rewritten as

ds2 = r2dφ2 + dr2. (35)

Equation (35) is the metric for a sector of a flat polar disk,
with r being the radial coordinate and φ being the polar angle.
Note, however, that φ ∈ [0,�], where the sector angle of the
disk is given by � = 2π sin β � 2π .

The rolled-out cone, with the tip at the origin of the polar
plane, maps onto a perfect slice of the triangular lattice if
it corresponds to an integer number of 2π/6 radians. Since
there are only six such angular slices available and taking all
six corresponds to a flat disk, a total of five frustrated com-
mensurate cones admit a perfectly triangulated mesh. These
commensurate cone angles are given by

sin β tri
N = 1 − N

6
, N = 1, . . . , 5, (36)

where increasing N corresponds to increasing geometric frus-
tration associated with more pointed cones. The parallel
transport of a polar vector around the apex of two triangu-
lar lattice commensurate cones with N = 2 and N = 3 are
shown in Fig. 2. A similar construction exists for square lattice
meshes, where the commensurate cone angles are given by

sin β
sq
N = 1 − N

4
, N = 1, . . . , 3. (37)

Because the cases of N = 3 for triangular tesselations and
N = 2 for square tesselations have identical commensurate
cone angles, these constructions give us a total of seven
distinct cone angles for which we can carry out numerical
simulations without defects in the mesh itself.

III. MAIER-SAUPE MODEL FOR p-ATIC LIQUID
CRYSTALS ON A CONE

Here, we introduce the microscopic model used for our
numerics by generalizing the Maier-Saupe model for nematic
liquid crystals on flat surfaces to that of general p-atics on
curved surfaces.

The original Maier-Saupe lattice Hamiltonian of a 2D sys-
tem of N nematic liquid crystal molecules in flat space, with
interactions that align nearest neighbors, is given by [40]

H = −J
∑
〈i j〉

[(m̂im̂ j )
2 − 1], (38)

where i, j are site indices, 〈i j〉 indicates nearest neighbors,
m̂i is an orientational unit vector attached to a liquid crystal
molecule at site i, and J is the Maier-Saupe coupling strength
between molecules at neighboring sites (note that we let J →
3
2 J , compared to the convention in Ref. [40]).

Let ω j denote the angle of the unit vector m̂ in its local
frame at the jth site. For molecules with p-fold rotational
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symmetry, the interaction energy between two orientation vec-
tors is given by the pth Chebychev polynomial Tp(x) [49],
where x = m̂i · m̂ j is the inner product between neighboring
direction vectors,

Vi j = −J[Tp(m̂i · m̂ j ) − 1] = −J{cos[p(ωi − ω j )] − 1},
(39)

where ωi is the angle of the orientation vector m̂i in the local
Cartesian frame at site i.

On the surface of a cone, the vectors describing the ori-
entation of p-fold symmetric molecules need to be parallel
transported to the local frame of of its neighbor before their
dot product is taken. The interaction energy between two
neighboring molecules is hence modified by a rotation that
the molecule undergoes during the parallel transport.

For a general p-atic on a regular lattice, the interaction
energy for p-atic liquid crystals on a cone between sites i and
j can be written

Vi j = −J{cos[p(ωi − ω j + Ai j )] − 1}, (40)

where Ai j is the rotation angle of the local frame orientation
vector induced by parallel transport between the ith and jth
site. Equipped with the interaction energy in Eq. (40), we sim-
ulate p-atic liquid crystals on lattices on the surfaces of cones
using the Python Broyden-Fletcher-Goldfarb-Shanno (BFGS)
algorithm [50–53]. Our numerical energy minimizations will
focus on the cone angles previously described in Sec. II B, for
which a regular polygonal mesh is especially straightforward
to generate.

Note that vectors at the cone apex do not have a well
defined orientation, since the azimuthal coordinate θ is un-
defined there and the vector can be parallel transported by
an arbitrary amount while remaining at the apex. We thus
perform all energy minimizations with the orientation vector
at the apex removed.

IV. FRACTIONAL DEFECT CHARGE AT THE CONE APEX

In this section, we examine p-atic textures on conic sur-
faces with free boundary conditions at the cone base, showing
that parallel transport on a cone leads to a vector potential
term in p-atic energies in the continuum limit (Sec. IV A).
As shown below in Sec. IV B, the ground-state configura-
tions obtained by numerical energy minimization on cones
with angles commensurate with a triangular lattice (sin β =
1
6 , 2

6 , 3
6 , 4

6 , 5
6 ) and angles commensurate with a square lattice

(sin β = 1
4 , 2

4 , 3
4 ) agree with theoretical predictions in the con-

tinuum limit [Eq. (56)]. As tabulated in Table I, each ground
state has either zero or a single fractional defect charge at
the apex. The latter leads to a frustrated ground state with
nonzero energy that grows logarithmically with the system
size. In addition, we also find a ladder of metastable states,
corresponding to extra “twists” as the p-atic texture wraps
around the apex. (Interestingly, isolated defects do appear
away from the apex when tangential boundary conditions are
imposed at the cone base [54].)

A. XY model with a vector potential

On a flat 2D lattice, the energy of a p-fold oriented order
parameter is given by [1,55]

H = −J
∑
〈i j〉

{cos[p(ωi − ω j )] − 1} ≈ J
∑
〈i j〉

p2

2
(ωi − ω j )

2,

(41)

where J is the coupling strength between two nearest-
neighbor sites and the second approximate equality assumes
small deformations between nearest neighbor molecules. In
the continuum limit, the Hamiltonian becomes

H = J̃ p2
∫

d2r| �bm∇ω|2, (42)

where J̃ = J for a square lattice (with 4/2 = 2 bonds per site
and a lattice cell area of a2) and J̃ = √

3J for a triangular
lattice (with 6/2 = 3 bonds per site and a lattice cell area
of

√
3a2/2). Defect charges in this liquid crystal are then

multiples of the minimum topological charge [1],∮
�∇ω · d�l = 2πs

p
, s = 0,±1, . . . . (43)

On a cone, the lattice Hamiltonian of a p-atic with nearest-
neighbor interactions given by Eq. (40) is

H = −J
∑
〈i j〉

{cos[p(ωi − ω j + Ai j )] − 1}, (44)

where ωi is the orientation angle of molecule i in the local
frame of site i and Ai j is the rotation angle induced by par-
allel transport between site i and j. The continuum analog of
Eq. (44) has been discussed for general surfaces in Refs. [41]
and [56],

H = J̃ p2
∫

drdθ
√

g(Dμmα )(Dνmβ )gμνgαβ, (45)

where
∫

drdθ
√

g = ∫ 2π

0 dθ
∫ R

0 dr rγ integrates over the sur-
face of the cone, and J̃ depends on the microscopic structure
of the lattice as described previously (J̃ = J for a square lat-
tice and J̃ = √

3J for a triangular lattice). We have neglected
for simplicity the extrinsic curvature terms discussed in Secs. I
and V.

As in the discussion of parallel transport in Sec. II A, it
is convenient to work in terms of an angular variable ω(r, θ )
defined by Eq. (26). As illustrated in Fig. 4, the angle ω(r, θ )
specifies a unit vector û = cos[ω(r, θ )]êr + sin[ω(r, θ )]êθ ,
where ω is the angle that û makes relative to the local êr

axis. Since φ = γ θ is simply a rescaling of θ , the isometric
mapping of the conic surface to the polar plane identifies êθ

with êφ , where φ is now the polar angle of the rolled-out cone,
with, however, a restricted range 0 < φ < 2πγ .

It is tedious, but straightforward, to show that applying the
change of variables in Eq. (26) to Eq. (45) leads to

H = J̃ p2
∫

drdθ
√

g

[(
1

γ r

∂ω

∂θ
+ 1

r

)2

+
(

∂ω

∂r

)2]
. (46)

Here,
∫

drdθ
√

g = ∫ R
0 drr

∫ 2π

0 dθγ again integrates over the
surface of the cone. Note that the two squared terms in
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FIG. 4. Relationship between the local and polar angular vari-
ables ω,ψ , and the polar angle coordinate φ, describing the location
and orientation of the vector û, indicated by the blue arrow, attached
to our p-atic order parameter. The gray domain corresponds to the
surface of a cone unrolled onto a flat plane. Note that ψ = φ + ω.
The contour C(r) allows us to determine the net defect charge at the
cone apex, see Eq. (55).

Eq. (46) are minimized when ∂θω = −γ and ∂rω = 0, in
agreement with the parallel transport equations in Eq. (31).

To make contact with conventional p-atic models in flat
space, we define ψ (r, φ) as the angular field in an alternate
basis, i.e., û = cos(ψ )x̂ + sin(ψ )ŷ, where x̂ and ŷ are now
fixed unit vectors pointing along the horizontal and vertical
axes of the plane onto which we have unrolled our cone (see
Fig. 4). Simple trigonometry shows that ψ is related to ω as

ψ = ω + φ, (47)

where φ = γ θ is the polar angle in the plane of the unrolled
cone (see Fig. 3).

The Hamiltonian in Eq. (46) for a cone of longitudinal
length R down the flanks can now be rewritten in terms of
ψ as

H = J̃ p2
∫ R

0
rdr

∫ 2πγ

0
dφ

∣∣ �∇ψ
∣∣2

, (48)

where the integral is now over the gray region in Fig. 4
and �∇ψ = 1

r
∂ψ

∂φ
êφ + ∂ψ

∂r êr is the gradient in flat space polar
coordinates.

B. Ground and metastable twist states

Although Eq. (48) resembles a conventional 2D XY model
in flat space polar coordinates (r, φ), the range of φ is re-
stricted 0 � φ � 2πγ . Hence, we must pay attention to the
boundary conditions on ψ (r, φ). It is easy to see from Fig. 4
that the boundary condition on ω(r, φ) for p-atic liquid crys-
tals reads

ω(r, φ + 2πγ ) = ω(r, φ) + 2π

(
s′

p

)
, s′ = 0,±1, . . . .

(49)

Note that the local twisting of the order parameter preferred
by parallel transport in Eq. (32) leads to ω(r, φ + 2πγ ) =

ω(r, φ) − 2πγ , behavior which will in general conflict with
the boundary condition in Eq. (49). From Eq. (47), the bound-
ary condition on the angle ψ (r, φ) corresponding to Eq. (49)
is

ψ (r, φ + 2πγ ) = ψ (r, φ) + 2πγ + 2π

(
s′

p

)
,

s′ = 0,±1, . . . . (50)

Violations of this boundary condition would lead to infinite
gradient energies in Eq. (48). As will be shown below (and
similar to the Möbius strip problem discussed in Sec. I) both
ground state and metastable order parameter textures for p-
atics on the cone can be constructed by choosing a linear
interpolation in φ for ψ (r, φ), consistent with the boundary
condition in Eq. (50). The ground state corresponds to the
integers that minimizes Eq. (48).

An appealing physical interpretation of these textures fol-
lows from rewriting Eq. (50) in the following form:

ψ (r, φ + 2πγ ) = ψ (r, φ) − 2π (1 − γ ) + 2π

(
s

p

)
,

s = 0,±1, . . . , (51)

where s = s′ + p. For a fixed radial coordinate r, the energy
in Eq. (48) can be made zero only if ψ (r, φ) can be a constant
ψ0 while also obeying the boundary condition in Eq. (51) for
s. This relation is equivalent to the condition that there exists
an integer s0 such that

s0

p
= 1 − γ . (52)

Recall that the total Gaussian curvature at the apex is given
in Eq. (17) as S = 2π (1 − γ ). Therefore, we can interpret
(1 − γ ) as the geometrical charge at the apex due to the
background Gaussian curvature of the cone surface, while s0

is the signed number of charge +1/p defects that have en-
tered the liquid crystal from the unconstrained cone base and
moved to the apex to match the geometrical charge as much
as possible. This interpretation is consistent with the fact that
defects in a liquid crystal are attracted to regions of the surface
whose curvature has the same sign as the defect’s topological
charge [57]. Note that s0 = 0 for a flat disk (γ = 1), because
all p-atic order parameters can align perfectly on a flat surface
with no boundary constraints; any defects entering the liquid
crystal would only increase the energy.

The criteria in Eq. (52) indeed captures all the parameter
combinations of (γ , p) for which numerical energy minimiza-
tions have produced zero ground-state energies with a uniform
texture ψ = ψ0. In these special cases, the p-atic order param-
eter is parallel transported back to itself, modulo a rotation of
2π/p, upon traversing one loop around the apex. We illustrate
this point in Fig. 5 for p = 2. Here, only the commensurate
cone half-angle β such that sin β = 3/6 is frustration free.
As we show below, other values of sin β = 1

6 , 2
6 , 4

6 , 5
6 for

p = 2 have frozen spin wave textures in the ground state and
energies that diverge logarithmically with system size.

For combinations of p and γ where Eq. (52) cannot be
satisfied, the lowest energy configuration ψ that obeys the
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(a) (b) (c) (d) (e)

FIG. 5. Ground-state configurations of p = 2 nematic liquid crystals on the surfaces of cones commensurate with a perfect triangular lattice
mesh, with cone angles such that sin β = 1/6 (a), 2/6 (b), 3/6 (c), 4/6 (d), 5/6 (e). The top row shows the configurations isometrically rolled
onto a plane, while the middle and bottom rows show the top and side views of the texture on the surface of the cones in three dimensions.

appropriate periodic boundary conditions is given by

ψ (φ) =
(

−(1 − γ ) + s0

p

)
φ

γ
, (53)

where s0 is the value of s that minimizes | − (1 − γ ) + s
p |:

s0(γ , p) = argmin
s

∣∣∣∣−(1 − γ ) + s

p

∣∣∣∣. (54)

If we define an effective defect charge qA at the cone apex by
using the contour C(r) in Fig. 4,

2πqA =
∫ 2πγ

0
∂φψdφ, (55)

then Eq. (53) leads to a fractional value for qA,

qA = −(1 − γ ) + s0

p
. (56)

As mentioned above, the linear dependence of ψ (φ) on φ

imposes a twist on the p-atic order parameter for every radial
coordinate r, similar to the Möbius strip textures embodied
in Eqs. (1)–(4). Table I shows the values of qA according to
Eq. (56) for all combinations of p and commensurate cone
angles γ that we have examined numerically. These theo-
retical predictions for the defect charge at the apex match
the numerical results exactly. Our results for the ground-
state configurations for a nematic (p = 2) liquid crystal on
cones commensurate with the triangular lattice in Fig. 5 are

supplemented by plots of all numerically minimized p-atic
textures in Appendix B. Note that in some cases [e.g., (p =
2, γ = 3/4)], there can be a double degeneracy in the ground
state, where there are two values of s0 that both minimize
the argument of Eq. (54) equally, leading to two values of
qA with equal magnitude but opposite signs. These doublet
degeneracies are also observed in our numerical ground states
(see Appendix B).

Upon inserting Eq. (53) into the Hamiltonian in Eq. (48),
the ground-state energy of a p-atic on a cone with free bound-
ary conditions is then given by

E0 = Ecore + 2π J̃ p2

γ
q2

A ln(R/a), (57)

where qA is the defect charge at the cone apex according to
Eq. (56), R is the dimension of the cone along the longitudinal
direction, a is the lattice constant of the polygonized mesh
or some short lengthscale cutoff, and the core energy Ecore

describes the short distance physics close to the core of the
defect.

In Fig. 6, we plot the rescaled ground-state energies
E0/(2πγ J̃ ) resulting from our p-atic energy minimizations,
with effects of the underlying lattice (J̃) and the surface ge-
ometry of the cone (∼2πγ ) scaled out. We fit Eq. (57) to the
numerical results, with the only tuning parameter being the
nonuniversal constant offset of the defect core energy Ecore.
The fits are plotted as colored lines in Fig. 6 and show excel-
lent agreement with the numerical results (colored markers).
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FIG. 6. Ground-state energies from numerical energy minimizations (colored markers) of p-atics as a function of the cone length R at
commensurate cone angles for the triangular lattice (top, solid markers) and the square lattice (bottom, unfilled markers). Colored lines are fits
according to Eq. (57), where the constant offset Ecore is the only fitting parameter.

The numerically extracted core energies allows us to col-
lapse the nonzero ground-state energies onto a single curve,

E0 − Ecore

2π J̃ p2q2
A/γ

= ln(R/a), (58)

where qA depends on p and γ according to Eq. (56). The
normalized energies for all parameters examined are plot-
ted in Fig. 7. The collapse of the logarithmically diverging
energies, when fractional apex charges are present, indeed
agree with Eq. (58), while the zero energy cases account for
situations where the cone angle is commensurate with the
symmetry of the liquid crystal, i.e., those angles such that
(1 − γ ) mod (1/p) = 0.

Recall that a p-atic in flat space γ = 1 with free boundary
conditions would always have zero defects in its ground state.
The frustration-induced fractional defect charge at the cone
apex for γ < 1 is reminiscent of the appearance of a vortex
line at the center of a cylinder of superfluid helium, when
the superfluid goes from stationary to rotating [58]. The cone
angle in our problem is analogous to the rotation frequency
of the superfluid. Similar to the one-dimensional spin textures
on a Möbius strip discussed in Eqs. (1)–(4), the defect config-
urations corresponding to integers s �= s0 in Eq. (56) result in
higher-energy metastable p-atic textures on the cone. Except
for the “central charge” at the cone apex, these textures are all
defect free on the cone flanks. For example, the four lowest
energy metastable states are plotted in Fig. 8 for a nematic
(p = 2) liquid crystal on a commensurate cone with γ = 5/6.
We confirm the metastability of these states numerically by
initializing the energy minimizations with the p-atic texture

given by

ψ (r, φ) =
(

−(1 − γ ) + s

p

)
φ

γ
+ η(r, φ), s �= s0, (59)

5 10 15 20
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FIG. 7. Ground-state energies of p-atics for commensurate cone
angles with p = 1, . . . , 6 and γ = sin β = 1

6 , 1
4 , 2

6 , 3
6 (= 2

4 ), 4
6 , 3

4 , 5
6

rescaled according to Eq. (58) collapse onto a single logarithmic
curve. The only adjustable parameter is a core energy associated with
the cone apex.
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FIG. 8. (a): Energies of the ground-state texture and the four lowest energy metastable states for a nematic (p = 2) liquid crystal on a cone
with angle sin β = 5/6. Each state is labeled by an integer value of s [see Eq. (56)]. Textures of the metastable states are shown in (b) s = 1,
(c) s = −1, (d) s = 2, (e) s = −2. The top row shows the textures isometrically projected onto the plane and the bottom row shows the top
view of these configurations on the surface of the cone in three dimensions. [The ground-state texture with s = 0 is shown in Fig. 5(e).]

where s �= s0 is a fixed integer and η(r, φ) is a random
noise, independently drawn at every site from the uniform
distribution within range [−πζ , πζ ], where ζ represents the
magnitude of the noise. Upon minimizing the energy using the
BFGS algorithm for ζ > 0, we observe that the apex charge
of the final configuration is the same as that of the initial
configuration, which confirms that the initial configuration is
indeed a metastable state at a local minimum of the energy
landscape. The metastable textures with lower energy are able
to withstand larger magnitudes of noise than those with higher
energy. For example, the first and second metastable state
for p = 2 and γ = 5/6, represented by s = 1 and s = −1,
are robust to noise magnitudes up to ζ ≈ 0.6 and ζ ≈ 0.1,
respectively.

The metastability of these higher-energy states arises be-
cause, to transform into the next lower rung of the metastable
energy levels, the p-atic texture ψ has to either twist or un-
twist itself by one entire revolution around the apex via the
nucleation of a defect and antidefect pair [59,60].

V. CONCLUSIONS AND OUTLOOK

We studied p-atic liquid crystals on cones at zero temper-
ature. We found the ground states as a function of the cone
half-angle β and the molecule symmetry p, characterized ei-
ther as uniform textures with zero energy or frustrated textures
with fractional defect charges at the cone apex and an energy
that diverges logarithmically with cone size. A similar set of
fractional defect charges also characterize a ladder of quan-
tized metastable liquid crystal states on the cone, reminiscent
of spin textures on a Möbius strip with some natural twist
wavelength similar also to a loop of supercoiled DNA [61].
Our numerical simulations were facilitated by working with a
set of commensurate Gaussian curvatures concentrated at the
cone apex, which allows regular tesselations of triangular or
square lattices with a generalized Maier-Saupe lattice model.

Note that the key ingredient of the physics on the cone
flanks is not the arbitrarily sharp tip at which the Gaussian

curvature becomes singular, but rather the Gaussian curvature
hidden at the tip whether it is physically present or truncated.
Provided one imposes free boundary conditions along the
truncated rim, our results should hold for cones truncated
at radius r0, with r0 � R, for which a fictitious apex defect
charge sits at the center of the truncated upper rim.

An interesting topic for future investigations would be
to allow Hamiltonians with additional couplings between
the molecule orientation and the extrinsic curvature of the
substrate [41–43,62,63]. These terms, the analog of crys-
tal fields in spin problems, involve couplings like Ki

i ·
K jkm jmk, Kk

i · Ki jm jmk, Ki� · K jkmim�m jmk , where K j
i =

Kikgk j . Here, Ki j = Ki j n̂ and Ki j is the curvature tensor, de-
fined by Ki j = n̂ · ∂i∂ j �R, where n̂ is the normal vector. The
local bending of the cone surface is given by the second
fundamental form,

Ki
j =

(
1/R̄θ 0

0 1/R̄r

)
=

( 1
r tan β

0

0 0

)
, (60)

where the radii of curvature R̄θ and R̄r are also displayed in
Eq. (19). These coupling terms tend to align the orientation
vector m̂ along one of the substrate’s principal axes of cur-
vature, and are all proportional to ∼ cos(2ω), where ω is the
local angular variable [41]. For a p-atic, these additional terms
will obey the appropriate p-fold rotational symmetry only if
2/p is an integer. Therefore, they are relevant for polar (p = 1)
and nematic (p = 2) liquid crystals, but not the higher values
of p > 2 that we have examined in this paper. Also, note from
Eq. (60) that the nonvanishing principal curvature along the
azimuthal direction of the cone surface decays as we move
down the flank from the apex Kθ = 1/R̄θ ∼ 1/r. We thus
expect that the effects of extrinsic curvature would diminish
on a cone with its inner rim truncated far from the apex,
while the intermolecular Maier-Saupe coupling, like that in
Eq. (41), retains the same strength anywhere on the cone.
For example, if a term like �H = ∑

j
γ0

r j
cos(2ω j ) is added

to Eq. (41), then we would expect interfaces of dimension
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√
Jr/γ0 in what was originally a Möbius strip texture without

the external coupling. A rough estimate of the total energy in-
tegrated over the entire surface of the cone gives E ∼ √

Jγ0R
for frustrated liquid crystal textures on the cone, in contrast
to the logarithmic behavior E ∼ ln(R/a) we observed from
the apex charge when γ0 = 0. A more detailed treatment of
extrinsic curvature effects for liquid crystals on cones, both at
zero and finite temperatures, is left for future work.

The fractional defect charges we find in the ground state of
the cone neglecting extrinsic curvature should have intrigu-
ing consequences for p-atic textures at finite temperatures.
On a flat 2D surface, the zero temperature state of an XY
model is defect free. However, above the Kosterlitz-Thouless
transition [64], pairs of oppositely charged defects unbind
to proliferate in a neutral plasma. In the case of the cone,
however, unbinding pairs of defects will find themselves in
an environment with a nonzero apex charge. We expect a
transition in the Debye-Hückle screening of this charge at
the bulk Kosterlitz-Thouless defect unbinding transition. Ex-
ceptions to this screening problem are cases where the p-atic
order is commensurate with the cone angle and there is no net
topological charge at the apex at zero temperature.

The intriguing physics described in this paper could be
experimentally investigated via methods related to double
emulsions, which have been used to study nematic liquid
crystals on shells [22]. A more diverse set of p-atic systems
can be studied using colloids [5,7–10], by confining polygonal
platelets to the surface of a cone using roughness-controlled
depletion attractions [65]. Such conic surfaces can be made
by pulling tapered glass microcapillaries or milling with a
focused ion beam [66,67].

In this paper, we examined p-atic liquid crystals on cones
with no constraints at the rim. Different boundary conditions
at the rim can alter the behavior of defects in the ground
state. For example, forcing the molecules at the base of the
cone to align with the circular edge (i.e., tangential boundary
conditions) leads to a topological constraint on the total defect
charge within the conic surface [54]. One can also explore
the consequences that other types of concentrated Gaussian
curvatures have on their associated surfaces. For example,
hyperbolic cones (such as those associated with an isolated
sevenfold disclination in a triangular lattice that can buckle
into the third dimension) have a point δ function of negative
Gaussian curvature at its center, while ridges and bicones
exhibit lines of concentrated positive Gaussian curvature.

Finally, it will be interesting to examine the dynamics
of these defects both near and well away from equilib-
rium. The tensor hydrodynamics of general p-atics in flat
space has recently been investigated theoretically [68,69],
while p = 2 nematic defects in the presence of activity has
been thoroughly studied both in flat space and spherical
surfaces [11–13]. It would be intriguing to generalize these
studies to study the nonequilibrium active dynamics of p-atics
on conic surfaces, realizable in epithelial monolayers [16–18]
and living tissue [19] embedded in conic geometries.
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APPENDIX A: DERIVATIONS OF DIFFERENTIAL
GEOMETRIC QUANTITIES ON A CONE

Here, we provide the details for the calculation of the
parallel transport equations on the surface of a cone.

A. Transport along θ̂

We first consider transport along the θ̂ direction, on a curve
parameterized, in the coordinates of Fig. 1, as

�v = (θ, r0), (A1)

where θ ∈ [θ0, θ
′] is the path parameter and r0 is a constant

distance down the slope of the cone. The unit tangent of this
curve is given by

�u = ∂θ �v√
∂θvigi j∂θv j

= (1, 0)

r0 sin β
. (A2)

The parallel transport equations in Eq. (20) then become

Dθm j = 0, (A3)

written explicitly in terms of the nonvanishing connection
coefficients as

∂θmr + �r
θθmθ = 0, (A4)

∂θmθ + �θ
rθmr = 0. (A5)

Upon inserting the connection coefficients in Eq. (22), we
have

∂θmr − r sin2(β )mθ = 0, (A6)

∂θmθ + 1

r
mr = 0. (A7)

Upon applying ∂θ to these equations and simplifying, we have

∂2
θ mr + sin2(β )mr = 0, (A8)

∂2
θ mθ + sin2(β )mθ = 0. (A9)

The solutions are well-known,

mθ (θ ) = A cos(γ δθ ) + B sin(γ δθ ), (A10)

mr (θ ) = C cos(γ δθ ) + D sin(γ δθ ), (A11)

where γ ≡ sin β and δθ ≡ θ − θ0. Upon using the initial con-
ditions �m(θ = θ0) = (mθ

0, mr
0) and Eqs. (A6) and (A7), we

have

mθ (θ ) = mθ
0 cos(γ δθ ) − mr

0

rγ
sin(γ δθ ), (A12)

mr (θ ) = mr
0 cos(γ δθ ) + mθ

0γ r sin(γ δθ ). (A13)
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We checked that the inner product is preserved by the above
parallel transport,

mi(θ )gi jm
j (θ ) = mi(θ0)gi jm

j (θ0). (A14)

The rotation angle due to transporting by dθ at constant
longitudinal coordinate r0, which we denote as Aθγ r0dθ , is
given by the difference between the angle of �m with respect to
the tangent vector �u of the transport curve at θ and θ + dθ :

Aθγ r0dθ = cos−1

[
mi(θ0 + dθ )gi ju j (θ0 + dθ )√

mi(θ0 + dθ )gi jm j (θ0 + dθ )uigi ju j

]
− cos−1

[
mi(θ0)gi ju j (θ0)√

mi(θ0)gi jm j (θ0)uigi ju j

]
, (A15)

where mi(θ ) is given by Eq. (A12). Upon inserting the tangent vector given by Eq. (A2) and using Eq. (A14), we have

Aθγ r0dθ = cos−1

[
mθ (θ0 + dθ )r0 sin β√

mi(θ0)gi jm j (θ0)

]
− cos−1

[
mθ (θ0)r0 sin β√
mi(θ0)gi jm j (θ0)

]
. (A16)

B. Transport along r̂

We now consider transport along the longitudinal r̂ direc-
tion, on the curve parameterized as (see Fig. 1)

�v = (θ0, r), (A17)

where r ∈ [r0, r′] is the path parameter and θ0 is a constant
azimuthal angle. The unit tangent of this curve is given by

�u = ∂r�v√
∂rvigi j∂rv j

= (0, 1). (A18)

The parallel transport equation then becomes

Drm j = 0, (A19)

written in terms of the nonvanishing connection coefficient as

∂rmθ + �θ
θrmθ = 0. (A20)

Upon substituting in Eq. (22), Eq. (A20) becomes

∂rmθ + 1

r
mθ = 0. (A21)

We integrate both sides of the equation and arrive at

mθ r = F, (A22)

where F is some constant. Upon using the initial conditions
�m(θ0, r0) = (mθ

0, mr
0), we have

mθ = r0

r
mθ

0, mr = mr
0. (A23)

We again checked that the inner product is preserved by this
parallel transport,

mi(r)gi j (r)m j (r) = mi(r0)gi j (r0)m j (r0). (A24)

The angle of rotation due to parallel transport by dr, de-
noted as Ardr, is given by the difference between the angle of
�m with respect to the tangent vector �u of the transport curve,
which in this case is a geodesic, at r and r + dr:

Ardr = cos−1

[
mi(r + dr)gi j (r + dr)u j√

mi(r + dr)gi j (r + dr)m j (r + dr)uigi ju j

]

− cos−1

[
mi(r)gi j (r)u j√

mi(r)gi j (r)m j (r)uigi ju j

]
, (A25)

where mi(r) is given by Eq. (A23). Upon inserting the tangent
vector given by Eq. (A18) and using Eq. (A24), we have

Ardr = cos−1

[
mr (r + dr)√

mi(r)gi j (r)m j (r)

]

− cos−1

[
mr (r)√

mi(r)gi j (r)m j (r)

]
. (A26)

Since mr (r) = mr (r′) is constant along the r̂ curve according
to Eq. (A23), we have that

Ardr = 0, (A27)

as must be the case for parallel transport along êr , which is a
geodesic.

APPENDIX B: GROUND-STATE TEXTURES

The following pages show the ground-state textures of
p-atics on cones with free boundary conditions at the base,
obtained from numerical energy minimizations of the Hamil-
tonian in Eq. (44). Like the apex defect charges in Table I,
the configurations are arranged by row according to sin β,
where β is the half cone angle (see Fig. 1), and by column ac-
cording to liquid crystal symmetry parameter p. Additionally,
although sin β = 3/6 is in value equivalent to sin β = 2/4, the
corresponding numerical ground states are shown separately
here, where sin β = 3/6 indicates simulations done on a tri-
angular lattice mesh, while sin β = 2/4 indicates those done
on a square lattice mesh.

Textures marked with a shaded blue star in the lower right
hand corner indicate unfrustrated, zero energy, ground states.
These correspond to the following combinations of parame-
ters, each for which there exists an integer value of s0 that sat-
isfies Eq. (52): (p = 2, sin β = 3/6, 2/4), (p = 3, sin β =
4/6, 2/6), (p = 4, sin β = 3/4, 3/6, 2/4, 1/4), (p =
6, sin β = 5/6, 4/6, 3/6, 2/4, 2/6, 1/6). Certain pa-
rameter sets have doublet degeneracies in the ground state.
These are (p = 2, sin β = 3/4, 1/4), (p = 3, sin β =
5/6, 3/6, 2/4, 1/6), (p = 5, sin β = 3/6, 2/4), (p =
6, sin β = 3/4, 1/4).
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