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In this paper a combined neutron scattering and quantum simulation study of the collective dynamics in
liquid Ne-D2 mixtures, at a temperature of T = 30 K and in the wave-vector transfer range 4 nm−1 < q <

51 nm−1, is presented. Two D2 concentrations are investigated, one close to 25% molar and the other close to
50% molar, together with pure Ne. The dynamic structure factor for the centers of mass of the two molecular
species is extracted from the neutron scattering data and subsequently compared with that obtained from three
different quantum simulation methods, such as ring polymer molecular dynamics and two slightly different
versions of the Feynman-Kleinert approach. A general agreement is found, even though some discrepancies both
among simulations, and between simulations and experimental data, can be observed. In order to clarify the
physical meaning of the present spectroscopic results, an analysis of the longitudinal current spectral maxima is
carried out showing the peculiarities of the D2 center-of-mass dynamics in these mixtures. A comparison with
the centroid molecular dynamics results obtained for the D2 center-of-mass self-dynamics in the same liquid
mixtures is finally proposed.
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I. INTRODUCTION

The role of quantum effects in the behavior of solid and
liquid solutions can be understood by studying alloys and
mixtures of nuclear-spin species (e.g., ortho-H2–para-H2),
isotopes (e.g., H2-D2), as well as quantum systems doped with
appropriate substances [1]. However, due to the limited range
of solubility for the different lightweight species, the choice
is usually quite restricted. For example, as far as pressure
changes are concerned, a relevant solubility that would be
detectable in a variation of the microscopic properties of the
mixture can, in general, be hardly expected. Nevertheless,
mixtures of hydrogen, deuterium, and neon appear to repre-
sent an interesting exception [2,3]. As a matter of fact, since
the molecular parameters (i.e., σ and ε) of the Lennard-Jones
potential of hydrogen, deuterium, and neon are either identical
(for H2 and D2) or very close (for H2 and Ne) [4], theory can
treat solutions of H2, D2, and Ne as isotopic or pseudoisotopic,
respectively. For this reason, since the early 1990s there has
been some interest in H2-D2 and H2-Ne mixtures [5] but for
the latter mainly in the solid phase and with a high hydrogen
concentration. In the H2-Ne system strong anomalies were de-
tected in the temperature dependence of the heat capacity, and
experimental data have been described assuming a variation of
the Ne-H2 force constant by a factor bigger than 2 with respect
to that of pure H2. Similar results have been found with D2
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replacing H2, but in this case the correction factor amounts to
1.6 only. These values, although obtained through the pseu-
doharmonic approximation, have to be considered as very
large since, as already mentioned, intermolecular potentials
are indeed similar [4]. Thermodynamic evidence of a non-
ideal character of such mixtures suggests that we investigate
in greater detail the possible presence of purely dynamical
effects, as those found, for example, in the phonon dispersion
curves of solid H2-D2 systems [6]. There are some clues that
this kind of effects should be common to H2-D2, H2-Ne, and
D2-Ne solutions also in other thermodynamic conditions (e.g.,
in the liquid state). In addition, it is likely that the dynamic
structure factor [7] (and, from it, the collective-excitation
dispersion curves) are better probes than heat capacity alone,
since they are more directly affected by the quantum particle
delocalization, i.e., by the main microscopic property that
distinguishes between a classical and a semiquantum fluid like
H2, D2, and Ne. As for H2-D2 liquid mixtures, these intuitions
were confirmed by incoherent inelastic neutron scattering ex-
periments, where the spectrum of the velocity autocorrelation
function of the H2 centers of mass (i.e., an equivalent of
the density of phonon states in solids) has been extracted
and compared to the same quantity in pure liquid hydrogen,
revealing peculiar and unexpected changes [8]. Similarly, al-
though more extreme, findings have been recently detected
in liquid H2/Ne mixtures at low hydrogen concentrations
(3–10% molar), where pseudocaging effects (caused by heavy
neon atoms) impress on the H2-velocity autocorrelation func-
tion an evident solidlike character [9]. Surely coherent neutron
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scattering can provide a much richer and more detailed picture
than the one so far obtained from single-particle spectroscopy,
but, given the strong incoherent signal from H2, the only
amenable system turns out to be the D2-Ne mixture, which
is the subject of the present study. This paper also pro-
vides an extension to the case of mixtures of a very recent
study [10] of the pure liquid D2 collective dynamics, where
inelastic neutron scattering was exploited together with the
same quantum simulation techniques that have been applied
here.

The rest of the present paper will be organized as fol-
lows: The experimental procedure will be described in detail
in Sec. II, where the data reduction method will be also
presented. Then Sec. III will be fully devoted to the compu-
tational details concerning the quantum dynamics simulations
performed on the D2-Ne mixtures under investigation in order
to extract both the collective response of the system (i.e., the
intermediate scattering functions [7]) and the self one (more
precisely, the velocity autocorrelation functions which can
be directly related to the self-intermediate scattering func-
tions [7]). In Sec. IV, we will discuss the obtained results, and
some key physical quantities derived from the experimental
spectra will be contrasted with their estimates obtained from
the mentioned quantum simulations. In addition, a compar-
ison between the coherent spectra of the present study on
D2-Ne mixtures and the incoherent ones from H2-Ne mixtures
will be provided. Finally, Sec. V will be devoted to conclu-
sions and perspectives.

II. EXPERIMENTAL DETAILS AND DATA REDUCTION

The present inelastic neutron scattering measurements [11]
were performed on the MARI beamline [12], a spectrometer
installed at the ISIS Neutron and Muon Source (Ruther-
ford Appleton Laboratory, Science and Technology Facilities
Council, United Kingdom). The MARI beamline is a direct-
geometry spectrometer using the time-of-flight principle: The
incoming neutron energy, Ei, is selected by a Fermi chopper
before the scattering event, while the final neutron energy,
E f , is determined from the time of arrival of the scattered
neutron in one of the detectors. This spectrometer has recently
undergone a major instrument upgrade, which included new
neutron guides, chopper system, and detector electronics, and
has achieved flux gains ranging from 2 up to 20 depending
on the incident energy with respect to the original version of
MARI. In addition, the so-called repetition rate multiplica-
tion [13] is now a viable option, allowing for the possibility
to use more than one value of Ei at the same time. In our
case the pair Ei = 7.1 meV and 40.0 meV has been selected.
The angular detection range available on MARI, expressed
by the scattering angle θ , is 3◦ � θ � 135◦ and is covered
by an array of 3He tubes with a step of about 0.4◦. With
such an arrangement two different zones of the kinematic
plane became accessible, namely those enclosed by the fol-
lowing rectangles: 5.75 nm−1 � q � 50.75 nm−1, −10 meV
� h̄ω � 38.3 meV and 4.0 nm−1 � q � 25.0 nm−1, −3 meV
� h̄ω � 5.9 meV, where h̄ω stands for the energy transfer
and q for the modulus of the wave-vector transfer. The MARI
energy transfer resolution (i.e., the full width at half maxi-
mum �h̄ω) is determined by various factors, including the

TABLE I. Experimental conditions of the measured samples,
including sample number, title, temperature T , deuterium molar con-
centration x[D2], pressure p, total molecular density n, and integrated
proton current (IPC). Estimated statistical uncertainties are listed in
parentheses.

T x[D2] p n IPC
No. Title (K) (%) (bar) (nm−3) (μA h)

(1) Vanadium 299(1) – – – 20.1
(2) Empty cell 30.01(3) – – – 2281.7
(3) Liquid neon 30.02(3) 0.00 2.24(1) 34.43(1) 1699.0
(4) Liquid D2/Ne 30.01(3) 23(1) 4.97(3) 28.9(3) 1873.8
(5) Liquid D2/Ne 30.03(3) 49(4) 6.3(8) 24.8(5) 2363.6

incoming neutron energy, the chopper spinning frequency, and
the type of Fermi chopper used for the measurement. In our
case a G-chopper (made of alternating neutron-transmitting
slits and neutron-absorbing gadolinium slits) spinning at a
frequency of 400 Hz was employed, giving rise to �h̄ω values
at ω = 0 (i.e., the so-called elastic line resolution) ranging
from 1.70 meV at the lowest scattering angle up to 2.80 meV
at the highest one, and from 0.19 meV up to 0.33 meV, for
Ei = 40.0 meV and 7.1 meV, respectively. They have been
experimentally determined via appropriate vanadium mea-
surements. As for the �h̄ω values at ω �= 0, one has to rely
on numerical estimates obtained from routines available on
the spectrometer.

A detailed description of the measured samples (including
temperature T , deuterium molar concentration x[D2], pres-
sure p, and total molecular density n) is reported in Table I,
where the last quantity has been estimated using various
thermodynamic data sets available in the literature: Refer-
ence [14] for pure Ne, Ref. [15] for pure deuterium, and,
finally, Ref. [16] and Ref. [17] for the nonideal behavior of
the D2-Ne mixtures. In addition, the thermodynamic data
presented in the last two references have been checked and
extrapolated making use of the path-integral Monte Carlo
technique (PIMC) [18] performed in an isothermal-isobaric
ensemble in order to estimate the mixture density and its
changes along with the D2 concentration. As for the relative
concentration of ortho- and para-deuterium species, which
determines the population of the molecular rotational states,
we have always assumed that deuterium is in the “normal”
(n-D2) state in the present experiment. In n-D2 the ortho-para
population is not in thermodynamic equilibrium at T = 30 K
but still the one at room temperature: x[o-D2]/x[p-D2] = 2.
This is possible since liquid normal deuterium is metastable
at low temperature because the spontaneous para-to-ortho
conversion proceeds extremely slowly with a typical time of
the order of several weeks (see Fig. 9-1 in Ref. [19]), when
appropriate paramagnetic catalysts are not present. Neverthe-
less, the deuterium stability during the experiment has been
checked by comparing consecutive subruns of the individual
neutron scattering measurements for the mixture samples [i.e.,
Nos. (4) and (5) in Table I].

After a standard calibration measurement of an appropriate
vanadium annulus, we recorded a statistically accurate empty-
cell spectrum at low temperature. The scattering cell was a
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cylindrical container made of aluminum (namely, AA7075)
exhibiting an annular cross section with a 2.0-mm void to
be filled with the liquid sample, which in this way occupied
an interspace with an average diameter of 41.0 mm. The
internal cell volume was estimated to be 12.85 cm3, while
each metallic wall was 1.0 mm thick. As the container was
placed horizontally, its external diameter roughly coincided
with the vertical beam size (about 45 mm), while its length
(70.0 mm) was rather larger than the horizontal beam size
(also about 45 mm), so the cell was masked with boron nitride
ceramics excluding both ends which actually contained no
sample. Pure liquid neon was the first sample to be measured.
It was prepared by condensing Ne gas (4.5 grade, equiva-
lent to a 99.995% assay) into the cell kept at T = 33.0 K.
Then its temperature was slowly decreased to the value of
T = 10.0 K where the pressure of the gas handling system
reached the final value of p = 0.18 bar, with frozen neon
filling up completely the sample container. Finally, the tem-
perature was raised to T = 30.0 K, the pressure was adjusted
to p = 2.24 bar, and the measurement of sample No. (3)
began (see Table I for other details). Concerning the two
mixed samples, namely Nos. (4) and (5) as in Table I, the
measurement procedure was slightly more complex. We will
focus on sample No. (4) (x[D2] = 23%), noting that sample
No. (5) (x[D2] = 49%) was prepared and measured in quite a
similar way. Appropriate amounts of deuterium gas (99.995%
assay, 99.8% isotopic purity) and neon gas were mixed in
four buffer volumes (1 liter each) at room temperature under
a pressure of p = 3.43 bar. These values corresponded to the
exact amount of gaseous mixture needed to fill up our cell
with liquid at a working temperature of T = 30.0 K. The cell
was initially kept at T = 36.0 K and connected to the buffer
volumes through the gas handling system, then it was slowly
cooled down to T = 4.0 K, monitoring the vapor pressure and
waiting (after some hours) until it reached its final equilibrium
value of few millibars. At this stage, we were sure that the
frozen mixture filled up completely the sample container with
the correct D2 concentration, since only a negligible amount
of gaseous mixture had been left in the buffer volumes and the
gas handling system. Finally, the sample container was iso-
lated from the buffer volumes and warmed up to T = 30.0 K,
where the internal pressure reached a stable value of 4.97 bar
allowing for the start of the neutron measurement. Vapor
pressure and sample temperature were monitored all the time,
but in order to further check the sample stability (i.e., liquid
density, D2 concentration, and ortho-para composition, etc.)
the run was divided in a series of subruns which were carefully
compared to one another before being merged into a single
data set.

Raw time-of-flight data produced by the MARI measure-
ments of all samples were divided by the integrated proton
current values, purged of noisy tube contributions, normalized
to vanadium counts, and corrected for detector efficiency.
Then these data sets were transformed into h̄ω spectra and
divided by the kinematic factor

√
E f /Ei [7]. At this stage, the

spectra related to the three samples, namely Nos. (3)–(5) as in
Table I, needed to undergo the following treatments:

(i) empty container scattering removal,
(ii) sample self-shielding correction,
(iii) multiple scattering removal.

Points (i) and (ii) were carried out using numerical routines
which approximately calculated the attenuations of both the
transmitted and the scattered beam caused by the sample cell
in its two working conditions: empty and filled. An example
of this procedure can be found in Fig. 1 for neutron data
from sample No. (4) measured with Ei = 40.0 meV. The
selected wave-vector transfer values, namely q = 18.25 and
35.75 nm−1, have been chosen since, exhibiting intermediate
scattering intensities, they can be considered as two repre-
sentative cases. For the two D2/Ne mixture samples [i.e.,
Nos. (4) and (5)] the total neutron scattering cross section was
approximated by a simple linear combination of the cross
section of neon [20], σt [Ne], and that of liquid normal deu-
terium at T = 19 K [21], σt [n-D2](Ei ), as no more accurate
data were found in the literature. In this way, we have eval-
uated the following estimates of the neutron transmission
with Ei = 40.0 meV (and Ei = 7.1 meV): 94.7% (94.6%),
93.7% (92.0%), and 92.8% (89.9%) for the three liquids
forming samples Nos. (3), (4), and (5), respectively. As for
point (iii), double scattering contributions were accurately
simulated and subtracted through the analytical approach sug-
gested by Agrawal and Sears [22], where its input, i.e., the
macroscopic scattering law of the system, was estimated in the
framework of the Sköld approximation [23], in conjunction
with the modified Young-Koppel model for n-D2 [24,25] and
the Gaussian approximation [7] for the self-dynamics of Ne
and the D2 center of mass. The various physical quantities
needed for such an approach have been obtained from the
quantum simulations presented below in Sec. III. Experimen-
tal data have been finally arranged in constant-q spectra (also
known as q slices) exhibiting the following slice thickness:
�q = 2.5 nm−1 for Ei = 40.0 meV and �q = 1.0 nm−1 for
Ei = 7.1 meV. Fully processed experimental spectra, IE (q, ω),
have been plotted in Figs. 2–4 for samples Nos. (3), (4), and
(5), respectively.

III. QUANTUM DYNAMICS SIMULATIONS

In order to provide molecular dynamics spectra required
for the study of the fully processed experimental data from
samples Nos. (3)–(5), we performed four types of ap-
proximate quantum dynamics simulations, namely centroid
molecular dynamics (CMD) [26], ring polymer molecular
dynamics (RPMD) [27], Feynman-Kleinert linearized path
integral (FK-LPI) [28], and Feynman-Kleinert quasi-classical
Wigner (FK-QCW) dynamics [29], although the first method
was employed only for ancillary applications related to the
Ne and D2 self-dynamics. All four methods are based on es-
sentially exact (or very good approximations to the) quantum
mechanical static distributions, but the dynamics is invariably
classical. In CMD and RPMD the “classical isomorphism” of
PIMC, which replaces each quantum particle by a classical,
harmonically bound ring polymer of P (the Trotter number)
copies of itself, is taken literally, i.e., the polymer centers
(in the case of CMD) are allowed to evolve classically in
the force field averaged over all possible monomer positions,
whereas in RPMD it is the individual monomers whose equa-
tions of motion are integrated. Also, in CMD observables and
correlation functions are evaluated at the polymer centers,
whereas in RPMD averages over the observables’ values at
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(a)
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(e) (f)

(d)

(b)    

FIG. 1. Examples of the data reduction procedure explained in the main text and here applied to sample No. (4), measured with Ei =
40.0 meV: panels (a) and (b) describe the removal of the empty cell signal (red line and error bars) from the sample-plus-cell raw spectrum
(black line and error bars); panels (c) and (d) show the subtraction of the simulated multiple scattering signal (green line) from the processed
spectrum (black line and error bars); and panels (e) and (f) compare the simulated incoherent spectrum Iinc(q, ω) from D2 (red line) with the
experimental one, IE (q, ω) (blue line and error bars), containing both coherent and incoherent components. Panels (a), (c), and (e) and (b), (d),
and (f) refer to q values equal to 18.25 and 35.75 nm−1, respectively.

the monomer positions are taken. By contrast, in FK-LPI
and FK-QCW time correlation functions are calculated along
classical N-body “side” trajectories whose initial conditions
are sampled from the Wigner transform of the Boltzmann
operator. In FK-LPI the corresponding “center” trajectory is
obtained from a Monte Carlo random walk, while in FK-QCW
it is the result of a (classical) molecular dynamics simulation
in phase space using the local Feynman-Kleinert effective
potential [30] as a guiding function. Moreover, in FK-LPI
the side trajectories are propagated independently under the
influence of the classical Hamiltonian, whereas in FK-QCW
they are coupled to, and “orbit” around, the center trajectory.

The first two techniques (i.e., CMD and RPMD) are com-
putational tools able to provide good approximations of the
Kubo-transformed correlation functions in many-body sys-
tems exhibiting weak or moderate quantum effects at T > 0,
but both suffer the limitation that these correlation functions
may include only operators which are linear either in the
coordinates or in the momenta of the particles composing the
system. It is worth recalling that the Kubo transform [31],
λ

(K )
AB (t ), of a time correlation function λAB(t ), involving quan-

tum operators Â and B̂, is given by:

λ
(K )
AB (t ) = 1

β

∫ β

0
dzλAB(t + ih̄z), (1)

where β = 1/(kBT ) and kB is the Boltzmann constant. As a
consequence, CMD and RPMD are not recommended for the
estimate of either the intermediate scattering function F (q, t )
or the self-intermediate scattering function Fs(q, t ) [7], which
are generally involved in the simulation of neutron scattering
spectra, unless the value of the wave vector q is so low that the
dependence on the particle coordinates can be approximately
linearized. On the other hand, CMD and RPMD are suitable
for the computation of the Kubo-transformed velocity auto-
correlation function, c(K )(t ), which can be used to evaluate
Fs(q, t ) via the well-assessed Gaussian approximation [32].
A different approach to quantum time correlation functions
is represented by the so-called classical Wigner models [33],
in which the calculation is divided into two separate tasks,
namely the generation of initial conditions and the propaga-
tion of the dynamics, where the former is done through the
Wigner phase-space distribution, while the latter is approxi-
mated as classical. A conceptually as well as computationally
convenient implementation of the classical Wigner models
is the FK-LPI approach, which provides the real part of the
quantum time correlation functions, rather than the Kubo
transformed ones, and is not prone to the operator limitations
affecting both RPMD and CMD. In addition, it rigorously
complies with the scattering particle recoil [7], appearing
in this way particularly suitable for lightweight masses like
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FIG. 2. Experimental neutron spectra (fully processed) for sam-
ple No. (3) (pure Ne, T = 30.02 K as in Table I) plotted for selected
q values. Curves have been vertically shifted for graphic reasons.
Panel (a) contains data measured with an incoming neutron energy
Ei = 40.0 meV, from q = 15.75 nm−1 (bottom) to 58.25 nm−1 (top),
while panel (b) shows those obtained with Ei = 7.1 meV, from
q = 19.0 nm−1 (bottom) to 26.0 nm−1 (top).

hydrogen, deuterium, and helium. Finally, as far as the fourth
quantum dynamics technique (i.e., FK-QCW) is concerned,
this is a new approach also related to the classical Wigner ap-
proximation [33] and, although being computationally rather
more demanding, it too does not suffer the mentioned linear
operator limitation of RPMD and CMD. For this reason, both
FK-LPI and FK-QCW have been already used to calculate the
collective properties encapsulated in the F (q, t ) of semiquan-
tum liquids such as neon [34], as well as pure hydrogen and
deuterium [35].

Given this scenario, we used CMD to compute the c(K )
α (t )

for our samples [and from this, via the Gaussian approxima-
tion, Fs,α (q, t )], RPMD mainly for the low-q limit of Fα,β (q, t )
(i.e., q up to 27–30 nm−1), and, finally, FK-LPI and FK-
QCW (specifically, version FK-QCW(2) of Smith et al. [29])
for the full q range of the same physical quantities, where
α and β can represent either a Ne atom or a D2 center of
mass (see Appendix for further details). In addition, stan-
dard PIMC simulations have been carried out in order to
check the consistency of the quantum dynamic simulations
by monitoring the partial static structure factors, Sα,β (q), and
the single-particle mean kinetic energies, 〈EK〉α . All the men-
tioned calculations have been performed at T = 30.0 K and at
densities between 21.41 nm−3 < n < 34.44 nm−3, depending
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FIG. 3. Experimental neutron spectra (fully processed) for sam-
ple No. (4) (D2/Ne mixture, x[D2] = 23%, T = 30.01 K as in
Table I) plotted for selected q values. Curves have been vertically
shifted for graphic reasons. Panel (a) contains data measured with
an incoming neutron energy Ei = 40.0 meV, from q = 8.25 nm−1

(bottom) to 50.75 nm−1 (top), while panel (b) shows those obtained
with Ei = 7.1 meV, from q = 6.0 nm−1 (bottom) to 24.0 nm−1 (top).

on the selected x[D2] value (see Table II for details). CMD
has been performed in the isokinetic ensemble, RPMD in a
canonical ensemble with Langevin thermostats, and in the
Feynman-Kleinert methods initial conditions for the trajec-
tories were sampled from distributions corresponding to the
nominal temperature T , but the (classical) trajectories them-
selves were not thermostatted but allowed to evolve freely. As
for the total number of molecules N = N[D2] + N[Ne], we
chose N = 256 for CMD and RPMD, while for FK-LPI and
FK-QCW, which are more computationally demanding, simu-
lations were restricted to smaller particle numbers (N = 108).
Consequently, the accessible wave vectors (i.e., those compat-
ible with the cubic simulation volume) were different in the
cases N = 108 and N = 256. Interparticle interactions have
been taken to be pairwise additive according to the following
scheme:

(a) Those between two Ne atoms were represented by
a spherically symmetric Lennard-Jones potential using the
Morales and Nuevo parametrization [36], which proved to be
particularly effective for the H2-Ne liquid mixtures [9,18].

(b) Those between a D2 center of mass and a Ne atom
were modeled by the spherical average of the orientation-
dependent semiempirical potential developed by Faubel
et al. [37], as suggested by Challa and Johnson [18] in the
case of H2-Ne liquid mixtures.
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FIG. 4. Experimental neutron spectra (fully processed) for sam-
ple No. (5) (D2/Ne mixture, x[D2] = 49%, T = 30.03 K as in
Table I) plotted for selected q values. Curves have been vertically
shifted for graphic reasons. Panel (a) contains data measured with
an incoming neutron energy Ei = 40.0 meV, from q = 8.25 nm−1

(bottom) to 53.25 nm−1 (top), while panel (b) shows those obtained
with Ei = 7.1 meV, from q = 6.0 nm−1 (bottom) to 24.0 nm−1 (top).

(c) Those between two D2 centers of mass were de-
scribed by the well-established spherically symmetric Silvera-
Goldman potential [38].

While our velocity correlation functions were obtained
from 10 CMD runs of 500 ps each at every thermodynamic
state, all RPMD, FK-LPI, and FK-LPI results represent av-
erages over 10 000 trajectories of 10 ps. In order to be
consistent, an identical Trotter number of P = 32 was used for
PIMC, CMD, and RPMD, and the number of “side trajecto-
ries” in FK-LPI and FK-QCW was also (arbitrarily) set to that
number. Further computational details of our implementation
of CMD and RPMD, as applied to semiquantum systems
similar to the present ones, have been recently provided in
Refs. [9] and [39], respectively, while concerning the two
Feynman-Kleinert approaches, we have essentially followed
the procedures reported in Ref. [34] for liquid neon and in
Ref. [35] for liquid hydrogen and deuterium. In addition, a
more complete description of these two techniques as well as
the numerical routes used to implement them can be found in
a recent paper on the liquid deuterium dynamics [10]. What
is important to stress is the difference between the output
of RPMD on one side and that of FK-LPI and FK-QCW
on the other. In the case of a binary mixture the first tech-
nique produces three physical quantities, F (K )

α,β (q, t ), which
approximate the Kubo transforms of the partial intermediate
scattering functions, Fα,β (q, t ). So the standard approach to
work out the partial dynamic structure factors, Sα,β (q, ω), was
the following [31]:

Sα,β (q, ω) = h̄ω

2kBT

[
coth

(
h̄ω

2kBT

)
+ 1

] ∫ ∞

−∞

dt

2π

× exp(−iωt )F (K )
α,β (q, t ). (2)

On the other hand, the last two techniques provide the (ap-
proximate) real parts of the intermediate scattering functions,

TABLE II. Thermodynamic conditions of the liquid samples simulated at T = 30.00 K and other details, including simulation number,
total number of particles N , number of D2 molecules N[D2], deuterium molar concentration x[D2], total molecular density n, type of technique
used, and mean kinetic energy 〈EK 〉 from PIMC for D2 center of mass and Ne.

x[D2] n 〈EK 〉D2 〈EK 〉Ne

No. N N[D2] (%) (nm−3) PIMC CMD RPMD FK-LPI FK-QCW (K) (K)

(i) 108 0 0.00 34.44 Y – – Y Y – 54.14
(ii) 108 16 14.81 30.71 Y – – – Y 72.57 52.64
(iii) 108 27 25.00 28.60 Y – – Y Y 69.45 51.85
(iv) 108 38 35.19 26.80 Y – – – Y 67.14 51.22
(v) 108 49 45.37 25.28 Y – – Y Y 65.35 50.65
(vi) 108 54 50.00 24.67 Y – – Y Y 64.63 50.43
(vii) 108 59 54.63 24.12 Y – – Y Y 64.04 50.18
(viii) 108 81 75.00 22.33 Y – – – Y 62.04 49.49
(ix) 108 108 100.00 21.41 Y – – Y Y 60.81 –
(I) 256 0 0.00 34.44 Y Y Y – – – 54.27
(II) 256 38 14.84 30.71 Y Y Y – – 72.40 52.70
(III) 256 64 25.00 28.60 Y Y Y – – 69.52 52.04
(IV) 256 90 35.16 26.80 Y Y Y – – 67.09 51.29
(V) 256 115 44.92 25.34 Y Y Y – – 65.48 50.81
(VI) 256 141 55.08 24.07 Y Y Y – – 63.98 50.24
(VII) 256 192 75.00 22.33 Y Y Y – – 62.10 49.54
(VIII) 256 256 100.00 21.41 Y Y Y – – 60.90 –
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Re[Fα,β (q, t )], and the relationship to obtain the dynamic structure factors [40] becomes

Sα,β (q, ω) = exp

(
h̄ω

2kBT

)
sech

(
h̄ω

2kBT

) ∫ ∞

−∞

dt

2π
exp(−iωt )Re[Fα,β (q, t )]. (3)

As for the self-dynamic structure factors Ss,α (q, ω), the expression provided by the Gaussian approximation [32] is

Ss,α (q, ω) = x[α]
∫ ∞

−∞

dt

2π
exp(−iωt ) exp

(
− h̄q2

2Mα

∫ ∞

0

fα (ε)

ε

{
coth

(
h̄ε

2kBT

)
[1 − cos(εt )] − i sin(εt )

}
dε

)
, (4)

where x[α] is the concentration of the α species, Mα is its
molecular mass, and fα (ε) is a spectral function directly re-
lated to the velocity correlation function c(K )

α :

fα (ω) = 2

c(K )
α (0)

∫ ∞

−∞

dt

2π
exp(−iωt )c(K )

α (t ). (5)

Once Sα,β (q, ω) and Ss,α (q, ω) have been obtained, the sim-
ulated neutron scattering spectra I (q, ω) can be worked
out after splitting them into their coherent and incoherent
components: I (q, ω) = Icoh(q, ω) + Iinc(q, ω) and taking into
account the diatomic structure of the D2 molecule. In our
context the coherent component is given by:

Icoh(q, ω) = [
(bc[Ne])2SNe,Ne(q, ω)

+ 2bc[Ne]
√

u(q)SNe,D2 (q, ω)

+ u(q)SD2,D2 (q, ω)
] ⊗ Rq(ω), (6)

where bc[Ne] is the coherent scattering length for natural
neon [20], u(q) is the so-called intermolecular cross section
for deuterium [24,25], and Rq(ω) represents the instrumen-
tal energy transfer resolution which is convoluted with the
simulation spectra. A good approximation for u(q) is simply
given by u(q) ≈ [2bc[D] j0(qd0/2) exp(−q2〈u2〉v/3)]2, where
bc[D] is the coherent scattering length for D, j0(x) is a spher-
ical Bessel function of zeroth order, d0 is the D2 interatomic
distance, and 〈u2〉v is the atomic vibrational mean-square dis-
placement in D2, defined, e.g., in Ref. [25]. The incoherent
component, considering the tiny value of the Ne incoher-
ent scattering cross section [20], can be safely approximated
by the deuterium contribution alone, which, together with
the self-dynamics of the D2 centers of mass, also contains
the details of the n-D2 rotational dynamics. Making use of the
mentioned modified Young-Koppel model [24,25], one can
decouple these two dynamic terms and write:

Iinc(q, ω) = {
[ṽ(q, ω) − u(q)δ(ω)] ⊗ Ss,D2 (q, ω)

} ⊗ Rq(ω),
(7)

where ṽ(q, ω), which is the Fourier transform of the time-
dependent intramolecular cross section [24,25] for n-D2,
v(q, t ), can be represented as:

ṽ(q, ω) =
∑
J,J ′

xJ fJ,J ′ (q)δ(ω − ωJ,J ′ ), (8)

with J and J ′ being the initial and final rotational quantum
number, respectively, and where xJ is the concentration of
the rotational population labeled by the quantum number
J , fJ,J ′ (q) is the matrix element for the J → J ′ transition,
and h̄ωJ,J ′ is the energy jump for such a transition. The

energy-transfer integral of Iinc(q, ω) can be evaluated analyti-
cally [24,25], and a good approximation for normal deuterium
is given by:

Iinc(q) =
∫ ∞

−∞
Iinc(q, ω)dω = v(q, 0) − u(q)

=
[

2(bi[D])2 + 2(bc[D])2 + 2(bc[D])2 j0(qd0)

× exp

(
−4

3
q2〈u2〉v

)]
− u(q), (9)

where bi[D] is the incoherent scattering length for D [20]. As
for the energy-transfer integral of Icoh(q, ω), dubbed Icoh(q),
from Eq. (6) one readily obtains:

Icoh(q) = (bc[Ne])2SNe,Ne(q) + 2bc[Ne]
√

u(q)SNe,D2 (q)

+ u(q)SD2,D2 (q), (10)

which contains only static structural data. Using the men-
tioned PIMC estimates of Sα,β (q), we can now calculate the
neutron-simulated structure factor I (q), given by the sum of
Icoh(q) and Iinc(q), for the three samples Nos. (3)–(5) (see
Fig. 5, where an example for the two separate components,
Icoh(q) and Iinc(q), is also reported).

IV. DISCUSSION

Once the fully processed neutron scattering spectra,
IE (q, ω), for samples Nos. (3)–(5) have been obtained, the
first issue to be tackled was their normalization, since each
data set contained an unknown instrumental constant Ne (mak-
ing a total of six values considering three samples and the
two Ei options) such that IE (q, ω) = NeI (q, ω). To this aim,
the knowledge of the simulated neutron scattering structure
factors, I (q), was exploited. However, dealing with the two
mixtures, some caution was needed, since the ω-integrated
incoherent component, Iinc(q), containing D2 rotovibrational
contributions, might extend well beyond the spectral range
probed by our neutron measurements, especially at large q val-
ues. In order to circumvent this problem, individual Iinc(q, ω)
spectra were simulated using CMD in conjunction with the
Gaussian approximation and integrated in the ω range actually
accessible to the spectrometer. Using this approach, a better
agreement between experimental and simulated data has been
obtained (see Fig. 5 for data with Ei = 40.0 meV) allowing
for a reliable data normalization procedure. Subsequently, for
samples Nos. (4) and (5), the Iinc(q, ω) contributions were
subtracted from the normalized experimental spectra, giving
rise to experimental estimates of Icoh(q, ω), dubbed I (E )

coh (q, ω)
in what follows.

054603-7



DANIELE COLOGNESI et al. PHYSICAL REVIEW E 105, 054603 (2022)

FIG. 5. The ω-integrated experimental spectra, IE (q), reported as
solid symbols, together with the corresponding PIMC-simulated neu-
tron structure factors, I (q), multiplied for appropriate scale factors
(full lines). Data associated to sample No. (3) are plotted in blue
with triangles, those to sample No. (4) are plotted in red with circles,
and those to sample No. (5) are plotted in green with squares. Dashed
lines show that at high q values the D2 incoherent component extends
out of the experimentally accessible ω range (see the main text for
details). In the inset the PIMC-simulated neutron structure factor,
I (q), for sample No. (5) is divided into its two components: coherent,
Icoh(q), and incoherent, Iinc(q). In addition, the RPMD evaluation of
Icoh(q) is also reported as magenta dots.

A. Comparison between experimental and simulated
coherent spectra

Prior to a physical analysis of the coherent spectra [both
experimental I (E )

coh (q, ω) and simulated Icoh(q, ω)], it is worth-
while to establish a direct comparison between these two
groups of data sets, starting from the simple case of pure neon
which corresponds to the experimental sample No. (3) (see
Table I), and to simulations Nos. (i) and (I) (see Table II)
for FK-LPI–FK-QCW and RPMD, respectively. Constant-
q coherent experimental spectra taken at Ei = 40 meV are
compared, for selected wave-vector transfer values, with the
results of FK-LPI, FK-QCW, and RPMD simulations in
Fig. 6. Although the agreement between neutron scattering
data and quantum simulations is globally quite good for all
three techniques, one can notice that it slightly worsens as
q increases beyond 35–40 nm−1. In addition, a comparison
among the simulated data shows that RPMD seems to perform
better than FK-QCW in the high-q spectral region, while FK-
LPI behaves in this region definitely better than the other two
methods, as revealed by an analysis of the reduced chi-square
(χ2

r ) values: Averaging χ2
r values for q > 45 nm−1, one finds

χ2
r � 1.50 (FK-LPI) to be compared with χ2

r � 3.63 (RPMD)
and 9.48 (FK-QCW).

A careful inspection of the three simulated spectra showed
that the main reason of this different high-q behavior is re-
lated to the spectral recoil and the first-moment sum rule [7]
which, as we have mentioned earlier, is exactly reproduced by
the FK-LPI technique. Nevertheless, the advantage of RPMD

FIG. 6. Coherent experimental spectra, I (E )
coh (q, ω), from sample No. (3), pure Ne, for Ei = 40.0 meV are reported for selected q values as

black empty circles. Corresponding simulated data, Icoh(q, ω) (see main text for details) are plotted as lines: blue for RPMD, green for FK-LPI,
and red for FK-QCW.
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FIG. 7. Coherent experimental spectra, I (E )
coh (q, ω), from sample No. (3), pure Ne, for Ei = 7.1 meV are reported for selected q values as

black empty circles. Corresponding simulated data, Icoh(q, ω) (see main text for details) are plotted as lines: blue for RPMD, green for FK-LPI,
and red for FK-QCW.

over FK-QCW is somehow unexpected, since, as we have
mentioned above, the former method should be used mainly
for low values of q, surely not for those beyond the first
minimum of the static structure factor. For example, in pure
liquid deuterium it has been recently verified that the RPMD
FD2,D2 (q, 0) compares well with the PIMC SD2,D2 (q) up to q =
20 nm−1, as shown in Fig. 4 of Ref. [10]. However, our posi-
tive findings about RPMD simulations might be explained by
the fact that the spectra used in the present context have been
corrected for the shortcomings of such a simulation technique
to produce accurate static structure factors (at medium and
high values of q) by applying scaling constants to the various
spectra in order to reproduce the corresponding PIMC results.
The magnitude of this effect can be easily appreciated in the
inset of Fig. 5. An analogous spectral comparison for the same
sample, but measured at Ei = 7.1 meV (and so exhibiting bet-
ter energy transfer resolution but worse statistical accuracy), is
presented in Fig. 7 and, although spanning a narrower q range,
confirms the good agreement between neutron scattering data
and quantum simulations reported above. However, in this
case, which is related to the region roughly corresponding
to the so-called de Gennes narrowing [41], FK-LPI seems
to perform slightly worse than the other two methods, since
χ2

r � 1.46 (FK-LPI) is larger than χ2
r � 1.02 (FK-QCW)

and 0.98 (RPMD), averaging χ2
r over the 21 nm−1 < q <

27 nm−1 range.
Moving to the low D2-concentration mixture, namely

sample No. (4), we have reported constant-q coherent exper-
imental spectra taken at Ei = 40.0 and 7.1 meV in Figs. 8
and 9, respectively. Here neutron scattering data are again
compared, for selected wave-vector transfer values, with the
results of FK-LPI, FK-QCW, and RPMD simulations. How-
ever, differently from the pure neon case, the agreement
between the experiment on one side and the last two quantum
simulations on the other is not always completely satisfactory,
both at low q and high q values, while in the intermediate
wave-vector transfer region [i.e., close to the first maximum
of Icoh(q)] it is reasonably good. As for the differences be-
tween the FK-QCW and RPMD results, like in the previous
case, they are negligible at low q values, becoming more

pronounced for q > 30 nm−1, where, quite unexpectedly, the
latter technique seems to behave slightly better than the for-
mer as far as the agreement with the neutron scattering data
is concerned: χ2

r � 22.76 (FK-QCW) compared with χ2
r �

13.19 (RPMD).
On the other hand, FK-LPI provides the best description of

the neutron data taken at Ei = 40.0 meV, except in the region
roughly corresponding to the de Gennes narrowing (namely,
18 nm−1 < q < 24 nm−1), where the spectra are expected to
shrink. Here FK-QCW and RPMD outperform FK-LPI, as
already visible in Fig. 8 and clearly confirmed by the exper-
imental spectra taken with Ei = 7.1 meV in Fig. 9, since the
FK-LPI peaks appear slightly too broad. Here, averaging χ2

r
over the 18 nm−1 < q < 26 nm−1 range, one observes χ2

r �
2.41 (FK-LPI), to be contrasted with χ2

r � 1.87 (RPMD) and
1.84 (FK-QCW).

Dealing with the high D2-concentration mixture, namely
sample No. (5), we have plotted constant-q coherent exper-
imental spectra taken at Ei = 40.0 and 7.1 meV in Figs. 10
and 11, respectively, together with the corresponding RPMD,
FK-LPI, and FK-QCW simulations. Although the larger
amount of D2 with respect to sample No. (4) has the ef-
fect of substantially broadening all the spectral features, the
qualitative trends of the comparison between experiment on
one side, and RPMD, FK-LPI, and FK-QCW on the other,
are totally confirmed: The agreement between experimental
spectra and RPMD data is not always completely satisfactory,
both at low q and high q values, while at intermediate wave-
vector transfers, close to the first maximum of Icoh(q), it is
good. On the contrary, FK-LPI is superior both at low q and
high q values, but it shows some discrepancies in the region
near the de Gennes narrowing up to about q = 25 nm−1. For
example, averaging χ2

r for q > 30 nm−1, one observes that
χ2

r � 8.25 for this technique and about 42.28 for RPMD (at
Ei = 40.0 meV). As for FK-QCW, at low q values its spec-
tra are almost indistinguishable from the RPMD ones, while
increasing the wave-vector transfer a certain lack of recoil
becomes evident and the former technique performs rather
poorly.
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FIG. 8. Coherent experimental spectra, I (E )
coh (q, ω), from sample No. (4), low D2-concentration mixture, for Ei = 40.0 meV are reported

for selected q values as black empty circles. Corresponding simulated data, Icoh(q, ω) (see main text for details) are plotted as lines: blue for
RPMD, green for FK-LPI, and red for FK-QCW.

B. Further spectral analysis: Longitudinal current-current
time correlation functions

A further analysis of the mentioned coherent spectra, both
experimental and simulated, can be performed through the
study of the longitudinal current-current time correlation (LC-
CTC) function [41] and its spectrum, c̃L(q, ω), which can
provide some approximate, although quite useful, informa-
tion on the dispersion of collective excitations in disordered
systems. This task is accomplished by investigating the ω

position of the maximum of c̃L(q, ω) and its variation with
q, where the LCCTC spectrum is simply proportional to ω2

times the scattering law (even in quantum systems [42]):

c̃L(q, ω) = ω2

q2
S(q, ω). (11)

This formula can be easily implemented in the case of sample
No. (3), consisting of pure neon, both for simulated (i.e.,
RPMD, FK-QCW, and FK-LPI) and experimental data. The
latter are reported in Fig. 12 for some selected values of q.
Results for the LCCTC spectrum analysis are shown in Fig. 13
where the ω maxima of c̃L(q, ω), dubbed d , are reported as
a function of q, giving rise to various dispersion curves of
d (q) (named simply “dispersion curves” in the rest of the
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FIG. 9. Coherent experimental spectra, I (E )
coh (q, ω), from sample No. (4), low D2-concentration mixture, for Ei = 7.1 meV are reported for

selected q values as black empty circles. Corresponding simulated data, Icoh(q, ω) (see main text for details) are plotted as lines: blue for
RPMD, green for FK-LPI, and red for FK-QCW.
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FIG. 10. Coherent experimental spectra, I (E )
coh (q, ω), from sample No. (5), high D2-concentration mixture, for Ei = 40.0 meV are reported

for selected q values as black empty circles. Corresponding simulated data, Icoh(q, ω) (see main text for details) are plotted as lines: blue for
RPMD, green for FK-LPI, and red for FK-QCW.

paper). These curves exhibit the typical behavior of a simple
liquid, and the agreement among the three simulated data sets
is generally good even though it slightly deteriorates at high
q values, where, not surprisingly considering what we have
seen above, the RPMD dispersion curve lies in between those
from FK-QCW and FK-LPI. As for the neutron scattering
d (q), one can observe that the corresponding dispersion
curve is satisfactorily described by the simulated ones, espe-
cially by the FK-LPI curve which correctly reproduces the
high-q trend, too. In this respect, it is worth noting that all
these four LCCTC spectra, c̃L(q, ω), are evaluated directly via

Eq. (11) from the respective Ne dynamic structure factors.
But while the three simulated SNe,Ne(q, ω) are directly the
Fourier transforms of the quantum technique outputs exhibit-
ing only a minute ω broadening (due to the finite time cutoff
on the simulated correlation functions), the neutron scattering
LCCTC spectra show a different situation: The experimen-
tal dynamic structure factors actually contain a convolution
with the instrumental energy resolution function, as shown in
Eq. (6), which does not commute with the product with ω2. In
other words, the experimental resolution-broadened dynamic
structure factor, strictly speaking, does not give rise to an
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FIG. 11. Coherent experimental spectra, I (E )
coh (q, ω), from sample No. (5), high D2-concentration mixture, for Ei = 7.1 meV are reported

for selected q values as black empty circles. Corresponding simulated data, Icoh(q, ω) (see main text for details) are plotted as lines: blue for
RPMD, green for FK-LPI, and red for FK-QCW.

054603-11



DANIELE COLOGNESI et al. PHYSICAL REVIEW E 105, 054603 (2022)

FIG. 12. Generalized longitudinal current-current time correlation spectra, g̃L (q, ω), derived from experimental neutron data with Ei =
40.0 meV, are reported for selected q values as follows: blue triangles for sample No. (3), red circles for sample No. (4), and green squares for
sample No. (5). In the first case, related to pure Ne, g̃L (q, ω) coincides with the standard longitudinal current-current time correlation spectrum,
c̃L (q, ω).

exact resolution-broadened c̃L(q, ω), especially in the case of
Ei = 40.0 meV, where the broadening is larger. However, as
suggested by the results plotted in Fig. 13, it seems that this
effect is not relevant in the present context. The hydrody-
namic low-q behavior of d (q), obtained from the speed of
sound data reported in Ref. [16](namely, c = 544.5 m/s) is
also plotted in Fig. 13, where one can observe a fairly good
matching between simulations and hydrodynamic slope, even
though there is no evidence of positive dispersion, which in
liquid neon [43] is to be expected. However, as pointed out
earlier, the study of the liquid Ne and Ne-D2 hydrodynamics
is outside the scope of the present work, and so we are not
going to further discuss this point.

Moving to the two D2-Ne mixtures, namely samples Nos.
(4) and (5), one has to notice that Eq. (11) must be modified

as follows:

c̃L(q, ω) = ω2

q2

2∑
α=1

2∑
β=1

Sα,β (q, ω), (12)

where α and β can represent either a Ne atom or a D2 cen-
ter of mass. However, this formula is applicable only to the
simulated spectra since the experimental ones appear in the
form of Eq. (6), where the partial components are weighted
by the respective neutron cross sections and lumped together.
So, in the neutron scattering case, the only accessible quantity
is the generalized longitudinal current-current time correla-
tion spectrum, g̃L(q, ω), which includes in its definition the
appropriate neutron scattering lengths:

g̃L(q, ω) =
(

ω

q

)2 (bc[Ne])2SNe,Ne(q, ω) + 2bc[Ne]
√

u(q)SNe,D2 (q, ω) + u(q)SD2,D2 (q, ω)

(bc[Ne])2 + 2bc[Ne]
√

u(q) + u(q)
. (13)
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FIG. 13. Dispersion curves d (q) derived from the positions
of the maxima of the longitudinal current-current time correlation
spectra, c̃L (q, ω), obtained according to Eq. (11) in the case of
sample No. (3), i.e., pure Ne. Red line represents d (q) for the
FK-QCW simulated spectra, while blue and green lines stand for
the dispersion curves from RPMD and FK-LPI, respectively. As
for the experimental results, full squares (with error bars) are de-
rived from neutron scattering data measured with Ei = 40.0 meV,
and empty circles (with error bars) from those measured with Ei =
7.1 meV. The hydrodynamic low-q behavior from speed of sound
data in Ref. [16] is also represented as a black dotted straight line.

Obviously, in the case of pure Ne c̃L(q, ω) and g̃L(q, ω)
coincide. From the various estimates of g̃L(q, ω), includ-
ing RPMD, FK-QCW, FK-LPI, and neutron data with Ei =
40.0 meV (see Fig. 12 for the last technique), it is still possible
to study the ω position of the maximum of each generalized
LCCTC spectrum and its variation with q, in order to deter-
mine the corresponding six pseudodispersion curves pd(q),
reported in Fig. 14. One can immediately note that, once a
technique is selected (either RPMD, or FK-QCW, or FK-LPI,
or neutron scattering), the similarity between the data sets
belonging to the two different mixtures is striking. Moreover,
and not surprisingly due to the larger neutron scattering visi-
bility of D2 with respect to Ne, the pd(q) curves appear rather
dissimilar from the neon dispersion curve derived from the
maxima of c̃ (l )

L (q, ω) (see Fig. 13). As for the comparisons
among the RPMD, FK-QCW, FK-LPI, and neutron scattering
pd(q) curves, one can observe that these are less satisfactory
than in the pure Ne case and, as expected from what has been
found in Sec. IV A, worsen at high q values. However, it is also
worth noticing that the experimental pd(q) curves often lie in
between the RPMD and the FK-LPI ones, while the FK-QCW
results are hardly distinguishable from those derived from
RPMD.

Going back to Eq. (12), one could in principle extract the
plain d (q) from the quantum simulation results for samples
Nos. (4) and (5). However, one immediately realizes that these
dispersion curves turn out to be quite different from the pure
Ne case, as the c̃L(q, ω) spectra often appear broad or strongly
asymmetric and, sometimes, they even show a bimodal char-
acter with a main peak preceded (or, more rarely, followed) by

FIG. 14. Pseudodispersion curves, pd(q), derived from the po-
sitions of the maxima of the generalized longitudinal current-current
time correlation spectra, g̃L (q, ω), obtained according to Eq. (13) in
the case of sample No. (4) (full lines and full squares with error bars)
and No. (5) (dashed lines and empty circles with error bars). Blue
lines represent curves from the RPMD simulated spectra, green and
red lines stand for those from FK-LPI and FK-QCW, respectively,
while symbols with error bars stand for the corresponding experi-
mental results measured with Ei = 40.0 meV.

a smaller one. All these findings reveal the presence of more
than one contribution to the LCCTC, as clearly pointed out
by González et al. [44] in the analysis of their simulations
of Li-Na liquid mixtures, where three distinct components of
c̃L(q, ω) have been identified. Thus, also in our case, where
the mass ratio D2-Ne is even larger than the Li or Na one, all
the three LCCTC components,

c̃L α,β (q, ω) = ω2

q2
Sα,β (q, ω), (14)

will be required. Needless to say, c̃L α,β (q, ω) always coincides
with c̃L β,α (q, ω). Naturally, these three contributions could be
separately studied and their respective maxima extracted as a
function of q and x[D2]. However, the cross terms in Eq. (14),
i.e., those with α �= β, are not positive functions of ω, and so
the positions of their extrema might be misleading. For this
reason, it is more convenient to reduce the number of distinct
contributions to the LCCTC of samples Nos. (4) and (5) by
attributing them to the lightweight masses, c̃ (l )

L (q, ω), and the
heavy masses, c̃ (h)

L (q, ω), according to the following scheme:

c̃ (l )
L (q, ω) = ω2

q2

{
SD2,D2 (q, ω) + 2x[D2]SNe,D2 (q, ω)

}
,

c̃ (h)
L (q, ω) = ω2

q2

{
2x[Ne]SNe,D2 (q, ω) + SNe,Ne(q, ω)

}
, (15)

with the former dominated by the D2 centers of mass and the
latter by the Ne atoms. The partial-LCCTC maxima analy-
sis in terms of lightweight and heavy masses is summarized
in Fig. 15, where the effects of the Ne-D2 mixing on the
d (q) curves are clearly highlighted through a comparison
with the RPMD simulations of the two pure liquid systems.
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FIG. 15. Position of the maxima of the lightweight, c̃ (l )
L (q, ω),

and heavy, c̃ (h)
L (q, ω), longitudinal current-current time correlation

spectra from RPMD simulations are reported as dashed lines and
full lines, respectively. Both types of red lines are related to sample
No. (5), both types of blue lines to sample No. (4); while the green
full line refers to sample No. (3) and the black dashed line to pure
liquid D2 [i.e., simulation No. (VIII) in Table II]. The adimensional
physical quantity on the abscissa is the reduced wave-vector transfer,
qn−1/3. The green dot-dashed line is the limiting c̃ (l )

L (q, ω) in case of
an infinite D2 dilution (see main text for details), while the magenta
dotted line represents the free recoil of the D2 center of mass eval-
uated for the density of sample No. (4). The hydrodynamic low-q
behavior from speed of sound data in Ref. [16] is also represented
as a cyan dot-dashed straight line for sample No. (4), which almost
coincides with the corresponding estimate for sample No. (5).

In order to make this comparison more straightforward, we
have replaced q with the adimensional reduced wave vec-
tor qn−1/3, which corrects for the density changes induced
by varying the concentration x[D2]. As for the heavy-mass
component, one sees a gradual reduction of the frequency
values as the deuterium concentration grows and the system
expands, together with a modest change in the dispersion
curve shape with peaks and troughs becoming slightly less
pronounced. These findings, mainly related to the Ne atoms
dynamics, are not surprising and can be easily explained by
the system density changes from n = 24.8 nm−3 [i.e., sam-
ple No. (5)] up to n = 34.4 nm−3 [i.e., sample No. (3)], as
shown in Table I. On the contrary, for the lightweight-mass
component, the modifications induced by the presence of Ne
look more relevant and the corresponding d (q) curves depart
from the pure D2 case in a substantial way, to such an extent
that in sample No. (4) the first minimum of the dispersion
curve is barely visible, revealing some resemblance to an
opticlike mode. However, as qn−1/3 grows larger than 12-
13, the two mixture lightweight-mass dispersion curves seem
largely dominated by the D2 center-of-mass recoil and exhibit
a typical parabolic trend, which is usually associated with an
(almost) free-particle dynamics. As for the overall frequency
magnitudes of the lightweight-mass dispersion curves, these,
too, follow the system density changes from n = 21.4 nm−3

(i.e., pure D2) up to n = 28.9 nm−3 [i.e., sample No. (4)], as

shown in Tables I and II. The hydrodynamic low-q behavior
of d (q), obtained interpolating the scanty data for the Ne-D2

speeds of sound contained in Ref. [16], is also plotted in
Fig. 15 for both samples No. (4) and (5), which actually turned
out to be hardly distinguishable from each other: c = 429.6
and 422.6 m/s, respectively. Unsurprisingly, one can observe
a good matching between the heavy-mass component simula-
tion and the hydrodynamic slope, at least as far as sample No.
(4) is considered, even though, similarly to the pure Ne case,
no positive dispersion is detectable in our data.

At this stage it is possible to set up a comparison between
the present findings for the d (q) of the lightweight masses,
a direct expression of the deuterium collective dynamics, and
the aforementioned CMD spectra of the velocity autocorrela-
tion function, fD2 (ω), which, on the contrary, are related to the
self-dynamics of the D2 centers of mass contained in the liquid
mixtures. However, before doing so, it is important to bear
in mind some subtle differences between lightweight-mass
d (q) and fD2 (ω), which are less obvious than the simple
contrast between collective and single-particle dynamics. The
former physical quantity also contains, as clearly shown in
Eq. (15), a part which is due to the dynamic interplay between
D2 and Ne and, moreover, extends over a large q range so that
it cannot be simply understood as the dispersion of the single
longitudinal pseudophonons present in the system. In this
context, it is useful to define the first pseudo-Brillouin zone of
the liquid system, as a sphere whose radius is roughly given by
qsdp/2, with qsdp being the wave-vector transfer value pertain-
ing to the so-called first sharp diffraction peak of the static
structure factor. In our case, looking at the reported PIMC
results, one can assume the following values for qsdp: 22.59
and 21.72 nm−1 for samples No. (4) and No. (5), respectively,
and beyond the center of the second pseudo-Brillouin zone
(i.e., for q > qsdp) the dispersion curve will not be considered
for the present comparison. On the other hand, as far as the
latter physical quantity is concerned, it is well known that
fD2 (ω) is defined in such a way as to contain only single
pseudophononic components, since it can be also conceived
as an appropriate q → 0-limit of the self-scattering law [7].
However, fD2 (ω), differently from all the physical quantities
related to the LCCTC, is fully insensitive to the difference
between longitudinal and transverse dynamics, encompassing
both types of pseudophonons. So, considering that in a simple
fluid the transverse dynamics exhibits lower frequencies than
those related to the longitudinal one, it is to be expected
that the low-ω part of fD2 (ω) will have an excess of modes
having no counterpart in d (q). In addition, around ω = 0,
the LCCTC spectrum contains traces of the diffusive modes
which, needless to say, are completely absent in a disper-
sion curve. With these clarifications, we can now return to
the CMD spectra, i.e., fD2 (ω) and fNe(ω), for samples Nos.
(3)–(5), as well as pure D2 [namely, simulation No. (VIII) in
Table II], all reported in Fig. 16. In Fig. 16(a) one can observe
the variation of fNe(ω) with the density of the system which
changes from n = 34.4 nm−3 [i.e., sample No. (3)] to n =
24.8 nm−3 [i.e., sample No. (5)] due to the presence of deu-
terium. The frequency distribution gets clearly red shifted and
the Ne self-diffusion coefficient, Ds,Ne, which is proportional
to fNe(0) [32], grows in a significant way. These findings are
not unexpected and confirm the results of the dispersion curve
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(a)

(b)

FIG. 16. Spectra of the CMD velocity autocorrelation functions
for Ne atoms (a) and D2 centers of mass (b). Blue and red full
lines represent simulations for samples Nos. (4) and (5), respectively;
while the black full line stands for the pure D2 case [i.e., No. (VIII)
in Table II]. As for the green lines, which are related sample No. (3),
the full one is the pure Ne contribution, while the dotted one is the
infinite-dilution spectrum of a single D2 impurity in neon. Vertical
sticks mark the positions of the first maximum of the various h̄d

curves reported in Fig. 15.

analysis of Fig. 15, now shown by the vertical sticks which
mark the positions of the first maximum of the d curves.
As for the fD2 (ω) distributions plotted in Fig. 16(b), one can
observe, along with density effects similar to those visible in
Fig. 16(a), an important modification of the spectral shape,
which gradually becomes less liquidlike (i.e., monotonically
decreasing at zero frequency) and more solidlike (i.e., exhibit-
ing a marked hump) as the total molecular number density
n increases, up to the infinite-dilution spectrum of a single
D2 impurity in neon, which has been extrapolated from the
CMD simulations reported in Table II and shows a large mean
kinetic energy value: 〈EK 〉D2 = (78 ± 1) K. However, differ-
ently from the Ne case, the vertical stick positions here are not
much affected by the system density. One should note that this
liquidlike to solidlike transition is in perfect agreement with
the H2 behavior in Ne-H2 mixtures, recently investigated via
incoherent neutron scattering and quantum simulations, which
have been described in detail in Ref. [9].

Finally, considering that in the case of an infinite D2

dilution, the lightweight-mass c̃ (l )
L (q, ω) in Eq. (15) simply

coincides with its D2 self-component, ω2q−2Ss,D2 (q, ω), one
can exploit the mentioned extrapolated CMD spectrum, in
conjunction with the Gaussian approximation, in order to ex-
tract the corresponding dispersion curve, reported in Fig. 15.
This line represents a sort of limiting case for the Ne/D2 mix-
tures as the deuterium concentration decreases and the system
becomes denser and denser. Naturally, the typical oscillating
structure of d (q) disappears and the smooth growing trend
with q reveals the progressively increasing role played by the
single particle recoil in Ss,D2 (q, ω). It is worth noting that the
D2 center-of-mass dynamics in an infinitely diluted system is
approximately described by the quantum version of the well-
known itinerant oscillator model, which has been studied in
detail in the past by various authors [45].

V. CONCLUSIONS

In this study we have presented new and original neutron
scattering spectra of normal deuterium mixed with liquid neon
(at a temperature T = 30.0 K) for three values of the D2 molar
concentration (i.e., x[D2] = 0%, 23%, and 49%), using the
neutron chopper spectrometer MARI [12] with two differ-
ent incoming energy values: Ei = 40.0 and 7.1 meV. These
double-differential neutron scattering cross sections were sup-
posed to provide experimental information on the collective
dynamics of the centers of mass for the two species in
the aforementioned liquid samples. In order to fulfill this
task, neutron scattering data were corrected for the standard
experimental effects (e.g., empty cell signal, self-shielding,
multiple scattering), and the incoherent scattering contribu-
tions were subtracted, including those from the rotovibrational
D2 dynamics, carefully estimated in the framework of the
modified Young and Koppel model [24,25] and in conjunc-
tion with the Gaussian approximation [32]. After carrying
out this procedure, we obtained an approximate mapping of
the mixture scattering laws in the wave-vector transfer range
4 nm−1 < q < 51 nm−1, and in the energy transfer range
−10 meV < h̄ω < 38 meV. Molecular dynamics calculations,
performed with three different approximate quantum simu-
lation methods, such as RPMD [27] and two variants of the
Feynman-Kleinert approach (namely, FK-QCW [29] and FK-
LPI [28]) provided spectra of the same physical quantities
derived from the neutron measurements. In addition, similarly
to the previously studied case of Ne-H2 mixtures [9], accurate
estimates of the velocity autocorrelation function for D2 cen-
ters of mass, as well as for Ne atoms, were produced using a
fourth approximate quantum simulation method, CMD [26],
and contained valuable physical information which was also
used as an input to the mentioned Gaussian approximation cal-
culations. The general agreement among experimental spectra
and the various simulation results was largely satisfactory
for the pure Ne sample, while, as far as the D2 presence is
concerned, some discrepancies both among simulations, and
between simulations and experimental data, could be detected.
In particular, in terms of capabilities to reproduce neutron
scattering data, FK-QCW seems to be a less well-performing
method overall, while RPMD is the best in the intermediate
q region (roughly corresponding to the de Gennes narrowing
zone [41]), and FK-LPI produces excellent spectra in the
high-q region, where the D2 recoil is already relevant. Al-
though it is difficult to generalize the results of the present
study to other disordered systems exhibiting sizable quan-
tum effects, it seems that we are now in a position to add
some information why certain simulation techniques are more
satisfactory in a given q range than in other intervals. As
a comparison with the PIMC reference data shows, FK-LPI
and FK-QCW are both able to correctly reproduce the static
structure at all q values. In general, this cannot be rigorously
expected and depends on the system and the range of wave
vectors considered. Due to the exponential “weight factor” in
Eq. (18) of Ref. [46] or Eq. (38) of Ref. [35], which contains
terms linear and quadratic in q, the static structure factor
given by Fα,β (q, 0) will drop below its asymptotic value of
1 and eventually fall to zero for extremely large q values.
Whether this becomes noticeable in the range of experimental
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wave numbers will depend on the system and the thermo-
dynamic conditions, but surely not in the present context of
liquid Ne and Ne-D2 mixtures. On the other hand, FK-LPI
is guaranteed to also reproduce the recoil term because its
correct value is built into the algorithm [46]. By contrast,
RPMD, at least in its raw form, fails to estimate the static
structure at high q values where, in addition, also the recoil
term turns out to be underestimated. However, if each RPMD
spectrum is corrected by a scaling constant so as to match the
static structure obtained from PIMC, then it turns out to be
slightly better than the corresponding FK-QCW one. Finally,
since FK-LPI correctly reproduces both the static structure
and the recoil term, this would seem to make the method
preferable for high-q spectral calculations. Needless to say,
one cannot completely exclude that experimental data still
retain some small inaccuracies due to the complexity of the
present data reduction procedure. For instance, multiple scat-
tering corrections resorted to the Sköld approximation [23],
and the removal of incoherent contributions was based on the
Gaussian approximation [32]. However, if the results pub-
lished in the pure liquid D2 case [10] are also taken into
account, then we can observe that the present data on mixtures
confirm the general picture. On the one hand, the currently
available quantum simulations methods are able to provide an
overall correct description of the microscopic dynamics in a
moderately quantum fluid such as deuterium. However, they
manifest small but detectable discrepancies that still need to
be assessed in a systematic way and depending on thermo-
dynamic states and wave-vector values. At the same time,
inelastic scattering techniques appear to have reached a level
of accuracy that starts to play a discriminating role between
the various computational approaches. It is reasonable to ex-
pect that further advances in both instrumental performance
and simulation methods may lead to a reliable assessment of
the dynamics of quantum disordered systems.

In order to clarify the physical meaning of the present
spectroscopic results, a detailed analysis of the longitudinal
current spectral maxima has been carried out both on neutron
scattering and simulated data sets, extracting pseudophononic
dispersion curves and showing a mutual agreement at the
same level found in the comparison of the scattering laws.
Nevertheless, the peculiarities of the D2 center-of-mass dy-
namics in the mixtures were revealed only by the separate
investigation of the lightweight mass components and the
heavy mass components of such dispersion curves. But this
is a procedure which, quite understandably, could not be ac-
complished in the case of the experimental data, since, there,
Ne and D2 contributions were lumped together, each one
weighted by the appropriate neutron scattering cross section.
As a matter of fact, one might envisage a practical separation
of the mentioned spectral components only by complementing
our neutron scattering data with inelastic x-ray scattering [47]
measurements in the same q–ω range as that explored in
this experiment, since x-ray scattering is much more strongly
affected by Ne atoms than by D2 molecules. However, this
possible scientific proposal, although clearly feasible [48],
is out of the scope of the present study, representing just a
possibility for further investigation on the subject of liquid
mixtures exhibiting nonnegligible quantum effects. After us-
ing the neutron scattering data to check and validate quantum

simulation results, we continued our study with the modifi-
cations of the pseudophononic dispersion curves induced by
the caging effect of neon on the D2 collective dynamics. To
this aim, a comparison with the CMD results obtained for
the D2 center-of-mass self-dynamics in the same liquid mix-
tures was proposed. Although the two physical quantities, i.e.,
dispersion curve and velocity autocorrelation spectrum, probe
different dynamical aspects of the disordered systems under
investigation, striking analogies have been found, giving rise
to a more comprehensive picture of the D2 center-of-mass
microscopic dynamics and its evolution as the deuterium
concentration reduces and the mixture gets more and more
dense: lightweight mass dispersion curves become rather flat
and somehow similar to an opticlike mode, at least up to
medium values of q (say, 22–25 nm−1); whereas the velocity
autocorrelation spectra for D2 centers of mass depart from
the expected liquidlike behavior (i.e., a monotonic decreasing
trend) by lowering the diffusion coefficient and developing
a characteristic hump, which is more typically solidlike. In
other words, these D2 center-of-mass spectra start to exhibit
a clear and strong maximum at nonzero frequencies and
then slowly decrease with a long tail. Finally, this reveal-
ing correspondence between dispersion curves and velocity
autocorrelation spectra has been studied in the interesting,
although rather speculative, case of a single D2 impurity
contained in bulk liquid Ne by extrapolating CMD simulated
data. Here Ne caging effects are so intense that the impurity
diffusion coefficient drops to a value that is about one half
of that found in sample No. (4), and the D2 translational
mean kinetic energy becomes 19% higher. In parallel, the
lightweight mass dispersion curve loses all its oscillations
retaining just a smooth growing trend as q increases. In con-
clusion, even though the present study contains high-quality
neutron spectra of low-temperature Ne-D2 liquid mixtures in
the crossover regime between generalized hydrodynamics and
single-particle behavior, further experimental effort is surely
desirable on this system as well as on analogous D2 mixtures
with liquid Ar. In particular, it is greatly recommended that
high-resolution neutron (and x-ray) Brillouin scattering stud-
ies on the collective dynamics of these liquids are performed
in the wave-vector transfer range 1 nm−1 < q < 10 nm−1,
where generalized hydrodynamics surely applies and unex-
pected and intriguing modifications of the dispersion curves
might be discovered as in the well-known Ne-He supercritical
mixture [49].
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APPENDIX

As shown in the scientific literature devoted to neutron
and x-ray scattering from mixtures (see, e.g., Ref. [50]),
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several different formalisms exist and are currently employed
to represent the partial contributions to both double and single
differential cross section of the system under investigation.
For this reason, in the present Appendix we want to clearly
define what we mean by the simulated partial intermediate
scattering function Fα,β (q, t ), where α and β can represent
either a Ne atom or a D2 center of mass. Subsequently, the
simulated self-intermediate scattering function Fs,α (q, t ) will
be also defined. On the contrary, the experimentally measured
spectral functions will not be dealt with in the present Ap-
pendix since they include neutron scattering lengths, and, in
the case of D2, its molecular form factor, too. Once Fα,β (q, t )
and Fs,α (q, t ) are explained, the corresponding dynamic struc-
ture factors, namely Sα,β (q, ω) and Ss,α (q, ω), will turn out
to be just the Fourier transforms of the mentioned physical
quantities. If N is the total number of molecules, given by the
sum of the Ne and the D2 contributions N = NNe + ND2 , then
one can define the α-β intermediate scattering function as:

Fα,β (q, t ) = 1

N

Nα∑
j=1

Nβ∑
k=1

〈
exp

[ − i q · r (α)
j

]
exp

[
i q · r (β )

k (t )
]〉
,

(A1)

where the first summation is extended only to the coordinates
of the α particles r (α) and the second only to the coordinates
of the β particles r (β ). Similarly, for the α self-intermediate
scattering function, one can write:

Fs,α (q, t ) = 1

N

Nα∑
j=1

〈
exp

[−i q · r (α)
j

]
exp

[
i q · r (α)

j (t )
]〉
. (A2)

Since in a disordered system it is straightforward to prove that
Fα,β (q, t ) = Fβ,α (q, t ), the standard definition of the overall
intermediate scattering function [7], F (q, t ), can be simply
obtained by:

F (q, t ) = 1

N

N∑
j=1

N∑
k=1

〈exp (−i q · r j ) exp [i q · rk (t )]〉

= FNe,Ne(q, t ) + 2FNe,D2 (q, t ) + FD2,D2 (q, t ), (A3)

as in Eq. (6). Analogously, for the overall self-intermediate
scattering function [7] Fs(q, t ), one writes:

Fs(q, t ) = 1

N

N∑
j=1

〈exp (−i q · r j ) exp [i q · r j (t )]〉

= Fs,Ne(q, t ) + Fs,D2 (q, t ). (A4)

To conclude this Appendix, we report the relationships be-
tween the present definition of Sα,β (q, ω) on one side and
the well-known Faber-Ziman [51] and Ashcroft-Langreth for-
malisms [52] [represented by S(FZ)

α,β (q, ω) and S(AL)
α,β (q, ω),

respectively] on the other:

SNe,Ne(q, ω) = x[Ne]2
[
S(FZ)

Ne,Ne(q, ω) − 1
] + x[Ne],

SNe,D2 (q, ω) = x[Ne]x[D2]
[
S(FZ)

Ne,D2
(q, ω) − 1

]
, (A5)

SD2,D2 (q, ω) = x[D2]2
[
S(FZ)

D2,D2
(q, ω) − 1

] + x[D2],
and

SNe,Ne(q, ω) = x[Ne] S(AL)
Ne,Ne(q, ω),

SNe,D2 (q, ω) = x[Ne]1/2x[D2]1/2 S(AL)
Ne,D2

(q, ω), (A6)

SD2,D2 (q, ω) = x[D2] S(AL)
D2,D2

(q, ω).
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