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Drying-induced stresses in poroelastic drops on rigid substrates
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We develop a theory for drying-induced stresses in sessile, poroelastic drops undergoing evaporation on
rigid surfaces. Using a lubrication-like approximation, the governing equations of three-dimensional nonlinear
poroelasticity are reduced to a single thin-film equation for the drop thickness. We find that thin drops experience
compressive elastic stresses but the total in-plane stresses are tensile. The mechanical response of the drop
is dictated by the initial profile of the solid skeleton, which controls the in-plane deformation, the dominant
components of elastic stress, and sets a limit on the depth of delamination that can potentially occur. Our theory
suggests that the alignment of desiccation fractures in colloidal drops is selected by the shape of the drop at
the point of gelation. We propose that the emergence of three distinct fracture patterns in dried blood drops is a
consequence of a nonmonotonic drop profile at gelation. We also show that depletion fronts, which separate wet
and dry solid, can invade the drop from the contact line and localize the generation of mechanical stress during
drying. Finally, the finite element method is used to explore the stress profiles in drops with large contact angles.
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I. INTRODUCTION

The drying behavior of thin films and drops is important to
a multitude of industries and applications. The presence of a
particulate phase introduces appreciable changes to the evap-
orative process and leads to hydrodynamic and mechanical
instabilities, sometimes resulting in cracking. While tradition-
ally viewed as detrimental, the onset of cracking can play an
advantageous role in a number of modern applications, from
affordable medical diagnostics [1] to high-resolution, high-
throughput nanopatterning [2]. With such a broad range of
applications, there is a growing need for efficient and accurate
modeling capabilities of the stresses accompanying the evap-
oration of particle-laden films and drops. Yet considerable
complexity arises in these drying systems from the delicate
interplay between capillarity, thermocapillarity, heat and mass
transfer, contact lines (undergoing pinning and depinning),
and, crucially, the formation of a poroelastic network, which
controls the formation of cracks and their morphology. In
this paper, we focus on the development of a theory for
drying-induced stresses in sessile, poroelastic drops undergo-
ing evaporation on rigid surfaces.

Many important patterning behaviors manifest during the
evaporation of droplets [3] due to the interaction between
evaporation-driven flows and the contact line [4]. The com-
monly encountered “coffee-ring” stain is one such example,
where evaporation in the presence of a nonvolatile solute pro-
motes the appearance of a distinctly inhomogeneous deposit.
Deegan et al. [5-7] first explained the origin of this effect by
the presence of an increased evaporative flux at the contact
line, coupled with a resultant capillary-induced restoration
flow.
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Crack formation in drying colloidal drops is thought to be a
multistep process originating from the coffee-ring effect [8,9].
The radially outwards capillary flow transports colloids to
the pinned contact line where they accumulate due to weak,
counteracting diffusive effects [10]. Gelation occurs once the
particle concentration exceeds a critical value, resulting in
the local transformation of the liquid drop into a poroelastic
solid; the porous elastic material then has an elastic skeleton
with interconnected pores containing fluid. A gelation front
consequently emerges from the contact line and propagates to-
wards the drop center [11]. Mechanical stresses develop in the
gelled region because of the competing effects of evaporation-
driven contraction of the solid skeleton and its adhesion to the
substrate. Cracks therefore emerge as a mechanism to relieve
mechanical stress.

Experiments have shown that a myriad of fracture patterns
can occur during droplet evaporation [12]. When an aque-
ous drop with silica nanoparticles dries, fractures typically
nucleate at the contact line and travel radially inwards, fol-
lowing the gelation front. These fractures divide the deposit
into an array of “petals” that simultaneously delaminate from
the substrate, resulting in the entire solid “blooming” into a
structure that resembles a lotus flower [13,14]. In the case of
dried blood drops, the solid deposit often has an orthoradial
fracture at the contact line, an annular region with several
radial fractures, and a central zone with smaller-scale fractures
with no preferred orientation [15]. Extensive experimental
research has been carried out to elucidate the dependence
of the fracture pattern on the contact angle [16,17], dry-
ing rate [18-20], substrate deformability [21], and particle
hydrophobicity [22] and concentration [23,24]. However, a
detailed theoretical description of stress generation in dry-
ing colloidal drops is lacking, with treatments relying on
scaling analyses [25] or one-dimensional models that do
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not capture the evolving and nonuniform thickness of the
drop [20,26].

Our work will deploy three-dimensional nonlinear poroe-
lasticity to build a comprehensive model of drying-induced
mechanical stresses in drops with a preexisting solid structure.
Moreover, a lubrication-like approximation will be invoked to
systematically reduce the governing equations. Poroelasticity
theory is based on the premise that the solid phase is arranged
into a porous and deformable structure referred to as the “solid
skeleton.” Biot developed the theory of poroelasticity [27-29]
to account for the two-way coupling between the deformation
of the solid skeleton and fluid flow within the pore space.
The theory formalized by Biot assumes the deformation of
the solid skeleton is infinitesimal and thus describes the solid
skeleton as a linearly elastic material. When the solid defor-
mation is no longer infinitesimal, one must derive poroelastic
models in the framework of nonlinear elasticity [30,31]. The
lubrication approximation has been used in tandem with the
theory of poroelasticity [32,33] to study thin films for various
applications such as CO, sequestration [34], imbibition [35],
soft contact [36,37], and biomechanics [38,39].

By combining poroelasticity with the lubrication approx-
imation, we are able to provide physical insights into the
internal droplet dynamics. In the case of axisymmetric drops
with circular contact lines, we find that the initial profile of the
poroelastic drop plays a critical role in selecting the modes of
in-plane deformation, thereby determining whether the radial
or hoop stresses dominate. Our work suggests that the fracture
patterns appearing in drying colloidal drops are dictated by
the shape of the drop at the point of gelation, in agreement
with the experimental observations of Bourrianne ef al. [24].
By comparing the magnitude of the radial and hoop stresses,
we correctly predict the emergence of three distinct fracture
patterns in dried drops of blood [11]. We also find that the
drop profile affects the depth of delamination, which may not
reach the drop center, in line with the experiments of Osman
et al. [26]. We show that a sharp decrease in the permeability
during drying can result in the formation of depletion fronts
that invade the bulk of the drop from the contact line and
localize the accumulation of stresses. Finally, finite element
simulations are used to calculate the stress profiles in poroe-
lastic drops with large contact angles. We find that many of
the conclusions obtained from the reduced model still apply.

The rest of this paper is organized as follows. In Sec. II, de-
tails of the problem formulation and non-dimensionalization
are provided. The governing equations are asymptotically re-
duced in Sec. III. The results are discussed in Sec. IV, while
Sec. V is devoted to the concluding remarks.

II. PROBLEM FORMULATION

We consider a drop of fluid consisting of a volatile sol-
vent (e.g., water) and a nonvolatile colloidal component (e.g.,
nanoparticles) that dries on a horizontal non-deformable solid
substrate. We envision the colloids as having formed a poroe-
lastic solid from which evaporation occurs. The contact line is
assumed to remain pinned, which is in agreement with exper-
iments, and the time-dependent contact angle ¢(¢) is assumed
to be small. The characteristic height and lateral extent (e.g.,
the radius) of the drop are denoted by H and R, respectively,

where H/R < 1. We work within the framework of nonlinear
poroelasticity [31] to account for large deformations during
drying. We also assume that the drop remains bonded to the
underlying substrate and thus neglect delamination processes
that can potentially occur.

A. Kinematics

The governing equations are formulated in terms of
Eulerian coordinates x = x;e; associated with the current (de-
formed) configuration, where e; are Cartesian basis vectors
and summation over repeated indices is implied. We let X =
X;e; denote Lagrangian coordinates associated with the initial
(undeformed) configuration of the drop. During drying, the
solid element originally located at X is displaced to x, thereby
generating a displacement #* = x — X (x, ¢). The deformation
gradient tensor F and its determinant J = det F describe the
distortion and volumetric changes of material elements, re-
spectively. In Eulerian coordinates, the deformation gradient
tensor is most readily expressed in terms of its inverse as

F'l=vX=I1-vVud, )

where V is the spatial gradient taken with respect to the
Eulerian coordinates x. We adopt the convention that Vu*® =
(0u;/dx;)e; ® e;. The velocity of the fluid and solid are
written as v/ and v°, respectively. In Eulerian formulations
of nonlinear elasticity, the rate of change of displacement is
linked to the velocity by the relationship

ot

where u® = 0 whent = 0.

+ @ V' =1, @)

B. Balance laws

The composition of the mixture is described by the volume
fractions of fluid and solid, ¢f and ¢°, respectively. Conserva-
tion of liquid and solid yield

S
_aa¢; + V. (@) =0, (3a)
ad)x Sa8\
-tV @) =0. (3b)

In deriving (3), it has been assumed that the densities of the
solid skeleton and the fluid are constant, that is, both phases
are incompressible. Furthermore, it is assumed that no volume
change occurs upon mixing and that material elements only
consist of solid and fluid, the latter of which leads to the
condition

¢ +¢ =1 4)

Since the pore space is only occupied by fluid, the volume
fraction of fluid ¢/ also represents the porosity of the solid.
Due to the incompressibility of the fluid and solid, volumetric
changes in material elements can only be due to imbibition
or depletion of fluid within the pore space, leading to the
relationship

1—¢]
1— ¢/

J = detF = 5)
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where ¢(J; represents the fluid fraction in the initial unde-

formed configuration. For simplicity, we assume that ¢g is
spatially uniform. The Jacobian determinant J describes the
local contraction of the solid skeleton (J < 1) that occurs due
to the loss of fluid from the pore space (¢/ < ¢g ). If the
porosity ¢/ remains spatially uniform during drying, then the
Jacobian determinant can be written in terms of the total drop
volume V as J(t) =V (¢)/V(0).

The fluid within the pore space is assumed to be transported
by pressure gradients. Hence, we impose Darcy’s law,

f
Ky
122
where k is the permeability of the solid skeleton, ris is the
fluid viscosity, and p is the pressure. The contraction of the
solid matrix during drying will reduce the pore size and
hence decrease the permeability. Deformation-driven changes
in the permeability are captured through its dependence on the
porosity. In particular, we adopt a normalized Kozeny-Carmen
law [40,41] for the permeability given by

2
k@) _ (1-¢1)" @)
o (g Al

where ky is the permeability of the initial configuration.

Conservation of momentum for the two-phase mixture
yields

¢ (v —v') = — (©6)

(7

V.o=Vp @®)

where o is the effective (Terzaghi) elastic stress tensor of
the solid [30], which commonly appears in soil mechan-
ics [27,42]. The solid skeleton is assumed to be isotropic and
obey a neo-Hookean equation of state. The elastic component
of the stress tensor can be written as

P g2 Bon
o=—(J— —— _(B-D,
(I 4+v)(1—2v) 2(1 +v)J

where E is the Young’s modulus, v is Poisson’s ratio (both
assumed constant), | is the identity tensor, and B = FF7 is
the left Cauchy-Green tensor. In the limit of small deforma-
tions, Vu* < 1, we find that F ~ | + Vu*, which implies that
B~ I+ Ve + (Vu*)T and J =detF ~ 1+ V - u*. Hence,
the stress-strain relation (9) reduces to

vE

~ s s\T
T 0+ —2v) [V + (V).

(10)

(V- ud)l _E
R e

thus recovering linear elasticity.

It is convenient to decompose vector and tensor quantities
into in-plane and transverse components that are parallel and
perpendicular to the substrate, respectively. We let x3 = z and
X3 = Z denote the transverse Eulerian and Lagrangian coordi-
nates, respectively, and let e3 = e, be the corresponding basis
vector. If @ = a;e; denotes an arbitrary vector, then we write
a =a| + aze;, where aj = aqe, is a vector of the in-plane
components and a, = as is the transverse component; here we
adopt the convention that Greek indices are equal to 1 or 2.
Similarly, we introduce the in-plane gradient operator V| =
V — e, d/0dz. The symmetric elastic stress tensor o is written

in terms of its in-plane components o] = dpe, ® €g, trans-
verse shear components 0, = o,3€,, and vertical component
0.a0=0+0, ®e,+e, Q0| +o0.e, ® e, Similar de-
compositions will be used for other tensorial quantities as
well.

C. Boundary and initial conditions

We assume that the solid skeleton perfectly adheres to the
rigid substrate, resulting in a no-displacement condition

w=0 z=0. (11)

In addition, the substrate is taken to be impermeable; there-

fore,
v .e,=0, z=0. (12)

The static contact line of the drop is denoted by the curve r|

and defined by the equation
h= 0, X = rﬁ. (13)

The kinematic boundary conditions for the fluid and solid
phase at the free surface are given by

prd’ (W n =) = ¢'qe,

ps@’ (V' - —v,) =0,
where p; and p, are the densities of the fluid and solid,
respectively; g = g.(¢”) is the evaporative mass flux which

depends on the surface composition; and v, is the normal
velocity of the free surface, defined as

1 oh

(14a)
(14b)

z=h(x|,1),
zZ= h(xH,t),

= 15
T A VR 8 (15

Continuity of stress at the drop surface is given by
o-n—pn=0, z=hx1), (16)

where the atmospheric pressure has been set to zero. Similar
boundary conditions on the stress have been used by other
researchers when modeling drying-induced stresses in col-
loidal suspensions [43,44]. The initial conditions for the fluid
fraction, displacement, and drop thickness are given by

¢/ (x,0) = ¢], (17a)
u(x,0)=0, (17b)
h(x”, 0) = ho(x“). (17C)

The initial conditions can be placed in the context of drying
colloidal dispersions by connecting the quantities /sy and ¢>g
to the profile of the drop and the volume fraction of liquid
at the point of gelation. The gel point depends on the nature
of the colloids as well as the evaporation conditions, as these
control the possible arrangements of particles (e.g., random
close packing, face-centred cubic). The experimental obser-
vation of gelation fronts implies that different regions of the
drop undergo the sol-gel transition at different times, making
it difficult to define a profile for iy. However, some insights
can be obtained from the shape of the solid deposit that re-
mains on the substrate when drying is complete. Anyfantakis
et al. [22] examined the drying of aqueous drops containing
silica nanoparticles; by increasing the hydrophobicity of the
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nanoparticles, they observed that the final deposit takes on
a parabolic profile. Therefore, the colloids likely remained
uniformly dispersed during drying, which would have resulted
in a homogeneous gelation when the drop had a parabolic
profile. However, by decreasing the hydrophobicity of the
particles, the deposit had a nonmonotonic profile. Given the
different profiles that might arise during drying, we will treat
hy as a parameter with the aim of elucidating the role it plays
in determining the poromechanical response of the drop.

D. Scaling and nondimensionalization

We scale spatial quantities according to x; ~ R, z ~ H,
h ~ H, and define ¢ = H/R <« 1. For the liquid, we choose
the usual lubrication scales for the velocity, v/ ~V and v; ~
€V, where the velocity scale V will be defined below. We use
an advective timescale given by ¢t ~ R/V.

To facilitate identifying appropriate scales for the solid,
we assume that the linear stress-strain relation given by (10)
applies. Balancing v} with 9k/9¢ in the kinematic boundary
condition (14b) implies that v] ~ €V. Moreover, balancing
du;/dt with v in the vertical component of (2) gives a scale
for the vertlcal displacement: u] ~ H. A scale for the vertical
normal stress can then be obtamed as o, ~ Edul/oz ~ E.
We postulate that large horizontal contractions of the solid
skeleton are prohibited by its adhesion to the substrate. There-
fore, the removal of solvent will drive a predominantly vertical
contraction of the solid skeleton. The elastic stress that is gen-
erated by this vertical contraction, o,;, must be balanced by
the pressure, p, resulting in p ~ o, ~ E. A scale for the hori-
zontal displacements can be obtained through a consideration
of the horizontal momentum balance for the mixture. As in
lubrication theory, we expect the horizontal pressure gradient
to generate a shear stress. Therefore, we balance do | /dz with
V p which implies that o, ~ €E. The shear stress also scales
like 0, ~ E du)/9dz; thus, we find that du)/9z ~ €. In light
of the no-slip condition for the solid, this balance implies that
uj ~ €H and hence v ~ €?V. The in-plane components of
the stress tensor can be scaled as o) ~ E. Finally, the velocity
scale is determined from the horizontal component of Darcy’s
law, which gives V = (ko/pus)(E /R).

Under this scaling, the nondimensional displacement
gradient is

S
Z
—e;,Qe,,

Vu' =e*Viu) + € il
! 9z
(18)

u
I s
a—z ®ez +ez (024 VMZ) -+

which shows that in-plane and shear strains will be small. The
nondimensional form of the elastic stress tensor is ¢ = o] +
0ze, Qe +e(0, Qe +e,Qa).

1. Nondimensional bulk equations

The rescaled conservation equations for the volume frac-
tions are given by

9o
i.,.vu.((pf )+

p (¢f v/) =0, (19a)

(¢'v) )+

(¢>S ) =0. (19b)

ot

Thus, fluid is transported in both the horizontal and vertical
directions. The solid, however, is predominantly transported
in the vertical direction, suggesting that a uniaxial mode of
deformation occurs. The components of the solid velocity can
be obtained from

duj L R
8_ + € v - Vyuy + v‘za—Z =, (20a)
ou; s
8 V”u —l—v s =v,. (20b)

Darcy’s law (6) can be written in component form as

¢! (v] — *v)) = —k(¢))Vp.
el (vf —vl) =

which shows that vertical gradients in the pressure will be
weak. The in-plane motion of the solid skeleton plays a sub-
dominant role in (21a) and can be neglected. Consequently,
the problems describing the in-plane transport of solid and
fluid decouple. The momentum balance for the mixture (8)
is

(21a)

—k(p' )8—’;, 21b)

30'1_

Virop+—=Vyp, (22a)
0z
30, ap
EV o 4 L =2 (22b)
0z 0z

The lubrication approximation for poroelastic solids therefore
leads to a different stress balance than for viscous fluids by
bringing the in-plane stresses o and the vertical normal stress
o0, into the leading-order problem.

2. Nondimensional boundary and initial conditions

The nondimensional adhesion and no-flux conditions are
the same as in (11) and (12). The kinematic boundary condi-
tions become

doh

_+v

o7 (23a)

Vb —vl = -0q(¢")A,  z=hx),1),

h
_ +620ﬁ .

ar V||h—v§=0,

7= h(x”, t), (23b)
where Q = qo/(psVe), qgo = qe(¢8) is the initial evaporative
mass flux, and A = (1 + 62|VH/’£| )!/2. The nondimensional
parameter Q plays the role of a Péclet number by characteriz-
ing the relative rate of evaporation to bulk fluid transport. The

stress balances at the free surface are given by
=0 -Vih+o,+pVih=0, z=hx1),

7= h(x”, I).

(24a)

—e%0, -Vih+o,—p=0, (24b)
The initial conditions for the drop profile, porosity, and dis-
placements are h = ho(x)), d)f = ¢g, uﬁ =0, and u; =0

when ¢t = 0.

E. Parameter estimation

Giorgiutti-Dauphiné and Pauchard [20] conducted experi-
ments on colloidal drops consisting of silica nanoparticles in
water. They reported values of kg ~ 107!° m?, E ~ 1 GPa,

054602-4



DRYING-INDUCED STRESSES IN POROELASTIC DROPS ...

PHYSICAL REVIEW E 105, 054602 (2022)

Mp ~ 1073 Pa s, and R ~ 1 mm. The initial contact angle ¢
ranged from 30° to 40°, leading to values of € ~ ¢, in the
range of 0.5 to 0.7. The evaporation velocity, V., ~ go/py, can
be inferred from their measurements of the cracking time and
is found to be roughly 10~ m s~!. A conservative estimate
of the Péclet number based on a value of € = 0.1 is then Q ~
1073, Osman et al. [26] reported similar parameter values for
their experiments: ko ~ 10029 m2, V, ~ 1078 m s~ !, g~
103 Pas, and R ~ 1 mm. The Young’s modulus and contact
angles were not measured. However, since their colloidal dis-
persions were also based on silica nanoparticles, we estimate
that E ~ 1 GPa. The Péclet number can be parametrized in
terms of the initial contact angle as Q ~ 1073 @y I and is
expected to be small. Finally, in the case of drying blood
drops, Sobac and Brutin [9] reported that R = 4.3 mm, V, ~
9% 10~® m s !, and @o = 15°. Moreover, they estimated
that the diffusivity of fluid through the poroelastic solid was
roughly D,, >~ 3 x 1078 m? s~!, which leads to a velocity
scale of V ~ D, /R~7 x 107® m s~!. The corresponding
Péclet number is @ ~ 0.05. Various values for the Poisson’s
ratio of dried colloidal films appear in the literature. Style and
Peppin [44] set v = 0.2, whereas Gauthier et al. [45] and Xu
et al. [46] assume v = 0.3 and 0.4, respectively. Bouchaudy
and Salmon [43] posit that v decreases from 0.5 at the gel
point to 0.2 during drying.

III. ASYMPTOTIC REDUCTION

The dimensionless model is asymptotically reduced by
taking the limit as € — 0. The reduction can be decomposed
into two main steps. First, the mechanical problem is solved
in terms of the fluid fraction. Second, the transport problems
for the fluid and solid are simplified and then combined into a
thin-film-like equation for the drop thickness.

The reduction of the mechanical problem begins with a
consideration of the rescaled displacement gradient (18) and
the deformation gradient tensor (1). By taking € — 0 in (18)
and substituting the result in (1), the leading-order contri-
bution to the deformation gradient tensor can be written as

F=1I+Je Qe wherel =e, ® e, is the in-plane identity
tensor and
dus\ !
J=detF=<1— Z) . (25)
0z

The Jacobian determinant J in (25) must also satisfy (5).
The asymptotic reduction of the deformation gradient tensor
F shows that, to leading order, the drop undergoes uniaxial
deformation along the vertical direction. The leading-order
components of the elastic stress tensor are

J = DIy, (26a)

. v
7= Ao —2v)

1 Jau'ﬁ Vi
O'J__—2(1+U)< a—z+ ||Mz),

1 1 1 v
Oz = (U =J")+

(26b)

1+v|2 1—2v(J_1)]' (26¢)

By integrating the O(1) contributions to the vertical stress
balance (22b), we observe that the pressure is equal to the

vertical normal stress,

1 1 _1 v
p =0, = ~J=J )+

—l3 1_2U<J—1>}. 27)

Taking € — 0 in (21b) shows that the pressure p is indepen-
dent of z to leading order. Consequently, we deduce that o,
J, and hence ¢f are also independent of z. The horizontal
stress balance (22a) can now be integrated and the stress-free
condition (24a) imposed to find

o, Vil(h—2)(™" =D (28)

21 4v)
Equating (26b) and (28) leads to a differential equation for the
in-plane components of the solid displacement ;. Further-
more, (25) provides an equation for the vertical displacement
u;. Upon solving these equations and imposing u® = 0 at
z = 0, we find that the displacements are given by.

u = %ZZV”(InJ) + VAT =D)L (29)

w=(1-J")z (29b)

At this point, the mechanical problem has been completely
solved in terms of the Jacobian determinant J, which is linked
to the fluid fraction via (5).
At leading order, the conservation law for the fluid (19a)
becomes
dgS v/
RRANNITS vy Sz
9 + Il (¢ ||)+¢ 3Z
Integrating (30) across the thickness of the drop and using
the impermeability condition (12) and the kinematic boundary
condition (23a) leads to

=0. (30)

ad . i
5 () + V) - (' v]) = —QpTq@"). G

Similarly, from the conservation of solid (19b), we find that

a sy
E(hqﬁ )=0 (32)

to leading order. By integrating (32) and using the definition
of J from (5), we obtain

h = Jh. (33)

Equation (33) reflects the uniaxial mode of deformation that
the drop experiences and states that volumetric changes in
material elements can only be accommodated through vari-
ations in the film thickness 4. Adding (31) and (32) and using
Darcy’s law (21a) gives

oh : :
5 = VI K@DhVpl = 097 q(d"). (34)

By using (27) and (33) to write p = 0,,(J) and J = h/hy, re-
spectively, (34) can be formulated as a thin-film-like equation

dh o h h
5 =V |:k(¢f)h0zz<h—0>V||(h—0>:| - Q¢fQ(¢f)y
(35a)

where 0/_(J) = do..(J)/dJ and the solvent fraction is given
by ¢/ =1—-(1— ¢({)(h0/h). The thin-film equation (35a)
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can be solved using the boundary and initial conditions
h =0,
h = ho(x),

(35b)
(35¢)

— C.
X =r;
t=0.

Once the drop thickness & is calculated, the Jacobian deter-
minant J can be computed from (33) and used to evaluate the
elastic stresses and displacements given by (26)—(29).

A. The slow-evaporation limit

The parameter estimates from Sec. IIE indicate that the
Péclet number Q is typically small, implying that fluid loss
due to evaporation is slow relative to the rate at which fluid
is replenished by bulk transport. This separation of timescales
can be used to further reduce the model. By rescaling time
as t = Q 't and taking Q — 0, we can deduce from (35a)
and (33) that i/hy and hence J must be spatially uniform.
This permits the film thickness to be written as h(x), t) =
J(t)ho(x)). Consequently, the fluid fraction ¢/ must also be
independent of space in order to satisfy the incompressibility
condition (5). To determine the time dependence of J, we
integrate (35a) over the contact surface to obtain

a __Adlq@))

dt - V()
where Ay and V;) are the (nondimensional) area of the contact
surface and the initial volume of the drop, respectively, and
of=1-(1 - qﬁg )/J. Equation (36) can be recast into a dif-
ferential equation for the volume of the drop V(t) using the
relation J(t) = V(t)/V.

(36)

IV. THE POROMECHANICS OF DRYING

The solutions of the asymptotically reduced model provide
new insights into the poromechanics of drying drops. We first
analyze and interpret the solutions for the stress. We then
explore the mechanics of drying in the limit of slow evap-
oration, corresponding to vanishingly small Péclet numbers
Q. Numerical simulations are used to study the dynamics for
moderate evaporation rates characterized by Péclet numbers
that are O(1) in size. Finally, we use finite element simulations
to examine the stresses that arise when the contact angle is not
small.

A. Analysis of drying-induced stresses

A key feature of the asymptotic reduction is that it allows
for a straightforward determination and interpretation of the
stresses that are generated during drying. The total stress
within the poroelastic drop is characterized by the Cauchy
stress tensor T = o — pl and can therefore be decomposed
into an elastic stress associated with deformations of the
solid skeleton and an isotropic contribution arising from the
fluid. Since drying leads to a loss of volume (J < 1), we see
from (26a) that in-plane elastic stresses o are compressive.
The origin of these compressive stresses can be understood
by drawing on the analogy between the drying-induced con-
traction of the solid skeleton and the vertical compression
of a slab of elastic material. Due to the Poisson effect, ver-
tical compression of a slab will drive a lateral (or in-plane)

expansion. However, if the slab is bonded to a substrate, then
lateral expansion is constrained and a compressive stress is
generated to resist lateral deformation. An examination of the
total in-plane stresses, defined by

TH =0 — plu = (J71 —J)IH, (37)

1
21 +v)
reveals they are tensile due to the negative pressure counter-
acting the elastic stresses. The combination of a tensile total
stress and a compressive elastic stress is consistent with the
findings of Bouchaudy and Salmon [43], who report similar
mechanics in a one-dimensional setting.

The generation of tensile in-plane stresses leads to a
mechanism for fracture, which is commonly observed during
the drying of complex colloidal suspensions. However, the
isotropic form of the in-plane stress tensor (37) prohibits the
leading-order problem from providing any information about
the orientation of nucleated fractures, which we expect to be
perpendicular to the directions of maximal stress. Any mecha-
nism that could select a preferential direction for fracture must
therefore manifest in higher-order contributions to the stress
tensor and, as a result, be relatively weak.

Drying-induced stresses can trigger the delamination of
the drop from rigid substrates, in which case knowledge of
the traction exerted by the drop on the substrate is crucial.
The nondimensional traction is defined as 7 = T|,— - e,. The
in-plane components of the traction, which are generated from
elastic shear stresses, are readily computed from (28) and
found to be
(38a)

T V(™" = D).

T 2(1+v)
To determine the leading-order component of the vertical trac-
tion 7, we integrate (22b) across the thickness of the drop and
impose the stress-free condition (24b) to obtain

e 20720 7—1

T, = 4(14_‘))Vu[h (J D]
The vertical traction (38b) can be interpreted as the adhesive
stress required for the drop to remain bonded to the substrate
during drying. Positive and negative values of 7, imply that
the drop is pulling upwards and pushing downwards on the
substrate, respectively. Due to the prefactor of € ~ (pg ap-
pearing in (38b), thinner drops with smaller contact angles
will be less prone to delamination, provided this occurs once
T, exceeds a critical threshold. To the best of our knowledge,
the contact-angle dependence of delamination has not been
investigated experimentally.

(38b)

B. Mechanics in the slow-evaporation limit

Significant insight into the mechanics of drying can be
obtained by considering the slow-evaporation limit, as the
spatial uniformity of the Jacobian determinant J enables
the asymptotic solutions to be greatly simplified. Due to
the monotonic decrease in the drop volume V in time, we can
use J(t) =V(t)/Vy as a proxy for time, where J decreases
from J = 1 when ¢ = 0 to a steady-state value of / = J, < 1
ast — oo. For simplicity, we focus on the case of axisymmet-
ric drops with circular contact lines.
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The radial displacement can be computed from (29a) and
is found to be

u = J’l—J% 3
=z )a,r. (39)

Consequently, the radial and orthoradial motion of the solid
skeleton is controlled by the initial geometry of the drop,
which is encoded in the functional form of %y. In locations
where the initial profile has a negative slope, dhy/dr < 0,
solid elements are displaced towards the drop center (1} < 0)
and undergo orthoradial compression (u;/r < 0). However,
if the initial profile has a positive slope, dhy/dr > 0, then
solid elements are displaced towards the contact line () > 0)
and undergo orthoradial expansion (u}/r > 0). Similarly, the
initial curvature of the solid skeleton, d2h0 /drz, controls the
mode of radial deformation. Solid elements experience a ra-
dial compression (du; /0r < 0) if the curvature is negative and
a radial expansion (du/dr > 0) if the curvature is positive.
The compressive and extensional modes of radial and or-
thoradial deformation lead to small differences in the radial
and hoop stresses. Although small, these differences can es-
tablish a preferential direction for nucleated fractures. By
calculating the higher-order terms in the elastic stress ten-
sor, we find that the difference between the radial and hoop
stress can be expressed as T,, — Tgg = 0, — 09y = €>(1 +
v)~'S(r, z), where
ou, u

S ut o JP [ou\?

ar r JBZ 8r+2<82>. “0)
The first two terms on the right-hand side of (40) capture
the competition between linear radial and orthoradial strains,
and they would be present if the model had been formu-
lated in terms of linear elasticity. The final two terms on the
right-hand side of (40) arise from geometric nonlinearities as-
sociated with finite strains. Substituting the expression for the
radial displacement (39) and the vertical displacement (29b)

into (40) leads to
d*hy  1dh J2— 12 (dhy\>
S=U"' - J)z(—o - ——°> + g(—°> .
r 2 dr
41

Using (41), it is straightforward to explore how different drop
profiles kg affect the competition between radial and orthora-
dial stress generation.

Near the contact line, the initial profile of the drop can be
locally represented as a linear function with negative gradient.
The resulting value of S will be positive, indicating that the
radial stress dominates the hoop stress. Consequently, frac-
tures will have a slight preference to align with (be parallel
to) the orthoradial direction. Due to T,, — Ty being propor-
tional to € ~ 3, the strength of the orthoradial alignment
should increase with the initial contact angle. Observations
of similar qualitative trends were made in the experimental
work of Carle and Brutin [16, Fig. 4] where increases in the
initial contact angle led to increasingly prominent orthoradial
fractures at the contact line.

Understanding the competition between the radial and
hoop stresses away from the contact line requires specific
knowledge of the initial profile of the poroelastic drop.
Parabolic profiles for hy represent a special case and lead

S(r, 2)

II1 II I

FIG. 1. The alignment of fractures is driven by the deposit
profile. (a) The steady-state profile of a dried blood drop. Circles rep-
resent experimental data from Sobac and Brutin [9] and the solid line
is a polynomial fit. The superimposed heat map illustrates the dif-
ference between the radial and hoop stresses S = € 2(1 + v)(o, —
ope). The black dashed line is the S = 0 level set. The three regions
correspond to (I) a dominant radial stress (orthoradial fractures),
(IT) a dominant orthoradial stress (radial fractures), and (III) similar
stresses (nonoriented fractures). (b) The deposit associated with the
profile in panel (a), showing the three fracture patterns suggested by
the asymptotic theory. This figure has been adapted from Sobac and
Brutin [9].

to the first bracketed term in (41) vanishing, implying that
the radial and orthoradial strains are identical in the limit of
linear elasticity and can only be distinguished by considering
a nonlinear theory. Although the value of S is always positive
for parabolic drops, the prefactor of the final term will be
small and thus any preferential orientation of fractures will be
very weak. The drying experiments by Anyfantakis et al. [22]
support this prediction: the solid deposits that were parabolic
in shape were patterned by disordered fractures with no clear
orientation. In this case, the parabolic profile is likely a result
of the drops remaining homogeneous during drying.

We therefore postulate that the alignment of nucleated frac-
tures is due to the heterogeneous gelation of drops and the
creation of poroelastic skeletons with nonparabolic profiles.
Sobac and Brutin [9] measured the profile of a dried deposit
that was patterned by strongly aligned fractures. The deposit
thickness was nonmonotonic and found to generally increase
towards the contact line until a maximum was reached, after
which the thickness rapidly decreased to zero; see Fig. 1(a).
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The dried deposit exhibited three distinct fracture patterns: (I)
near the contact line there was a large orthoradial fracture;
(II) away from the contact line there was an annular region
where fractures were predominantly aligned with the radial
direction; and (III) there was a central region with nonoriented
fractures. An image of the dried deposit showing the three
fracture patterns is provided in Fig. 1(b).

The three fracture patterns observed by Sobac and
Brutin [9] can be rationalized by the poroelastic model. Doing
so requires reconstructing the profile of the drop at the point
of gelation, which is achieved using the relation J = h/hy =
(1— qb({)/(l — ¢/) and taking ¢/ and & to be the equilibrium
fluid fraction ¢g; and drop profile A, respectively. Solving
for the initial profile A gives

1— ¢k
ho(r) >~ 7 hoo (7). 42)
1—¢

0

Sobac and Brutin [11] estimate that the first fractures occur
when the solid fraction is roughly 30%. Therefore, we take
the gel point to be d)g ~ 0.7. In addition, the solid deposit is

assumed to be completely dry, g’o 2~ (. A smooth function for
hs is obtained by fitting a polynomial to the experimentally
measured profile, resulting in the solid black curve shown in
Fig. 1(a). Using the reconstruction of Ay provided by (42), we
calculate the difference between the radial and hoop stress
via (41) and plot the values of S as a heat map in Fig. 1(a).
As predicted, there is a region near the contact line where the
radial stress dominates (S > 0), resulting in the orthoradial
fracture associated with pattern (I). However, there is also
an intermediate region centered about the maximum of the
deposit thickness where the hoop stress dominates (S < 0)
and the onset of the radially aligned fractures associated with
pattern (II) is expected. Finally, near the drop center, the
value of § is very close to zero, suggesting the emergence
of nonoriented fractures observed in pattern (III).

The model predicts that the appearance of multiple fracture
patterns will be a generic feature of poroelastic skeletons that
have a nonmonotonic initial profile. Near a maximum in the
profile, where dhg/dr ~ 0 and d*hy/dr* < 0, the hoop stress
will dominate the radial stress (S < 0), suggesting the emer-
gence of radially aligned fractures. Conversely, local minima
in the profile would lead to orthoradially aligned fractures.
The presence of multiple maxima and minima in the deposit
profile shown in Fig. 1(a) could explain the sequential realign-
ment of fractures that is seen in Fig. 1(b).

For slowly evaporating drops, the normal component of the
traction reduces to

T = e JrJ! —])i[ d

2
ad+v) - ar VE(hO)] *3)

The competition between the decrease in the drop height, cap-
tured through J 2 and the increase in elastic stress, captured
through J =1 _ J, results in a nonmonotonic evolution of the
traction that reaches a maximum value when J =271/2 ~
0.71. There are two ramifications of this finite maximum.
First, it implies that delamination is not guaranteed to occur.
Second, if delamination does occur, then the propagating de-
lamination front may not reach the drop center by the end of

the drying process. In fact, the drop only pulls upwards on the
substrate in locations where the curvature of k7 is positive.
For drops with initially parabolic profiles, iy = 1 — 2, the
traction is positive for r > 271/2, which sets a theoretical
maximum on the depth of delamination.

Osman et al. [26] experimentally observed a limited depth
of delamination in drying colloidal drops. Using a simple
model, they argued that heterogeneous gelation leads to a
poroelastic “foot” developing at the contact line, the length of
which controls the depth of delamination. Our complemen-
tary theory predicts that even a fully gelled drop will only
undergo a partial degree of delamination. When combined,
these two theories suggest that the extent of delamination
ultimately arises from an intricate interplay between the
horizontal growth of the poroelastic solid as well as its
shape.

C. Numerical simulations

The poromechanics that occur for larger Péclet numbers
are explored via numerical simulations of the thin-film equa-
tion (35) in an axisymmetric geometry. The initial profile of
the drop is assumed to be parabolic; thus, we take ho(r) =
1 — 2. For simplicity, the non-dimensional evaporative mass
flux is taken to be a constant, q(¢f )= 1. As a result, all
of the fluid will evaporate from the pores of the solid. The
consequences of this simplifying assumption on the dynamics
will be discussed below.

The first case we consider corresponds to a moderate rate of
evaporation with Q@ = 1. For Péclet numbers Q that are O(1)
in size, the timescale of fluid depletion due to evaporation
is commensurate with the timescale of fluid replenishment
due to bulk transport. Thus, the generation of composition
gradients within the material is to be expected. The initial fluid
fraction, or porosity, is set to ¢g = 0.80. We assume the drop
has just crossed the sol-gel transition; thus, the Poisson’s ratio
is set to v = 0.45. Any time dependence of v is neglected for
simplicity. Numerical experiments show that the qualitative
features of the solutions are independent of v.

The evolution of the fluid fraction indicates there is a
rapid loss of fluid near the contact line, which results in a
completely collapsed (fluid-free) solid; see Fig. 2(a). Due to
the sharp decrease in the permeability with the porosity, fluid
from the bulk is prohibited from replenishing that which is
lost due to evaporation. As the drying process continues, a de-
pletion front invades the drop from the contact line while the
fluid content in the bulk decreases with a weak composition
gradient. The motion of the depletion front can be detected
in the evolution of the drop thickness. Upstream of the front,
the drop thickness remains stationary because it has converged
to its steady-state profile, while downstream of the front, the
drop thickness continues to decrease as fluid is removed from
the pore space; see Fig. 2(b).

The formation of a depletion front plays a significant role
in the mechanical response of the drop. The localized removal
of fluid from regions near the contact line triggers a vertical
compression of the solid skeleton and leads to a large decrease
in the pressure, as seen in Fig. 2(c). This zone of negative pres-
sure propagates into the bulk following the depletion front. In
turn, the negative pressure generates tensile stresses T = Tjl,
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FIG. 2. The dynamics of a drying poroelastic drop at a moderate evaporation rate (Q = 1). The spatio-temporal evolution of the (a) fluid
fraction (porosity), (b) drop thickness, (c) pressure, (d) total in-plane stress, (e) radial and (f) vertical traction on the substrate. The parameter
values are v = 0.45, %/ = 0.80, and g(¢) = 1. The solutions are shown at times = 0.01, 0.2, 0.5, 1, and 2. Arrows show the direction of

time; the dashed black lines denote the steady states.

in both the radial and orthoradial directions that increasingly
penetrate into the bulk with time; see Fig. 2(d).

The radial traction can be expressed as 7, = 9(hT})/or,
which is simply the gradient of the vertically integrated, total
radial stress. Thus, the behavior of the radial traction largely
mirrors that of the radial stress: a sharp gradient develops near
the contact line and propagates inwards, as shown in Fig. 2(e).
However, unlike the radial stress, the radial traction settles into
a nonuniform steady state due to the gradients in the drop
thickness. The negative values of the radial traction imply
that the substrate is being pulled towards the drop centre.
The vertical traction 7, exhibits nonmonotonic behavior in
time, which is likely due to the same competition between the
decrease in drop height and generation of elastic stress that is
captured in Eq (43). Regions near the contact line experience
an upwards force (7, > 0) that acts to pull the drop off the
substrate and trigger delamination, whereas central regions
of the drop push on the substrate (7, < 0) and enhance its
adhesion; see Fig. 2(f).

Larger evaporation rates drive the emergence of non-
parabolic drop shapes that result in the hoop stress exceeding
the radial stress. By computing the rescaled stress difference
S given by (40), we find that a localized region appears at the
contact line where the hoop stress exceeds the radial stress
(S < 0); see Fig. 3(a). This localized region is referred to as
the “hoop zone.” As time increases, the hoop zone propagates
along the free surface of the drop towards the center, and,
at the contact line, the radial stress overtakes the hoop stress
(S > 0); see Fig. 3(b). As the drop completely dries out, the
hoop zone dissipates and the radial stress dominates across
the entirety of the drop, as seen in Fig. 3(c). The propagating
depletion front separates the hoop zone from the region dom-
inated by the radial stress. The region behind (upstream of)
the depletion front is fluid free and the drop profile is simply

a rescaled version of the initial parabolic profile, A(r, t) ~
(1-— qﬁg )hy(r); thus, the radial stress dominates, in accordance
with (41). Ahead (downstream) of the depletion front, the drop
profile becomes nonparabolic due to the nonuniform removal
of fluid, thus leading to the hoop zone.

We now turn our attention to the drop dynamics that occur
for slower rates of evaporation by considering the case when
Q = 0.1. We first consider a drop with the same parameters as
in Fig. 2 by setting v = 0.45 and q)of = 0.80. The fluid fraction
initially decreases while remaining approximately uniform
throughout the drop; see Fig. 4(a), which is consistent with the
findings of the slow-evaporation limit. The homogeneous dry-
ing of the drop gives rise to roughly uniform in-plane stresses
as well, as shown in Fig. 4(b). The in-plane stresses, in turn,
generate a vertical traction with a roughly parabolic initial
profile; see Fig. 4(c). Eventually, the loss of fluid triggers
a sharp decrease in the permeability. Weak gradients in the
fluid fraction near the contact line are amplified, resulting in a
propagating depletion front; see Fig. 4(a).

Decreasing the initial fluid fraction to ¢g = 0.5 and keep-
ing the other parameters fixed leads to qualitatively similar
dynamics to those seen in Figs. 4(a)—4(c). However, in this
case, the depletion front is more diffuse [Fig. 4(d)] and
the in-plane stresses 7j are smaller [Fig. 4(e)] due to the
solid skeleton undergoing less volumetric contraction; recall
from (5) that J =1 — qbg at the steady state. The verti-
cal traction monotonically approaches its steady-state profile
[Fig. 4(g)], which is larger in magnitude than the case when
d)g = 0.8 due to the smaller change in drop thickness.

In all of the cases considered so far, it has been assumed
that evaporation completely dries the solid, removing all
fluid from within the pore space. Relaxing this assumption,
so that some fluid remains, will curtail the decrease in the
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FIG. 3. Moderate evaporation rates can lead to the hoop stress exceeding the radial stress in initially parabolic drops. The rescaled
difference between the radial and hoop stress S = €~ 2(1 + v)(0,, — 049) defined by (40) is shown as a heat map at times (a) t = 0.01,
(b) t = 0.5, and (c) t = 2. The drop profile i(r, ¢) is shown as the solid black line. The white circle in (b) depicts the position of the depletion

front r;(t), defined by q.’)f(rf(t), t) = 0.01. The parameter values are Q = 1, v = 0.45, d)é' =0.80, and g(¢/) = 1.

permeability. This will result in weaker gradients in the fluid
fraction and, consequently, in all of the other quantities as
well. Moreover, it may prohibit the formation of a depletion
front altogether.

D. Drops with large contact angle

The finite element method is used to compute the steady-
state stress distribution in axisymmetric drops with large
contact angles. Under the steady-state assumption, the full
time-dependent model described in Sec. I reduces to the equi-
librium equations of nonlinear elasticity, V - ¢ = V p, with
an incompressibility constraint J = Jy. The constant Jy < 1
describes the volumetric contraction due to drying. The gov-
erning equations are solved in the reference configuration. The
finite element method is implemented with FEniCS [47,48]
using P2-P1 elements for displacement and pressure,

respectively. In all of the simulations, the initial profile of the
drop is taken to be a parabola that is represented in dimen-
sional form as Ay(r)/R = €[1 — (r/R)*]. The initial contact
angle satisfies tan ¢y = 2¢ and thus ¢y ~ 2¢ for ¢ < 1. In
addition, we set Jy = 1/2, corresponding to a drop that has
shed half of its volume.

We first compute the steady-state drop thickness %, for a
range of aspect ratios € = H/R. When € = 0.1 and 0.2 (9 =
11° and 22°), the drops have parabolic profiles that are in good
agreement the asymptotic theory; see Fig. 5(a). However, as €
increases to 0.4 and then to 0.8 (¢py = 39° and 58°), deviations
from a parabolic profile begin to emerge. The profile that
arises when € = 0.8 closely resembles that seen by Pauchard
and Allain [49] when studying drying colloidal drops with
contact angles on the order of 45°. When the contact angle
is large, the solid skeleton is generally further away from the
substrate and hence less influenced by the no-slip (perfect
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FIG. 4. Drop dynamics with a small evaporation rate (Q = 0.1). In panels (a)—(c), the initial fluid fraction is qb({ = 0.80. In panels (d)—(f),
the initial fluid fraction is qﬁg = 0.50. In all panels, v = 0.45, q(¢”) = 1, and the solutions are shown at times ¢ = 0.1, 2, 5, 10, and 20. Arrows
show the direction of time; the dashed black lines denote the steady states.
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FIG. 5. The (a) equilibrium drop thickness /4, and (b) radial
elastic stress along the substrate for different drop aspect ratios
€ = H/R. Symbols denote quantities computed using the finite ele-
ment method. The solid black lines denote asymptotic solutions. The
legend applies to both panels. Here, v = 0.3 and J = 0.5.

adhesion) condition. Thus, drying leads to greater radial dis-
placements. However, the radial displacement is constrained
near r = 0 due to the assumption of axisymmetry. The net
result is that solid near the contact line is displaced inwards
and, in order to conserve solid volume, the vertical contraction
of the drop near the center is reduced.

Increasing the contact angle also leads to marked changes
in the radial elastic stress o,,. When € = 0.1 and 0.2, the
radial elastic stress along the substrate is compressive and
nearly uniform, in agreement with the asymptotic solutions;
see Fig. 5(b). However, increasing € leads to larger gradients
and the emergence of a region near the contact line where the
radial elastic stress becomes tensile. Explicitly calculating o,,
along the substrate reveals that its tensile nature is a nonlinear
effect arising from large shear strains du, /9z.

To further explore the poromechanics of drying with large
contact angles, we have computed the spatial distribution
of the radial and orthoradial elastic stresses, along with the
pressure, in a drop with an aspect ratio of € = 0.8. The

radial elastic stress is generally compressive, with the ex-
ception of a small tensile region near the contact line; see
Fig. 6(a). The orthoradial elastic stress is also compressive;
see Fig. 6(b). The magnitude of the orthoradial elastic stress
increases with distance from the substrate due to the radial
displacement increasing in magnitude as well. The pressure
is negative throughout the drop and is concentrated near the
contact line; see Fig. 6(c). Computing the total (Cauchy)
stress by subtracting the pressure from the elastic stresses
shows that the drop is under tension in both the radial and
orthoradial directions. However, the radial stress exceeds the
orthoradial stress, particularly at locations near the contact
line.

The stress profiles shown in Fig. 6 indicate that many of the
conclusions obtained from the asymptotically reduced model
still apply when the contact angle of the drop is not small.
However, from Fig. 5, we see that the quantitative accuracy of
the asymptotic reduction can only be ensured for drops with
initial contact angles that are smaller than 20°.

As a final point, experiments have shown that the drying
pathway for colloidal drops with large contact angles involves
the formation of an elastic skin at the free surface [1]. Drying-
induced stresses lead to buckling of the skin [49] as opposed
to fracture. Extending the poroelastic model proposed here
to shell-like geometries would allow drying-induced buckling
patterns to be studied.

V. CONCLUDING REMARKS

By combining nonlinear poroelasticity with the lubrica-
tion approximation, we have derived a simplified model that
offers new insights into the generation of mechanical stress
during the drying of complex drops. The asymptotic analysis
indicates that the initial profile of the solid skeleton &g plays
a central role in the poromechanics of drop drying, as it
controls the in-plane motion of the solid skeleton. Using the
asymptotic solutions for the stress, it is possible to predict the
alignment of desiccation fractures.

A limitation of the model proposed here is that is based
on the assumption that the drop has a pre-existing poroelastic
structure. That is, the model does not consider the regime in
which the drop is liquid. As a consequence, the initial profile
of the solid skeleton /2y must be provided as input to the model.
An important area of future work is to develop an extended
model that captures the fluid mechanics of drying and the
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FIG. 6. The (a) radial elastic stress, (b) orthoradial elastic stress, and (c) pressure in a dried poroelastic drop with large initial contact angle.
The drop has shed half of its volume due to fluid loss (/ = 0.50). We set € = 0.80 (¢y =~ 58°) and v = 0.30.
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sol-gel transition, with the aim of predicting /. Routh and
Russel [50] studied a similar problem but assumed the porous
solid was rigid.

When modeling the drying of biological fluids before
gelation occurs, non-Newtonian effects may be important
to consider. For example, blood is often modelled as a
Carreau-Yasuda fluid [51]. In this case, the relevance of non-
Newtonian effects can be assessed through the quantity (Ly ),
where A is a relaxation time, y is the shear rate, and a is
a constant. Abraham et al. [52] report that A = 8.2 s and
a = 0.64 for blood. For a thin drop in the lubrication limit,
y ~ U/(eR). Sobac and Brutin [9] state that, before gela-
tion, the fluid velocity U is dominated by capillary action
and provide a value of U = 8 um s~!. Using the parameter
values in Sec. IIE gives (Ay)? ~ 0.26, which is small but
not negligible. After gelation, the liquid component of blood
(mainly water) will flow through a porous network composed

of solid biological components (mainly red blood cells). Thus,
describing the macroscopic flow field using Darcy’s law, as
done here, is appropriate.

With a satisfactory initial profile for the solid skeleton,
the asymptotic approach developed here can be extended to a
wide range of new problems that capture, for example, delam-
ination, substrate deformability, and fracture. These problems
will help to unravel the complex interplay between physical
mechanisms that govern the drying of complex fluids and
provide a deeper understanding of the various modes of me-
chanical instability that can occur.
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