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Interplay between nematic and cholesteric interactions in self-consistent field theory
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Chirality is a design feature of a number of biomolecules (e.g., collagen). In these molecules, cholesteric
(chiral-nematic) behavior emerges from a combination of the tendency for the biopolymers to align (nematic
interactions) and for the alignment direction to change with position, rotating around an axis normal to the
alignment direction. This paper presents self-consistent field theory (SCFT) of chiral-nematic polymers, which
takes into account polymer flexibility and the orientational degrees of freedom of polymer segments. Using the
resulting SCFT, we construct a phase diagram showing regions of stability for isotropic, nematic, and cholesteric
phases. Furthermore, we find that nematic interactions can stabilize the cholesteric phase, pushing the isotropic-
cholesteric phase transition to lower cholesteric interaction strength, until the isotropic-nematic-cholesteric triple
point is reached.
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I. INTRODUCTION

Many macromolecules of biological and technological
interest self-assemble into organized structures. In particu-
lar, anisotropic (rodlike) molecules can form liquid-crystal
phases, such as nematic, smectic, and cholesteric (chiral-
nematic) phases, among others [1,2]. Their molecular order-
ing often dictates the optical [3–8] and mechanical properties
of the structures they form [9–13]. Indeed, the ability of
these molecules to form desired structures is crucial for their
integrity as structural elements in cells or as photonic ma-
terials. This is most obvious for corneal collagen, which
combines both features: optical and mechanical [9–13]. Some
molecules tend to align and can form nematic structures;
rodlike molecules without chirality are good examples [1,2].
Some molecules have chirality; their mirror reflection has an
opposite handedness. These molecules can form cholesteric
phases, since adjacent molecules tend to align slightly in a
nonparallel (skew) orientation (see Fig. 1). Good examples are
the structural proteins collagen [9,14–22] and chitin [23], and
DNA [24].

The focus of this paper is on nematic and cholesteric
molecules, as illustrated in Fig. 1. Studying chiral molecules
is no simple task. First, each molecule stores large degrees
of freedom: conformational and orientational. Beyond some
length scale known as the persistence length, they tend to coil
up, so as to explore a large conformational space. Second, the
simultaneous presence of various distinct interactions poses
a serious challenge to our theoretical analysis: bending, ne-
matic, and chiral interactions, etc.
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In the Oseen-Frank (OF) model [2,25], a system of rodlike
molecules is represented by a vector field, n(r), of unit size
(i.e., n · n = 1). A free energy cost is assigned to different
types of deformations: splay, twist (chiral), and bending. The
degree of these deformations is controlled through the coef-
ficients of the corresponding free energy terms. In the OF
model, the cholesteric free energy density is given by

fOF chol = 1

2
K22

(
n · ∇ × n + k2

K22

)2

. (1)

The parameter K22 gives the strength of cholesteric inter-
actions and k2 controls the pitch. This free energy term is
minimized by the following cholesteric configuration: n(z) =
x̂ cos(kz) + ŷ sin(kz), when k = k2/K22, where x̂ and ŷ are
unit vectors in the x and y directions [2,25]. Here, 2π/k is the
pitch, i.e., a height along the z axis, over which the director n
makes a complete turn.

The full OF free energy contains more terms that describe
splay, bend, splay-bend, and saddle-splay deformations [1,2].
For instance, the so-called blue phase, characterized by double
twist, is controlled by an energy term describing saddle-splay
deformations [2,26,27]. However, they are not directly rel-
evant to the cholesteric behavior we focus on, as shown in
Fig. 1. This paper builds on the OF model in Eq. (1).

Although the OF model has been highly successful in
predicting the particular configurations of aligned molecules,
it has limitations. One typically seeks for n that minimizes
the free energy in Eq. (1) or a more general form of free
energy [1,2,26,27]. As a result, it ignores the orientational
degrees of freedom of individual molecules, which leads
to imperfect molecular alignment, as well as the flexibil-
ity of their backbone. The formation of isotropic phases by
these molecules points to the significance of the orientational
degrees of freedom stored in them [1,2]. In contrast, the con-
ventional Maier-Saupe (MS) or Onsager theory of nematic
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FIG. 1. Molecules that form cholesteric phases tend to be chiral,
such as the pentuple helix (resembling type 1 collagen [10–12])
shown at the top. These may align parallel to one another (left) or
at an angle (right). If the molecules are thought of as simple solids
with the geometry shown, adjacent helices could pack all in parallel
(nematic, left) or if successive layers are rotated by an angle 2� (with
� being the twist angle, as defined at the top) then the subunits of
one helix would fit into the grooves between subunits of the adjacent
helix. Interactions between real molecules are undoubtedly more
complicated, involving weak interactions, such as hydrogen bonding
and van der Waals interactions, as well as other complications. This
simple picture is only meant to provide an intuitive caricature of the
formation of cholesteric phases.

phases replies on the orientational distribution of molecules
[see Eq. (5) for MS interactions] [1,2]. The distribution tells
us about the degree of ordering. It is desirable to construct a
cholesteric interaction at the level comparable to that of MS or
Onsager theory. Furthermore, chain flexibility turns out to be
a relevant parameter, since it tends to diminish orientational
ordering [28].

In our previous work [29], we introduced self-consistent
field theory (SCFT) of chiral molecules, which takes into
account the orientational degrees of freedom and chain

w( r,u)

r u
s

s= 0 s= L

lp

x
y

z

FIG. 2. Collagenlike chains (in a nematic phase) (left) and a field
representation (right). The polymers are modeled as wormlike chains
with persistent length �p and contour length L, interacting with each
other through chiral-nematic interactions. The field representation
focuses on one chain and replaces the influence of others by a field
w(r, u) it is subject to. In self-consistent field theory (SCFT), w(r, u)
and the spatial distribution of “particles” (e.g., chain segments), de-
noted as ψ (r, u), are determined self-consistently. We adjust w(r, u)
and ψ (r, u) iteratively until they are “correctly” related. Reprinted
with modifications from Ref. [28], with the permission of AIP
Publishing.

flexibility of these molecules. Here, we extend this approach
by including explicitly MS nematic interactions [1,2,30]. Us-
ing the resulting approach, we discuss the chiral-nematic
phase behavior and construct a phase diagram showing re-
gions of stability for isotropic, nematic, and cholesteric phases
in the ν-γ plane, where ν and γ are nematic and cholesteric
interaction parameters, respectively. The isotropic phase oc-
cupies the small ν-γ range. The cholesteric phase becomes
stabilized as γ increases. Increasing ν does not always induce
a transition to the nematic phase. Indeed, we find that MS
interactions can stabilize the cholesteric phase by reducing
the free energy cost for orientational ordering, as is more
obvious for less stiff polymers including collagen. As a result,
the isotropic-cholesteric phase transition is shifted to lower
cholesteric interaction strength, as long as ν is larger than the
value of ν at which the isotropic-nematic transition occurs.

The main advantage of SCFT is its extensibility to the prac-
tically relevant case of cholesteric molecules, possibly mixed
with crowding molecules (e.g., proteoglycans), near an inter-
face [10–12]. Indeed, the desire to engineer tissue constructs
or substitutes (e.g., cornea and tendon) has generated much
interest in understanding how confinement or crowding con-
trols the structure of collagen assembly. Self-consistent field
theory is well suited to the study of confined polymer mixtures
(see Ref. [28] for confined nematic molecules). Furthermore,
it can be extended to capture the aforementioned other types
of deformations as outlined in Ref. [29]. Inclusion of these
additional complexities will add to the predictive power and
relevance of SCFT.

II. THEORY

This paper describes an incompressible melt (or solution of
uniform concentration) of chiral nematic polymers, modeled
as wormlike chains (WLCs) with chiral-nematic interactions.
The melt, of volume V , contains nc chiral polymer chains,
each of which has a contour length L and persistence length
�p, as illustrated in Fig. 2. Each polymer is composed of N
segments of size a each; each monomer occupies a volume
ρ−1

0 = V/ncN . The position along the chain is parametrized
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by s in the range 0 < s < 1 and the unit tangent vector to a
chain is given by

u ≡ 1

L

dr(s)

ds
, (2)

where r(s) denotes the spatial position of the segment at
location s. The reduced concentration, ψ (r, u) ≡ ρ(r, u)/ρ0,
is the local concentration of segments with orientation u;
ψ (r, u) can be thought of as a probability density of segment
orientations.

We model interactions between segments using a combi-
nation of the Maier-Saupe model [1,2,30] and a cholesteric
potential that we described in a previous paper [29]. The
effective Hamiltonian of the melt is given as a sum of several
terms:

U = UB + U0 + UMS + UC. (3)

Here, UB is a sum of bending energies for the nc WLCs, each
identified by an index α (see Ref. [28] and references therein):

UB

kBT
= �p

2L

nc∑
α=1

∫ 1

0
ds

∣∣∣∣duα

ds

∣∣∣∣
2

. (4)

The excluded volume interaction, U0, is simply a constant for
a uniform density and thus can be ignored. The Maier-Saupe
interaction is given by [1,2,30]

UMS

kBT
= −νNρ0

2

∫
drdudu′ψ (r, u)P2(u · u′)ψ (r, u′), (5)

which is characterized by the strength ν and P2(x) = (3x2 −
1)/2 is the Legendre polynomial of degree 2. Finally, the
cholesteric interaction proposed in Ref. [29],

UC

kBT
= γNρ0

2

∫
drdu[u · ∇ × 〈u′〉(r) + κ]2

ψ (r, u), (6)

depends on the average local alignment vector, 〈u′〉(r) ≡∫
du′ψ (r, u′), the strength of the interaction, γ , and the char-

acteristic cholesteric pitch, 2π/k∗. In Eqs. (5) and (6), νN and
γN are the strength per chain segment and can be expressed as
νN = ν/N and γN = γ /N , where ν and γ are the correspond-
ing strength per chain. Below, we use ν and γ .

The free energy (density) in the OF model in Eq. (1) is a
special case of Eq. (6). If we assume ψ (u, r) = δ[u − n(r)]
and set k2/K22 = κ , UC in Eq. (6) per volume reduces to
fOF chol in Eq. (1). As a result, 2π/k∗ represents correctly the
helical pitch only in the limit γ → ∞, i.e., when the entropy
of the system is suppressed. Indeed, there is a subtle difference
between Eqs. (1) and (6): |n| = 1 in Eq. (1), whereas |〈u〉| � 1
in Eq. (6). To see possible consequences of this difference, let
us pretend that we lift the constraint |n| = 1 and treat it as rep-
resenting 〈u〉. If we introduce A ≡ √〈u · u〉, we can express a
segment orientation field as n = A(x̂ cos kz + ŷ sin kz). This
essentially describes the WLC system by (i) only its local
average orientation and (ii) its degree of orientation, A. The
energy in Eq. (6) is minimized when A2k∗ = κ . The combi-
nation A2k in Eq. (6) plays the same role as k in Eq. (1).
As a result, the helical pitch is given by the combination
p = 2π/k∗A2L [29].

In the next steps, we carry out SCFT calculations in the
usual way [28,31] (see Fig. 2 for the essence of SCFT). Given

a field, w(r, u), which represents the interactions between
segments, we can calculate the propagator, q(r, u, s), of a
polymer subject to this field. The propagator is the partition
function for a portion of a WLC up to a point on the chain, s,
which is fixed at spatial position r, and has orientation u. The
propagator for a WLC obeys

∂q

∂s
=

[
L

2ξ
∇2

u − Lu · ∇ − w(r, u)

]
q(r, u, s), (7)

which is solved with uniform initial conditions, q(r, u, s =
0) = 1. The back propagator, q†(r, u, s), is the partition func-
tion for the rest of the chain and is solved similarly, but starting
from the other end of the molecule, thus replacing s with
1 − s. Segment concentrations are then given by

ψ (r, u) = V

Q

∫ 1

0
dsq(r, u, s)q†(r, u, s) (8)

where

Q =
∫

drduq(r, u, 1) (9)

is the partition function for a WLC subject to the field w(r, u).
What is presented above describes how we find the statis-

tics of polymers subject to the field, w(r, u). We now consider
how to calculate w(r, u). The field represents the interactions
of a polymer with other polymers and thus reflects the ener-
gies described in Eqs. (5) and (6). The field equation found by
differentiating the internal energy is given by

w(r, u) = −ν

∫
du′P2(u · u′)ψ (r, u′)

+ γ

∫
du′(u · ∇ × 〈u′〉 + Lk∗)2ψ (r, u′), (10)

which represents the potential produced by polymers with a
configuration given by ψ (r, u′). The first term corresponds to
the Maier-Saupe interactions, while the second corresponds to
the cholesteric interactions.

We now have a way of finding the configuration, ψ (r, u′),
given the potential, w(r, u), and a way of finding the potential
given the configuration. Applying these two conditions simul-
taneously gives us a self-consistent solution, corresponding
to the single most likely configuration. This is the essence of
SCFT. We solve for the self-consistent solution by starting
with an initial guess for the field and adjusting it iteratively,
using Anderson mixing [32,33].

SCFT calculations are carried out by starting from an ini-
tial guess for w(r, u), followed by calculating the ψ (r, u)
as above and adjusting the w(r, u) to satisfy Eq. (10). A
mean-square error between the left- and right-hand sides of
Eq. (10) of 10−4 is sufficient for our calculations. We can then
write the free energy per unit chain as

F

nckBT
= − ln Q − 1

2V

∫
drduw(r, u)ψ (r, u). (11)

The equilibrium behavior of chiral nematic polymers was
evaluated by imposing a twist angle for the cholesteric phase
(and a twist angle of zero for the isotropic and nematic
phases), as described in Ref. [29]. The equilibrium cholesteric
pitch was calculated by minimizing the free energy with
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FIG. 3. Distributions, ψ (r, u), are shown for the cholesteric phase (single peak) and the nematic phase (double peak), calculated at γ =
4.5133 and ν = 132.528. The horizontal plot on the left shows the distribution in φ-θ space whereas the plot on the right shows a slice through
θ = π/2. The illustration in the middle is to define the angles φ and θ . The rod on top has φ = π/2 and θ = π/2. This orientation represents
the peak location in the φ-θ space in the distribution on the left. The distribution is more strongly peaked for the cholesteric phase.

respect to the twist angle, followed by comparing the free
energies of the other phases. SCFT calculations were con-
ducted with a spatial resolution of � = 0.01L and an angular
resolution of 20 points in the θ direction and 32 points in ψ .
Equation (7) is solved with 5 × 104 steps in s, using an Euler
step.

III. RESULTS

In this paper, we consider the behavior of nc polymer
chains contained in a volume V . Each chain consists of N
monomers and the monomer density is then given by ρ0 =
ncN/V . The chains interact with each other via the MS and
cholesteric interactions described in Eqs. (5) and (6), respec-
tively, in the previous section. Throughout this paper, we fix
κ = 1 for simplicity. Changing κ has quantitative but no qual-
itative effects on the results. Also, we typically use L/�p = 20
as for collagen [10,28,34], unless otherwise stated.

We start by considering the distributions of orientations
of polymers in the phases of interest: cholesteric, nematic,
and isotropic. In the isotropic phase, there is no directional
preference for monomers or polymers. Thus the distribution
is uniform: ψ (r, u) = 1/4π . For the cholesteric and nematic
phases, Fig. 3 illustrates typical distributions obtained with
γ = 4.5133 and ν = 132.528. Note that with these parameter
choices the isotropic, nematic, and cholesteric phases have
the same free energy (see Fig. 8). The monomer orientation
distribution in the nematic phase is peaked along ±n, the
nematic director. This reflects the fact that in the nematic
phase a parallel arrangement is equivalent to an antiparallel
arrangement. Polymers may be reversed (reflected) with no
change to the relevant physics. Mathematically, we see this as
the quadratic dependence of the interaction energy on the dot
product u · u′ in Eq. (5).

In the cholesteric phase, there is a single orientation peak,
as shown in Fig. 3. This arises from the nature of cholesteric
interactions that depend on the chirality of the molecules.
Traveling one direction along the molecules (e.g., increasing
s) is different from traveling the other way (decreasing s).
Monomers pointing along the −u direction are reflections of
monomers pointing in the u direction. In chiral molecules,

“antiparallel” monomers would therefore have the opposite
chirality. Mathematically, this enters in the linear term 2k∗u ·
∇ × 〈u′〉(r) in Eq. (6) and leads to a preference for a partic-
ular segment orientation and a particular twist direction, i.e.,
nematic planes rotating clockwise with increasing z in Fig. 1,
as opposed to anticlockwise, as would occur for molecules
with the opposite chirality.

The next step is to determine the optimal pitch for the
cholesteric phase, by evaluating the free energy as a function
of k, the magnitude of the helical or twist wave vector. Fig-
ure 4 shows an example calculation obtained with the choices,
γ = 4.5133 and ν = 132.528, as in Fig. 3; in this paper, γ is
given in units of L2 but ν is dimensionless. The free energy
has a clear minimum, indicating a preference for a particular
(optimal) value of k. The cholesteric energy UC in Eq. (6) is
minimized when k = k∗ = 1/L.

We have three adjustable parameters in this model: the
strengths of nematic and cholesteric interactions, denoted as
ν and γ , respectively, and the preferred pitch of an “ideal”

FIG. 4. Free energy, per chain, of the cholesteric phase relative
to the nematic phase, as it varies with k, the magnitude of the
helical wave vector. The curve was calculated at γ = 4.5133 and
ν = 132.528.
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FIG. 5. Left: Optimal twist wave vector, k∗, and rescaled k∗A2 (along with the rescaling factor A), obtained with ν = 132.528, as a function
of cholesteric interaction strength, γ . The rescaled wave vector k∗A2 tends to the energy minimizing value of k∗A2 = 1/L as γ → ∞. We did
not extend to higher γ as calculations become unstable. Right: Helical pitch, p = 2π/k∗A2L, and A2 at ν = 132.528 as a function of γ . The
helical pitch approaches the expected (energy-minimizing) value 2π , as γ increases.

cholesteric phase, 2π/κ (with κ set to 1). We explore the
effect of changing the relative strengths of cholesteric and
nematic interactions, while fixing κ = 1.

The graph on the left in Fig. 5 shows how the optimal
helical wave vector k∗, obtained with ν = 132.528, changes
as we vary the strength of cholesteric interactions γ . As noted
earlier and discussed in Ref. [29], the helical pitch is no longer
equal to 2π/k∗L when |u| < 1, as is the case for γ < ∞. It
is larger than 2π/k∗L, since entropy tends to diminish the
helical organization, thus stretching the pitch. Also shown is
the rescaled k∗L, i.e., k∗A2L, as well as A (right axis). As
γ increases, k∗A2L increases gradually and approaches 1, at
which the cholesteric energy in Eq. (6) is minimized.

The graph on the right in Fig. 5 summarizes our results
for the helical pitch p = 2π/k∗A2L along with the calculated
values of A2. The helical pitch decreases monotonically and
tends to 2π as γ increases. Only in the limit γ → ∞ will
the pitch reduce to the one at which the cholesteric energy in
Eq. (6) is minimized: p = 2π ,

We are also interested in k∗ as we vary the nematic in-
teraction strength, ν. The graph on the left in Fig. 6 shows
k∗ as a function of ν for γ = 4.5133. Once again, at large

interaction strength, k∗ → 1/L, for the same reason as in
Fig. 4: stronger interaction strength leads to a more peaked
distribution, ψ (r, u), suppressing entropic effects; for larger
ν, the polymers are better aligned and there will be less en-
tropy to lose when forming a cholesteric structure. Also shown
in Fig. 6 is k∗A2 and A, as a function of ν. In contrast to k∗L,
k∗A2L increases gradually and approaches 1, i.e., the energy
minimizing value, similarly to what is shown in Fig. 5.

The graph on the right in Fig. 6 shows the helical pitch
p = 2π/k∗A2L as a function of ν (along with A2). The pitch
decreases monotonically with ν and approaches the expected
limiting value 2π as ν → ∞. This observation is paralleled
by what the right graph in Fig. 5 suggests.

In order to examine the relative stability of the cholesteric
and nematic phases, we consider the difference in free energy
between these phases as a function of γ . A sample calculation
is illustrated in the graph on the left in Fig. 7 obtained with
ν = 132.528 as in Fig. 5. At higher cholesteric interaction
strengths, the cholesteric becomes more stable. This signals
a phase transition to the cholesteric phase.

The relative stability of cholesteric and nematic phases also
changes when the nematic interaction strength ν is varied

FIG. 6. Left: Optimal twist wave vector k∗, rescaled wave vector k∗A2, and A, obtained with γ = 4.5133, as a function of nematic
interaction strength, ν. The rescaled k∗A2 increases and tends to 1/L as ν increases. We did not extend to higher ν as calculations become
unstable. Right: Helical pitch, p = 2π/k∗A2L, and A2 at γ = 4.5133 as a function of ν. The pitch p approaches 2π , as ν → ∞.
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FIG. 7. Left: Free energy, per chain, of the cholesteric phase relative to the nematic phase, as it varies with cholesteric interaction strength,
γ . Free energies are calculated at the optimal twist angle, with the same ν = 132.528 as in Fig. 5. Right: Free energy, per chain, of the
cholesteric phase relative to the nematic phase, as it varies with nematic interaction strength, ν. Free energies are calculated at the optimal twist
angle, with the same γ = 4.5133 as in Fig. 6.

while γ is held fixed at γ = 4.5133. This is illustrated in
the graph on the right in Fig. 7. Strangely, increasing the ne-
matic interaction strength appears to stabilize the cholesteric
phase, not the nematic phase. First, note that this is not a
general feature of a cholesteric system described by the sum:
UB + UMS + UC (see Sec. II). For smaller γ (<4.5133), in-
creasing ν indeed stabilizes the nematic phase, as evidenced
below. It proves useful to consider increasing ν for some
large γ : γ > 4.5133. In this case, the cholesterol energy com-
petes with the entropic cost for forming the cholesteric phase.
For sufficiently large γ , the competition is tilted toward the
cholesteric phase, irrespectively of the nematic energy UMS.
Otherwise, the system tends to balance UB + UMS + UC with
entropy. As ν increases, the entropy becomes less important
and the polymers in the system can align better. Whether
this will induce a transition to nematic or cholesteric phases
depends on the balance between UMS and UC. The free energy
result in Fig. 6 indicates that once the polymers tend to align
the system can benefit from cholesteric ordering more than
from nematic ordering, when γ � 4.5133.

Combining these free energy calculations allows us to
construct a phase diagram. Here, the control parameter is
L/�p. The boundary between different phases is where the
free energy (per molecule) is the same for the two phases.
Recall that free energies are calculated at the optimal twist
angle. The boundary is set by the competition between energy
and entropy, which is dictated by the value of L/�p. Figure 8
shows phase diagrams in the ν-γ space, obtained with differ-
ent choices of L/�p: (a) L/�p = 0.5 (rodlike), (b) 1, (c) 10,
and (d) 20 (collagenlike). In the diagram, ISO, CHOL, and
NEM refer to the isotropic, cholesteric, and nematic phases,
respectively. The region labeled as ISO, for instance, is where
the isotropic phase is stable; other regions can be understood
similarly. Indeed, L/�p controls the width of each region (e.g.,
ISO). The dot is the triple point where all these phases coexist.

The shape and width of the boundaries between different
phases are determined by the interplay between entropy, UB

[Eq. (4)], UMS [Eq. (5)], and UC [Eq. (6)]. Note that the
isotropic phase is stable in a wider parameter space for larger

L/�p, i.e., when the polymers are more flexible, since the en-
tropic penalty for forming ordered states is higher, as reflected
in the diagram.

First, the boundary between the isotropic and cholesteric
phases is convex upward. This means that the cholesteric
phase is more easily reached for larger ν, as is most obvious
in Fig. 8(d). This is well aligned with the free energy in Fig. 6,
which indicates that the cholesteric phase becomes more sta-
ble as ν increases, as long as γ � 4.5133 (i.e., above the triple
point). For this large range of γ , the cholesteric system can
benefit by lowering UC [Eq. (6)]; the role of UMS is to align
the polymers from an isotopic phase, reducing the entropic
penalty for the formation of a cholesteric phase. Indeed, this
is best reflected in the diagram in Fig. 8(d), which represents
the largest L/�p value used in Fig. 8. In this case, the bound-
ary is nearly flat. As a result, increasing ν will promote the
formation of a nematic phase, as long as γ � 4.5133.

The boundary between the isotropic and nematic phases is
straight vertical. For the range of γ below the triple point, the
isotropic and nematic transition is controlled by the value of
ν, independently of γ , since the cholesteric phase is unstable
in this range of γ (see Fig. 5). This explains the shape of this
boundary.

In contrast, the boundary between the cholesteric and ne-
matics phase is convex downward. For small γ , increasing ν

promotes the formation of nematic phases, as expected. For γ

near the triple point, however, increasing ν makes the nematic
phase unstable to the cholesteric phase, as is most obvious
in Fig. 8(d). This is correlated with the free energy curve
in Fig. 6, which indicates that the cholesteric phase is more
stabilized for larger ν.

IV. DISCUSSION

We have presented a theoretical approach to a cholesteric
system consisting of semiflexible polymers with chirality
(e.g., collagen). The resulting approach combines MS nematic
interactions and chiral interactions inspired by the OF model
into SCFT. It thus extends the scope of SCFT to cholesteric
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(a) (b)

(c) (d)

FIG. 8. Phase diagram, depicting the boundaries between the cholesteric, isotropic, and nematic phases in the ν-γ space. The diagrams
are shown for (a) L/�p = 0.5 (rodlike), (b) 1, (c) 10, and (d) 20 (collagenlike). Here ISO labels the region where the isotropic phase is stable;
similarly, CHOL and NEM stand for cholesteric and nematic, respectively. As L/�p increases, the polymers become more flexible. As a result,
the isotropic phase is stable in a wider space. The dot in each diagram is the triple point, where the three phases coexist.

molecules. A distinguishing feature of this approach is that
each cholesteric molecule at a given position is allowed to
change its orientation and thus follows a probability distribu-
tion, which is set by SCFT equations. As a result, it takes into
account the entropy of the system, associated with the orienta-
tional degrees of freedom. It can benefit from a wide spectrum
of theoretical and computational methods developed for SCFT
[30,31]. Indeed, it enables us to study the transition from an
isotropic to cholesteric phase, as the strength of cholesteric
interactions increases.

Using our approach, we have studied how MS nematic and
chiral interactions orchestrate in determining the phase behav-
ior of cholesteric molecules with varying chain stiffness; we
have constructed a phase diagram in the ν-γ plane that shows
regions of stability for isotropic, nematic, and cholesteric
phases. First, the boundaries between different phases merge
into a triple point, where all these phases are equally stable.
Also, the region where the isotropic phase is stable is wider for
larger L/�p (i.e., more flexible). As a result, the coexistence
(triple) point of isotropic, nematic, and cholesteric phases
shifts towards larger values of ν and γ , as L/�p increases.

For collagenlike molecules (i.e., L/�p = 20), the nematic
interactions reduce the entropic penalty for forming ordered

structures and can thus stabilize cholesteric phases, unless
γ is sufficiently small below the triple point. This is corre-
lated with our observation that MS interactions narrow the
distribution of polymer segment orientations (the data are not
shown). It makes the cholesteric-phase stable region wider
than expected from a picture in which chain flexibility is
ignored.

Organization of biomolecules into ordered structures often
occurs near an interface, presented by the experimental or
biological setting, or in the presence of crowding molecules
(e.g., proteoglycans) [10–12]. In earlier studies on nematic
polymers [28], we showed that planar confinement tends to
align the polymers in parallel to the wall; above the onset
of nematic transition, this alignment propagates into the bulk
phase. Similar considerations with cholesteric molecules will
clarify if planar confinement promotes nematic or cholesteric
ordering. Another determining factor is the presence of
crowding molecules, which controls the assembly of collagen
[10–12]. In contrast to what the conventional Oseen-Frank
model promises, SCFT can be extended to take into account
this complexity explicitly through energy terms and the as-
sociated fields. Also, similarly to the way we formulated the
cholesteric energy in Eq. (1) in SCFT, one can include the
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energy associated with such deformations as splay, splay
bend, and saddle splay in SCFT as outlined in Ref. [29].
Finally, our SCFT model has an additional parameter, i.e., the
density of polymer segments ρ0, which can be tuned to exper-
imental conditions. Our approach presented here constitutes
a first step toward constructing a more complete free energy
approach to cholesteric molecules in SCFT.
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