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Anticlinic order of long-range repulsive rodlike magnetic particles in two dimensions
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In the field of liquid crystals, it is well known that rodlike molecules interacting via long-range attractive
interactions or short-range repulsive potentials can exhibit orientational order. In this work, we are interested in
what would happen to systems of rodlike particles interacting via a long-range repulsive potential. In our model,
each particle consists of a number of point dipoles uniformly distributed along the particle length, with all dipoles
pointing along the z axis so that the rodlike particles repel each other when they lie in the x-y plane. Dipoles from
different particles interact via an 7~ potential, where r is the distance between the dipoles. We have considered
two model systems, each with N particles in a unit cell with periodic boundary conditions. In the first, particle
centers are fixed on a square or triangular lattice but they are free to rotate. In the second, particles are free to
translate as well as rotate in cells with variable shapes. Here they self-assemble to form configurations where the
stress tensors are isotropic. Our numerical results show that, at low temperatures, the particles tend to form stripes
with alternating orientations, resembling herringbone patterns or the anticlinic Sm-C,4 liquid crystal phase.
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I. INTRODUCTION

It is well known that systems of rodlike molecules form the
nematic phase under certain circumstances. For thermotropic
liquid crystals, the rodlike molecules interact via induced
dipole-dipole interactions. This long-range attractive force be-
tween molecules promotes their alignment with each other.
At sufficiently low temperatures, the Helmholtz free energy
of the system is minimized when the molecules more or less
align with each other, resulting in long-range orientational
order [1]. On the other hand, hard-rod systems, in which parti-
cles interact via a short-range hard-core interparticle potential,
form the nematic phase for certain aspect ratios above certain
packing fractions. The free energy depends solely on the en-
tropy, which is a measure of the orientation-dependent free
volume of the system. At sufficiently high packing fractions,
the rodlike particles form orientational order, giving up the
orientational entropy in order to gain translational entropy [2].

It is interesting to ask whether a system of anisometric
particles interacting via a long-rang repulsive potential will
spontaneously form orientational order. To answer this ques-
tion is the motivation for this work.

An immediate example of repulsive particles are discrete
point charges with the same sign interacting via a pairwise
r~! potential, where r is the distance between charges. Wigner
predicted that a gas of electrons at zero temperature form
a bcc lattice in three dimensions (3D) [3]. Two-dimensional
experiments showed that, at low temperatures and high areal
density, a sheet of electrons crystalized into a triangular lattice
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in two dimensions (2D) [4], which is known as a Wigner
crystal. Montgomery [5] proved that, for particles in a 2D
Bravais lattice interacting with pairwise r~* potential with
fixed density, the triangular lattice is the unique minimizer for
any real s > 0.

An example of a system of particles interacting via a pair-
wise r—3 potential is a system of discrete point electric or
magnetic dipoles. In one realization, the centers of the dipoles
are confined to a 2D planar region, and the directions of the
dipoles are constrained to be along the normal to the plane and
all point in the same direction, so that they repel each other.
Experiments on 2D colloidal superparamagnetic particles in-
teracting via repulsive magnetic dipolar interactions clearly
show that the systems form a crystal phase with a triangular
lattice at low temperatures [6,7], consistent with the results of
Ref. [5].

Here, we consider particles consisting of two or more
dipoles in the z direction, fixed on a long rod which lies in
the x-y plane. The rods repel each other. A realistic object
resembling this model is a thin slab of magnetic material,
magnetized through its thickness, lying in the plane. A col-
lection of such slabs serves as a primitive realization of the
system that we want to study in this work. The pair potential
may be separated into an isotropic and an anisotropic part.
The isotropic part accounts for the interactions without regard
to the shape, and the anisotropic part for the interactions
due to the shape or the anisotropic distribution of dipoles.
As discussed below, at low number densities, the isotropic
interactions dominate, so one expects that the particle cen-
ters form a crystal structure similar to that of point charges
or dipoles. As the number density increases, the anisotropic
repulsive interactions become predominant, so that the parti-
cle positions and orientations become correlated. Therefore,
at high densities, the low density crystal structure may be
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destroyed or deformed and new ordered structures may ap-
pear. We are interested in finding these new ordered structures
and in understanding their density dependence.

A system of rodlike particles with long-range repulsion
has been studied in 3D [8]. The authors confined charged
rodlike colloids in a thin wedge-shaped cell and showed that
the position and orientational order of the colloids depends
on the interaction with the cell walls. In our work, we study
configurations either formed by the particles alone, without
external constraints, or where the orientations of the particles
are not affected by external constraints.

The paper is organized as follows: Section II lays out the
mathematical model describing the interactions between the
particles in our system. Section III discusses the model sys-
tems that we are interested in and the numerical procedures
which lead to the identification of equilibrium states. Sec-
tion IV presents the numerical results on systems of particles
on square and triangular lattices and on particles in cells with
variable shapes, and we conclude in Sec. V.

II. MATHEMATICAL MODEL

In this work, we ignore thermal effects and the kinetic
energy of particles. We look for configurations which corre-
spond to minima of the potential energy. The total potential
energy of the system of N particles, assuming pairwise inter-
actions, is given by

1 N N
E=2Y 3w q). (M

i=1 ji

where q; = (r;, ;) is the generalized coordinate of particle i,
with r; = (x;, y;) being the coordinates of the center, and 6;
being the angle formed by the long axis of the particle with
the x axis. The system may be subject to external constraints,
for example, geometric confinements or periodic boundary
conditions.

We model each particle as a long rod with n uniformly
distributed point dipoles along the particle length, where all
the dipoles point along the z direction. We set the width of
each rod to be zero, because the width does not play a role
in our model, so the particle shape is a line segment. The
interpenetration of the particles or of the line segments is
prohibited. One can also consider particles as being made up
by two lines of charge of finite length, with the line of positive
charges above the plane, and the line of negative charges
beneath the plane. Our model of particles with discrete dipoles
is an approximation of a line of dipoles with finite length,
with dipoles pointing to the z direction. With this in mind,
the interaction between two particles can be modeled by the
sum of all pair interactions between dipoles, excluding dipole
pairs on the same particle,

WG 4)) = D Y Wik 2)

k=1 I=1

Here we use the notation w; )¢,y to denote the interaction
energy of the kth dipole on the ith particle and /th dipole
on the jth particle. The interaction energy of two permanent

magnetic point dipoles is given by [9]
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where p is the permeability of free space, m, = m,Z is the
dipole moment, and r = rf is the vector from m, to m,.

In the minimum-energy configuration, the force and torque
on each particle are zero. The total force on each particle is
the sum of forces on all dipoles on the particle,

F,=> Fis )
k=1

where F; is the force acting on the kth dipole of particle i,
with

Wab = [3(Iha : i\‘)(ﬁlb . f) - (ﬁla ' ﬁlb)]

3

N n
Fi; = Z Z Fi oG, (5)
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and F; 1y(j,;) is the force acting on the kth dipole of particle i
due to the /th dipole of particle j. One can readily calculate
the force F;, on m, due to the presence of m; as the negative
gradient of the pair potential,

3pomamy,
4t

The torque on each particle with respect to the particle center
is the sum of torques on all the dipoles on the particle,

Fop=—Vwy =

(6)

Ti=) (g —r;) x Fig (N
k=1

We define the number density p = N/A, where A is the
area of the region containing the particles. There are three
lengths in our system: domain size, particle size, and mean
interparticle distance /1/p . We define the particle length /
as the distance between the two farthest dipoles on a particle.
If we scale all the lengths by the particle length / and scale
the dipole moments by my, then the scaled pair potential and
force between two dipoles are

i v ! ®)
w = 3 = —,
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where 7, is the normalized distance between two point dipoles.
We consider the elementary case of two particles centered
along the x axis and separated by a distance d. The pair
interaction energy, if d > 1, can be written as
n? (n+ DHn?

b(d, 0y, 0,) = 1 + 2T
Dd. 01,02 = 5 ¥ 6= D

+ 0(%)’ (10)

where the first term is an isotropic term in which only centers
matter, and the rest contain orientation-dependent anisotropic
terms. Considering only the first two terms, the minimum
occurs when 0, = 6, = /2 . Keeping more terms makes it

[6 + 5(cos 201 + cos 265)]
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FIG. 1. (a) Representative energy contours of two particles separated on the x axis by a distance of d = 1.6 as a function of angles 6, and
6,. The number of dipoles on each particle is n = 21. The minimum-energy state is attained when both angles are 7 /2, corresponding to the
configuration in panel (b1). The maximum energy state is attained when both angles are zero, corresponding to the configuration in panel (b2).
If 6, = 0, then the minimum-energy state is attained when 6, = 7 /2, corresponding to the configuration in panel (b3). In the schematic of
panel (b), only three dipoles are shown on each particle to illustrate the directions of dipoles.

difficult to determine analytically where the minimizer is. In-
stead, we plot the energy contours in terms of the orientations
of the two particles. A typical plot is shown in Fig. 1(a) with
the number of dipoles n = 21 at a distance d = 1.6. The en-
ergy contour plots show that the minimum-energy state occurs
when 6, = 6, = /2 for any d > 0. That is, they are parallel
to each other and both are perpendicular to the line connecting
the centers, as shown in Fig. 1(bl). The energy attains its
maximum when they are both parallel to the line connecting
the centers, as shown in Fig. 1(b2), and attains its saddle point
when one aligns along the x direction and the other along the
y direction, as in Fig. 1(b3). If the separation distance between
the centers is too short, then the configurations in Figs. 1(b2)
and/or 1(b3) cannot be attained because the particles will
interpenetrate, but the minimum-energy state is still attained
at the configuration in Fig. 1(bl), which is the minimizer of
the anisotropic part of the energy.

If we consider the one-dimensional (1D) problem where
a number of such particles, whose centers are constrained
to be on an interval on the x axis, with periodic boundary
conditions, then in the minimum-energy state the centers of
the particles are uniformly distributed in the interval and all
particles all parallel to the y axis. In two dimensions, this
simple configuration where all particles are aligned parallel
to the y axis is no longer be the minimum-energy state. What
configuration will minimize the total energy in this case? We
try to answer this question for the two model systems detailed
below.

III. MODEL SYSTEMS AND NUMERICAL PROCEDURES

We are interested in systems where the particles will form
patterns in a 2D plane. For this, we have considered two
specific model systems: (a) systems where the particle centers
are fixed on a given lattice, and (b) systems in which particles
self-assemble into some recognizable configurations. In both
cases, we consider a finite system with periodic boundary
conditions.

In the first model system, there is an underlying lattice L,
where the particle centers are fixed at each lattice site and the
goal is to find particle orientations which minimize the total
potential energy. The underlying lattice can be regarded as
an external constraint, but such a constraint will not directly
influence the orientations of particles. In this case, the energy
of the system is given by

1
E =5 > wiaiq)).

i#jel

(11

Here the sum is over all lattice sites. Since analytic expres-
sions for the sum are unavailable, we solve the problem
numerically. Our numerical procedure is as described below.
We first partition an infinite lattice into identical unit cells,
in the shape of parallelograms, each containing a number of
lattice sites. The unit cell is then surrounded by eight congru-
ent image cells. If we denote the edges of a unit cell by vectors
a and b and denote the matrix H = [a, b], then the area of
the cell is given by A = det H. The position of the center
of particle i can be expressed as a linear combination of the
two basis vectors as r; = &a-+n,b = Ht;, where t;= (&, n;)’
is the relative coordinate of the particle i with 0 < &;, n; < 1.
The centers of particles in the image cells can be assigned
as r; + Hn, where n = (ny, ny)’, with integer components
ranging from —1 to 1. Our numerical simulation starts with
a given initial orientation of all particles on lattice sites in
the unit cell, which is then copied to all image cells. We next
calculate the torque on each particle according to Eq. (7). We
assume that the contributions to the torque on a particle from
dipoles far away have a minimal effect compared with that
from nearby dipoles, thus the torque on each particle is only
calculated from dipoles within a cutoff radius. Specifically,
for each dipole on a particle, all dipoles on other particles
within a radius ry, including those in the image cells, will
be included in the torque calculation, and dipoles outside this
radius will have no contribution. In this work, the radius ry is
taken to be the length of the short side of the unit cell. This
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is the largest cutoff radius in the simulation of nine unit cells
which allows all particles in the central unit cell interacting
with the same number of particles. We approach equilibrium
using overdamped dynamics; we advance the system by a
time step At where each particle rotates with angular velocity
proportional to the torque acting on it. Discretizing this, the
angles are updated as

0;(t + At) =0;(t) + Br;At, i=1,...,N, (12)

where B is proportional to the reciprocal of a rotational vis-
cosity and N is the number of lattice sites, or, equivalently, the
number of particles in the unit cell. Once the orientations of
all particles in the unit cell have been updated and copied to all
image cells, the new torque is evaluated for each particle based
on the updated configuration. This process is repeated until
the torques on all particles are within zero with a tolerance of
10712,

In the second model system, we consider N particles free
to move in a unit cell shaped as a parallelogram. Periodic
boundary conditions are imposed as before such that the
unit cell is surrounded by eight congruent image cells. The
simulation starts with given initial positions and orientations
of the N particles in the unit cell, which is then copied to
all image cells. Next, the force and torque exerted on each
particle in the unit cell from neighboring dipoles within a
cutoff radius are calculated according to Egs. (4)—(7). Using
discretized overdamped dynamics as before, each particle will
then translate and rotate with velocity and angular velocity
proportional to the force and torque,

ri(t + At) = r;(t) + aF; At, (13)

0;(t + At) = 6,(t) + Bt At, (14)

where o and B are proportional to the reciprocals of a vis-
cosity and an angular viscosity, respectively. At each step,
the orientations and positions of the particles are copied to
all image cells. This process is repeated until the forces and
torques on all particles are less than 102, Our journey does
not end here. Since the particles are not fixed on lattice sites,
forces acting on them can give rise to stresses on the unit-cell
walls, which can change the shape of the unit cell at fixed
number density.

For a given configuration, the average stress tensor acting
on the unit cell can be calculated by [10]

1
7= 2A Z Z Fing.nTin —rgn), (15)

ik jGi)l

where the outer sum indices are over the dipoles in the central
unit cell, and the inner sum indices are over the dipoles in
central unit cell as well as the image cells, excluding the
dipole pairs on the same particle. We assume that the unit cell
deforms in response to stress similarly to a volume-conserving
elastic body. If the stress tensor is not isotropic, the shape
of the unit cell will change [11]. In our simulation, since
the stress is symmetric, we have kept the vector a = (a, 0)
parallel to the x axis and have let b = (b,, b,) rotate freely.
Specifically, the length of a is updated by

Cl; =a,+ Wby(o-xx - J)fy)’ (16)

where W is proportional to the reciprocal of an elastic modu-
lus, and

b =

y

7 (17)
such that the area of the parallelogram remains constant. The

x component of vector b is updated as
V. = by +Wa,oy,. (18)

Our simulation is in clear contrast with the traditional
constant-pressure simulation, where a pressure tensor is im-
posed; rather, it is a constant-volume (area, in our case),
variable cell shape simulation. The equilibrium configurations
correspond to the cell shapes which admit isotropic stress
tensors.

The final goal is to find the specific shape of the parallel-
ogram such that the stress tensor is isotropic, at which point
the total energy is minimized over all possible parallelograms
with constant area.

When numerically evaluating the energy of a particle in an
infinite system where frequently particles interact via long-
range potentials, a truncation of the series being summed
needs to be made. Problems arise when the series is slowly
convergent, conditionally convergent or divergent (the energy
of a dipole in a dipolar system diverges logarithmically with
system size). Ewald proposed a method for dealing with
such series, first devised for systems of ions with neutral net
charge [12] and later extended to systems of dipoles [13].
It is widely used for rapid convergence in 3D systems. The
main idea is to separate the slowly decaying interaction poten-
tial into short- and long-range contributions. The short-range
contributions are summed directly in real space and the long-
range contributions are summed in Fourier space. Both sums
are rapidly and are absolutely convergent (if additive con-
stants, which may be infinite [14], are ignored) in contrast to
the original sum.! For 2D systems with dipolar interactions, a
direct sum over several unit cells is sufficient for convergence,
and the Ewald summation is not needed. However, we note
that when we consider particle interactions within a cutoff
radius, it is not always meaningful to compare the energies
of the systems with different underlying lattices, or even for
particles on the same lattice but with different particle ori-
entations. The main reason is that the number of participating
dipoles is not always the same for different configurations, and
the energy calculation is largely dependent on the number of
pairs of dipoles involved. We therefore rely on the calculations
of torques and forces which vanish in equilibrium. Since the
torque and force calculations depend on the cutoff radius, the
robustness of the criterion of vanishing torques and forces
is ensured by comparing the results with that of larger unit
cells possessing larger cutoff radii. After an equilibrium con-
figuration is reached, its local stability is double checked by
running the simulation starting from a perturbed equilibrium

!On a separate note, in 3D systems the long-range contribution
of the dipole-dipole interaction makes a separate contribution to the
total free energy, which can promote the ferroelectric ordering (see,
e.g., Ref. [15]).
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FIG. 2. (a) Equilibrium configurations of particles on a square lattice at six representative number densities. Each particle has 41 uniformly
distributed dipoles along its length. (b) The angles of particles in two adjacent stripes on the square lattices as function of the number

density p.

configuration and confirming the equilibrium is not a saddle
point.

In general, there are multiple local energy minima, repre-
senting a rugged energy landscape. We have carefully selected
our simulation parameters so that we can find the global
minimum-energy states and avoid frustrations by only locally
favored configurations.

IV. RESULTS

In this section, we present numerical findings of the two
model systems mentioned in Sec. IIL. In the first model sys-
tem, particle centers are fixed at the sites of two simple
lattices: a square lattice and triangular (or hexagonal) lattice,
and the particles are free to rotate about their centers. In the
second model system, particles are free to translate as well as
rotate in a cell with variable shape and constant area.

A. Particles on square lattices

We first consider the case when the centers of particles are
fixed on sites of a square lattice. In this numerical experiment,
the lattice size is varied to realize different number densities
p. We have considered the cases where the total number of
particles N = 16, 36, 64, 100 on a square lattice in a unit cell.
The results of the angles 6; for different values of N agree to
within 10~ for all number densities. Therefore here we only
present the representative results for N = 36 with n =9, 21,
and 41 dipoles on each particle.

Figure 2(a) shows some representative equilibrium con-
figurations of particles on square lattices at several number
densities, with n = 41 dipoles on each particle. For small
values of p, that is, when the particles are far apart, they align
uniformly along one diagonal of the lattice. In this configura-
tion, the forces and torques from the four nearest-neighbor
particles as well as from the four neighbors at the nearest
diagonal sites cancel exactly. As p increases above a critical
number density, the configuration with the uniform alignment
is no longer stable, because dipoles at the two nearest diagonal

sites along the orientation of particles are so close that, along
the diagonal, neighbor interactions dominate, and the configu-
ration becomes unstable. To lower the energy, the particles on
the neighboring sites rotate in opposite directions by the same
amount, which results in the configurations that all particles
along any diagonal, which is parallel to southwest-northeast
direction, form a stripe. Furthermore, in each stripe the par-
ticles are aligned in the same direction, and the orientations
alternate from stripe to stripe. The average orientation of all
particles is parallel to the direction of the stripe. This configu-
ration is also known as herringbone pattern.

Figure 2(b) shows the angles of particles in two adja-
cent stripes as a function of p. Different curves correspond
to the results from n =9, 21, 41, respectively. The critical
number densities where there is a configurational transition
from uniform alignment to the herringbone pattern occurs at
pe ~ 0.8175, 0.9139, 0.9536 for n =9, 21, 41, respectively.
Larger values of n shift the transition towards p. = 1. At high
densities, the particles are getting close and their neighbors
can no longer be regarded as a continuous uniform body for
small values of n. As a result, the angle 6 as function of p for
n = 9 does not follow a smooth curve, but instead oscillates
about a smooth curve when p % 10. The curves of 0 in terms
of p forn = 21, 41 also oscillate but the oscillating behavior is
deferred to higher densities, where the numbers of dipoles per
particle are not large enough to be regarded as continuously
distributed. From the simplest geometric view, we anticipate
that the orientation of particles becomes more and more par-
allel to the stripe direction as p increases for particles with
continuously distributed dipoles along their lengths.

B. Particles on triangular lattices

Next, we fix the centers of particles on a triangular lattice.
The numerical procedure and simulation parameters are the
same as those on the square lattices.

Figure 3(a) shows representative equilibrium configura-
tions of particles on triangular lattices at several number
densities. The orientations of the particles always form
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FIG. 3. (a) Equilibrium configurations of particles on a triangular lattice at six representative number densities. Each particle has 41
uniformly distributed dipoles. (b) The angles of the particles in two adjacent stripes on the triangular lattices as function of the number

density p.

horizontal (or along any grid lines due to the threefold symme-
try) stripes on a triangular lattice, with alternating orientations
from stripe to stripe. On average, all particles point along the
stripe direction. Figure 3(b) shows the angles of the parti-
cles in two adjacent stripes as a function of p. Each curve
corresponds to n = 9, 21, 41, respectively. Large numbers of
dipoles per particle make the angle between the particles in
adjacent stripes slightly larger. As p — 0, the particle orienta-
tions saturate at 6; = —6, = m /4. As p increases, the particles
will tend to align with the stripe direction.

The results from the square and triangular lattices share
one feature: the particles at high densities form stripes with
alternating orientations. It is reminiscent of one of the ground
states of antiferromagnetic Ising spin systems on a triangular
lattice, where spins have alternating directions on neighboring
stripes.

We have set up a tabletop experiment to observe equilib-
rium configurations of rectangular rare-earth magnets with
centers fixed on a triangular lattice. The rare-earth magnets,
with dimension 2” x 1/2” x 1/4” and a field of 0.3 T perpen-
dicular to their large faces are arranged to have their magnetic
moments pointing upward relative to the plane. Each magnet
has a vertical hole in the center into which we have epoxied
a thin cylindrical tube—a ball point pen refill. The refills are
then inserted into matching holes on a triangular lattice on two
parallel aluminum plates, one above the other. The ball points
sit on a horizontal sheet of glass, supporting the weight of the
magnets. The center-to-center distance between the magnets
is 2.25”. Figure 4 shows one of the observed equilibrium
configurations. The magnet in the center has three magnets
interacting with it along each of the six radial direction. The
magnets not on the periphery form the herringbone pattern,
fully consistent with what we have observed in the simula-
tions.

C. Free particles in a cell with variable shape

One can find the equilibrium configurations of particles
with different underlying lattices and number densities fol-

lowing the same procedure. However, we are more interested
in the question of whether particles would spontaneously
organize themselves and form a lattice? If so, what lat-
tices would be most likely to form at different number
densities?

As we have indicated earlier, at a given number density, the
unit cell containing the particles will adopt a shape such that
the stress tensor of the corresponding equilibrium configura-
tion is isotropic. In fact, the square and triangular lattices do
not give rise to isotropic stress tensors. In the square-lattice
case, the normal stress components are the same, but the
shear component is nonzero. In the triangular-lattice case, the
normal stress components differ.

We have carried out simulations of N particles in a unit
cell under the periodic boundary conditions, with different

FIG. 4. One of the equilibrium configurations of rare-earth mag-
nets in a triangular lattice.
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FIG. 5. (a) Equilibrium configurations of 100 free particles in a unit cell at four representative number densities. The unit cell is bounded
by thin solid lines, and the centered rectangular lattice is indicated by dashed lines. Each particle has 41 dipoles uniformly distributed along
its length. The red particles are on the vertices of the centered rectangular lattice, and the blue particles are at the center of the lattice. (b) The
angle of the particles on the vertices of the centered rectangular lattice as function of the number density p. (c) The aspect ratio of the centered

rectangular lattice as function of the number density p.

initial conditions and numbers of particles. Since our goal is
to identify the lattice formed by particles, we redefine the unit
cell to be nearly square during the course of the simulation in
order to maximize the cutoff length.

Preliminary results suggest that the particles tend to
arrange themselves in a centered rectangular lattice. Further-
more, the particles at the rectangular vertices of the lattice
have the same orientation, and those in the center of the lattice
have opposite orientations such that the average angle is close
to zero. With this in mind, we have rerun the simulations with
centers of particles at a centered rectangular lattice, and assign
an angle 6 to particles on the rectangular vertices and assign
the angle —6 to particles located at the center of the lattice.
We then find the angle 6 and the aspect ratio of the lattice as a
function of p, where we define the aspect ratio of the centered
rectangular lattice as the ratio of short side of the rectangle
and the long side.

Our final results are summarized in Fig. 5. For small
number densities, we have considered 10 x 10 particles in
a unit cell. Several representative equilibrium configurations
are shown in Fig. 5(a) with different number densities. The
unit cell is bounded by thin solid lines, and the centered
rectangular lattices are indicated by the dashed lines. We
have used different numbers of dipoles n =9, 21, and 41
on each particle as before. In Fig. 5(a) we show the results

from n = 41. At high densities, since the aspect ratio of the
lattice is very small, the unit cell is far from a square, so
we considered more particles in the horizontal direction and
less in the vertical direction, e.g., 30 x 4 or 18 x 2, whose
results are plotted in Figs. 5(b) and 5(c) at high number
densities.

At low densities, the particles are far apart, so they can be
regarded as point particles and the shape anisotropy does not
play a significant role in determining the position of centers,
and the lattice formed by the particle centers turns out to be
very close to a triangular lattice. If we regard the triangular
lattice as a special case of a centered rectangular lattice, then
its aspect ratio corresponds to 1/+/3 & 0.577. This is consis-
tent with the result that repulsive point particles, interacting
viathe r=%, s > 0 potential, form a triangular lattice in 2D [5].
As shown in Fig. 5(a), the particles form horizontal stripes,
similar to that in triangular lattices. The angles of particles in
each stripe are close to £ /4 in the dilute limit, which agrees
with the results from Sec. IV B. As p increases, the particles
get closer. If we assume an isotropic shrinkage of the unit cell,
it turns out that the vertical component of the stress tensor be-
comes larger than the horizontal component. In fact, if we only
consider the contribution to the stress tensor from interactions
of particles from the same stripe, not only does the horizontal
component increase, but the vertical component also increases
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although by a smaller amount. If we consider the contribution
to the stress tensor from particles from different stripes, the
increase of the vertical component is much larger than that
of the horizontal component. As a result, the stress on the
upper and lower boundaries is larger than on the left and
right boundaries, thus the unit cell grows longer and thinner
and the aspect ratio of the lattice decreases. Up to p = 4, the
angles of particles on adjacent horizontal stripes are very close
to +m /4. This result is not very sensitive to the values of
n, and the aspect ratio of the centered rectangular lattice is
slightly larger for larger values of n, as shown in Figs. 5(b)
and 5(c).

As p increases a little further, the angle 6 first dips down
slightly and then increases. As p gets extremely high, to
p = 10, the angle 6 starts to decrease while the aspect ratio of
the lattice remains almost constant. We attribute this nonlinear
behavior of 6 as function of p to the finite number of dipoles
per particle considered. As we increase n to 21 and 41, the
nonlinear behavior of 6 persists but is deferred to higher
number densities. This is similar to what we have observed
in Sec. IV A. We have run simulations and confirmed that, at
a given density, as we increase n, the angle 6 approaches m /4.
A compelling analytic argument for this magic angle has yet
to be found.

There are also equilibrium configurations in which particle
centers form a centered rectangular lattice and all particles
orient uniformly along one edge of the rectangle. However,
these configurations represent unstable equilibria.

V. DISCUSSIONS AND CONCLUSIONS

In this work, we have studied the equilibrium configura-
tions of systems of rodlike particles in a two-dimensional
plane interacting via long-range repulsive interactions. We
model the particles as line segments with uniformly dis-
tributed discrete point dipoles, with all dipoles pointing along
the z direction. We confine our study to dipoles interacting
via an r—3 potential. Our preliminary numerical explorations
suggest that the results will be qualitatively the same if the
pairwise potential is »—* with any s > 0.

We have considered two model systems. In the first, we
study the equilibrium orientations of particles with centers
confined to a square or triangular lattice. In the second,
we study how particles self-assemble when they are free
to translate and rotate in a cell with variable shape. In
both model systems, periodic boundary conditions are im-
posed on a central unit cell containing N particles. We have
chosen simulation parameters to prevent the formation of
defects.

When the centers are fixed on a square lattice, particles
will uniformly align along one of the diagonals in the dilute
limit. As number density increases, a second-order transition
occurs from the uniform alignment to the herringbone pat-
tern where particles form stripes along the diagonals with
alternating orientations from stripe to stripe. When the cen-
ters are fixed on a triangular lattice, the particles form the
herringbone patterns for all number densities. When the par-
ticles are free to translate and rotate in a cell with variable
shape, the particles will self-assemble to form a centered
rectangular lattice, where the angle of the particles on the

rectangular vertices of the lattice is close to 7 /4 and the
angle of the particle at the center of the lattice is close to
—m /4. The lattice is close to a triangular lattice at dilute
concentrations, and the aspect ratio of the lattice decreases
as number density increases. Again, the particles form a her-
ringbone structure with alternating orientations in adjacent
stripes.

The herringbone structure is a key feature of the antiferro-
electric smectic C4 phase formed by smectic liquid crystals
consisting of elongated chiral molecules [16]. Systems of
molecules with zigzag-shaped or bent core architectures can
also exhibit the anticlinic phases [17]. In one of the molecular
models [18], it has been shown that conventional disper-
sion and steric intermolecular interactions cannot stabilize
the Sm-C, phase, rather, the orientational correlations be-
tween transverse molecular dipoles, when they are located
in adjacent smectic layers, are responsible for stabilizing the
Sm-C, phase. In Ref. [19], the authors proposed that the
presence of molecular-scale fluctuations of the layer interface
between the smectic layers provide an entropic mechanism
for exhibiting synclinic Sm-C order rather than the anti-
clinic Sm-C,4 order. For materials exhibiting anticlinic order,
the interface fluctuations might be suppressed due to their
bent molecular conformation. A 2D system of bent-core
molecules with transverse dipoles confined in the smectic
layer has been studied with a molecular model [20]. It has
been shown that such a system may undergo a transition
from a nonpolar Sm-A phase with antiparallel dipoles at
neighboring layers, where the intermolecular attraction mod-
ulated by the polar molecular shape dominates, into the
homogeneous ferroelectric phase, where the dipole-dipole in-
teraction dominates. This is in contrast with our system of
rods confined in 2D possessing longitudinal dipoles. Note
that, in our system, solely long-range repulsive interactions
are responsible for the formation of anticlinic order. Dipoles
are as far as possible from each other in this anticlinic
configuration.

If there is an external geometric constraint, for example, a
finite number of particles are contained in a rectangular box,
then the arrangement of particles is very sensitive to the shape
of the box and the number of particles. The equilibrium con-
figuration depends on the interactions between the particles
and the boundary walls.

In this study, thermal effects have been ignored. If ther-
mal effects are included, at sufficiently high temperatures,
the crystal structure formed by the centers of particles will
melt, and orientational order will disappear. Other phases may
possibly emerge. We defer this to a future study.

ACKNOWLEDGMENTS

We acknowledge useful discussions with M. Pevnyi whose
beautiful experiment with rare earth magnets motivated this
work. This work was supported by the Office of Naval
Research through the MURI on Photomechanical Material
Systems (ONR N00014-18-1-2624) and Air Force Research
Laboratory through STTR grant: Electronically Dimmable
Eye Protection Devices (FA8649-20-C-0011).

There are no conflicts of interest to declare.

054702-8



ANTICLINIC ORDER OF LONG-RANGE REPULSIVE ...

PHYSICAL REVIEW E 105, 054702 (2022)

[1] W. Maier and A. Saupe, A simple molecular statistical theory
of the nematic crystalline-liquid phase, Z. Naturforsch. A 13,
564 (1958); A simple molecular statistical theory of the nematic
crystalline-liquid phase, part I, 14, 882 (1959); A simple molec-
ular statistical theory of the nematic crystalline-liquid phase,
part II, 15, 287 (1960).

[2] D. Frenkel, Order through entropy, Nat. Mater. 14, 9 (2015).

[3] E. Wigner, On the interaction of electrons in metals, Phys. Rev.
46, 1002 (1934).

[4] C. C. Grimes and G. Adams, Evidence for a Liquid-to-Crystal
Phase Transition in a Classical, Two-Dimensional Sheet of
Electrons, Phys. Rev. Lett. 42, 795 (1979).

[5] H. L. Montgomery, Minimal theta functions, Glasgow Math. J.
30, 75 (1988).

[6] K. Zahn, R. Lenke, and G. Maret, Two-Stage Melting of Param-
agnetic Colloidal Crystals in Two Dimensions, Phys. Rev. Lett.
82,2721 (1999).

[7] U. Gasser, C. Eisenmann, G. Maret, and P. Keim, Melting of
crystals in two dimensions, ChemPhysChem 11, 963 (2010).

[8] B. Liu, T. H. Besseling, A. van Blaaderen, and A. Imhof,
Confinement Induced Plastic Crystal-to-Crystal Transitions in
Rodlike Particles with Long-Ranged Repulsion, Phys. Rev.
Lett. 115, 078301 (2015).

[9] D. J. Griffiths, Introduction to Electrodynamics, 3rd ed. (Pren-
tice Hall, Upper Saddle River, NJ, 1999).

[10] M. J. Louwerse and E. J. Baerends, Calculation of pressure in
case of periodic boundary conditions, Chem. Phys. Lett. 421,
138 (2006).

[11] M. Parrinello and A. Rahman, Crystal Structure and Pair Poten-
tials: A Molecular-Dynamics Study, Phys. Rev. Lett. 45, 1196
(1980).

[12] P. Ewald, Die Berechnung optischer und elektrostatischer Git-
terpotentiale, Ann. Phys. (Berlin, Ger.) 369, 253 (1921).

[13] S. W. de Leeuw, J. W. Perram, and E. R. Smith, Simulation of
electrostatic systems in periodic boundary conditions. I. Lattice
sums and dielectric constants, Proc. R. Soc. London, Ser. A 373,
27 (1980).

[14] D. Wang, J. Liu, J. Zhang, S. Raza, X. Chen, and C.-L. Jia,
Ewald summation for ferroelectric perovskites with charges and
dipoles, Comput. Mater. Sci. 162, 314 (2019).

[15] M. A. Osipov, P. I. C. Teixeira, and M. T. da Gama, Density-
functional approach to the theory of dipolar fluids, J. Phys. A:
Math. Gen. 30, 1953 (1997).

[16] H. Takezoe, E. Gorecka, and M. Cepié, Antiferroelectric lig-
uid crystals: Interplay of simplicity and complexity, Rev. Mod.
Phys. 82, 897 (2010).

[17] J. W. Goodby, R. J. Mandle, E. J. Davis, T. Zhong, and S. J.
Cowling, What makes a liquid crystal? The effect of free vol-
ume on soft matter, Lig. Cryst. 42, 593 (2015).

[18] M. A. Osipov and A. Fukuda, Molecular model for the anticlinic
smectic-C, phase, Phys. Rev. E 62, 3724 (2000).

[19] M. A. Glaser and N. A. Clark, Fluctuations and clinicity in tilted
smectic liquid crystals, Phys. Rev. E 66, 021711 (2002).

[20] M. A. Osipov and G. Pajak, Molecular theory of proper fer-
roelectricity in bent-core liquid crystals, Eur. Phys. J. E: Soft
Matter Biol. Phys. 37, 79 (2014).

054702-9


https://doi.org/10.1515/zna-1958-0716
https://doi.org/10.1515/zna-1959-1005
https://doi.org/10.1515/zna-1960-0401
https://doi.org/10.1038/nmat4178
https://doi.org/10.1103/PhysRev.46.1002
https://doi.org/10.1103/PhysRevLett.42.795
https://doi.org/10.1017/S0017089500007047
https://doi.org/10.1103/PhysRevLett.82.2721
https://doi.org/10.1002/cphc.200900755
https://doi.org/10.1103/PhysRevLett.115.078301
https://doi.org/10.1016/j.cplett.2006.01.087
https://doi.org/10.1103/PhysRevLett.45.1196
https://doi.org/10.1002/andp.19213690304
https://doi.org/10.1098/rspa.1980.0135
https://doi.org/10.1016/j.commatsci.2019.03.006
https://doi.org/10.1088/0305-4470/30/6/020
https://doi.org/10.1103/RevModPhys.82.897
https://doi.org/10.1080/02678292.2015.1030348
https://doi.org/10.1103/PhysRevE.62.3724
https://doi.org/10.1103/PhysRevE.66.021711
https://doi.org/10.1140/epje/i2014-14079-0

