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Viruses are right at the interface of inanimate matter and life. However, recent experiments [Sakai et al.,
J. Virol. 92, e01522-17 (2018)] have shown that some influenza strains can actively roll on glycan-covered
surfaces. In a previous letter [Ziebert and Kulić, Phys. Rev. Lett. 126, 218101 (2021)] we suggested this to be
a form of viral surface metabolism: a collection of spike proteins that attach to and cut the glycans act as a
self-organized mechano-chemical motor. Here we study in more depth the physics of the emergent self-rolling
states. We give scaling arguments how the motion arises, substantiated by a detailed analytical theory that yields
the full torque-angular velocity relation of the self-organized motor. Stochastic Gillespie simulations are used to
validate the theory and to quantify stochastic effects like virus detachment and reversals of its direction. Finally,
we also cross-check several approximations made previously and show that the proposed mechanism is very
robust. All these results point together to the statistical inevitability of viral rolling in the presence of enzymatic
activity.
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I. INTRODUCTION

One of humanity’s greatest inventions is the wheel, and
technological revolutions were carried by its “motorization.”
Being technologically so indispensable, we might ask about
the wheel’s utility in biology [1]. On the macroscale exam-
ples are scarce, yet in the microrealm passive rolling, e.g., of
white blood cells [2] or malaria-infected red blood cells [3],
occurs in shear flow and is important for the functioning of the
immune response and the traveling of the parasite through our
body, respectively. Active self-propelled rolling was unknown
for a long time. But surprisingly, the motorized wheel was
rolling also in nature for ages: our old molecular adversary—
the influenza virus—apparently is able to use its whole body
as a chemically driven monowheel that actively rolls on our
lung cells’ surfaces by catalytically hydrolyzing sugars stick-
ing out from the cell membranes. This surprising (and maybe
even alarming) phenomenon of active virus surface rolling has
been demonstrated first by Sakai et al. [4,5] and interpreted
as a Brownian-ratchet-like effect. It also has been observed
indirectly [6] and is discussed now as an important pathway
helping the virus to cross and navigate the mucus [7,8].

The underlying physical mechanism, different from the
classical Brownian burnt bridge model [9,10], has been pro-
posed recently in [11], where we outlined elements of a model
which we elaborate more deeply in the present work. The
initial model appears to have left parts of the molecular motor
community in slight disbelief [12] whether the mechanism
could actually work as described. Here we explain the ro-
bustness and inevitability of the rolling state as proposed
earlier and verify approximations made in [11] against more

detailed analytical calculations and stochastic simulations. In
addition we develop a scaling view on the mechanism. We
study stochastic effects such as reversals of direction and virus
detachment. Finally, we clarify how the directional stability
and processivity physically emerge by pinpointing an internal
“mechano-chemical flywheel”—a long-living internal polar-
ization mode with directional memory—that allows for highly
persistent rolling to occur in spite of large external noise and
at zero Reynolds number.

The paper is organized as follows: in Sec. II we describe
the basic ingredients, from reaction kinetics to force balance.
Section III then goes on to explain on an intuitive level why
the virus actually rolls and how its rolling steady state arises.
In Sec. IV the steady rolling is studied via simple approxi-
mations allowing the force-velocity relation to be analytically
investigated. Section V then describes a stochastic version of
the model which we show to be consistent with the continuum
version in the steady state. Beyond this limit, we also explore
stochastic phenomena, like the rates of virus detachment,
reversals, run lengths, etc. Section VI critically scrutinizes
approximations made so far and quantifies the dynamical per-
sistence of the mechanism by studying a virus being stopped
instantaneously, leading to a build-up of torque via the “fly-
wheel” effect. Finally, in Sec. VII we discuss implications of
the model for biology and virology, and we conclude with
some open questions and experimental tests.

II. BASIC MODEL

We first present a mean-field description that will
give general insight into the problem and, using several
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FIG. 1. Influenza A has two spike proteins on its surface:
hemaglutinin (HA, blue), which attaches to sugar residues from short
surface-bound glycan chains (green), and neuraminidase (NA, red),
which cuts the sugar residues such that they are no longer available
for HA binding. In a first step, we consider a virus rolling under
an externally applied force over a glycan-covered (cf. green dots)
surface, as sketched in (a) as both a cross-section view and a top view.
The HA-glycan binding kinetics (in the contact zone as sketched
in the left panel by the bar) will result in a friction force opposing
the rolling motion. (b) In a second step, we consider the effect
of NA cutting. The dynamic self-organization (self-polarization) of
the bound linker profile in the contact zone now allows for steady
self-rolling. The NA “consumes” glycans, which leads to a depleted
trail on the back of the virus (see right panel).

approximations, allows for a detailed analytical treatment of
the steady rolling.

The results derived here are formulated for any viral cap-
sid cross section orthogonal to the rolling direction and are
equally valid for both influenza isoforms [13,14]: the cylindri-
cal (filamentous) and the spherical virus geometry. The main
difference between the two cases is the system size (total
number of interacting spike proteins) and the enhanced role
of fluctuations for spherical or smaller aspect ratio viruses.
Stochastic effects are postponed to Sec. V, where we also
critically scrutinize the validity of the assumptions made here.

A. Influenza spike proteins and their kinetics

As one of the omnipresent molecular adversaries of
mankind, the influenza virus (IV) and its proteins have been
extensively characterized [15–18]. As often in the virus realm,
influenza is in fact a whole family of viruses that have evolved
slightly differently. We will focus here on the two viruses
where motility has been evidenced experimentally [4,5], in-
fluenza A (IVA) and influenza C (IVC).

IVA has two spike proteins that interact with the host
membrane: hemaglutinin (HA) and neuraminidase (NA); see
Fig. 1. These are distinct ∼10 nm-sized entities (HA is a
trimer, NA a tetramer) that perform two distinct and mutually
competing functions: HA binds to sialic acid residues of gly-
copeptides and lipids coating the surface of our cells, while
NA acts antagonistically by hydrolytically cutting the same
sialic acid residue that HA binds to. Importantly, for steric

reasons the residue can be bound either by one HA or by one
NA molecule, but not by both at the same moment. In IVC,
the two proteins are fused together into a single spike protein
[19], meaning the “attaching spike” and the “cutting spike”
are colocalized. But again, only one of the binding sites can
interact with a glycan residue at a time. Note that this renders
IVA more flexible, as it, for instance, can polarize its HA-NA
distribution on its surface and engage in other mechanisms
of motion than described here, as discussed previously [20].
This motion, however, is a much slower process; cf. Sec. VII.
Due to lack of available experimental data, we study here the
kinetics with IVA parameters and assume that the values for
IVC (once available) should be of similar order.

The binding and unbinding kinetics of HA will be de-
scribed via on and off rates kon, koff . These have been
characterized experimentally [21,22] yielding a dissocia-
tion constant Kd = koff

kon
= 1–5 mM (we use 2 mM), koff =

10−1–1 (1) s−1, and kon = 0.01–1 (0.5) mM−1s−1. NA tran-
siently binds (with rates k1, k−1) and then enzymatically
cuts the sialic residues with a rate kcut, making the gly-
cans irreversibly inactive for HA binding. We hence use
a Michaelis-Menten description with a Michaelis constant
KM = (k−1 + kcut )/k1. NA’s enzymatic activity has also been
measured [23] to yield KM � 14.3 mM and kcut � 15 s−1,
implying Vcut = kcutNNA = 15 mMs−1 for a typical NA con-
centration of NNA = 1 mM.

B. Contact interval

During virus rolling all the force generation happens in
the virus-substrate contact region, i.e., the interface where
the virus and the glycan-coated substrate (cell membrane)
meet. Here we roughly estimate the size of this region for a
cross section of a cylindrical (or spherical) virus and will later
substantiate the result by considering the full binding kinetics;
cf. Sec. VI A.

We assume that glycan chains are present at a high concen-
tration G0, well in excess of spike proteins (throughout this
work we use G0 = 10 mM and for the HA spike concentration
H0 = 2 mM, as estimated earlier [11]). The glycan chains are
constantly binding to and unbinding from the HA spike pro-
teins and elongate to a length l = R(1 − cos φ) in that process,
where φ is the angle measured from the virus symmetry axis
and R the virus radius. If bound they gain a free energy

�G = kBT ln
(G0

Kd

)
(1)

with Kd the dissociation constant. In turn they have to pay the
elastic energy of getting stretched,

Eel (φ) = S

2
l2 � SR2

8
φ4 for φ � 1, (2)

where glycan chains were considered ideal linear springs
with spring constant S ∼ 0.01–1 kBT/nm2, a typical range for
polymers of few nm length (we chose 0.1kBT/nm2). Note that
the cylindrical (or spherical) geometry of the virus results in
a strong dependence on the angle φ and on the virus radius R
(which for IV is typically � 50 nm). We neglect here the effect
of NA binding for simplicity, since it is short lived compared
to HA.
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Balancing the two energy terms yields the typical angular
size of the contact zone with φ ∈ [−φc, φc] to be

φc =
[

ln
(G0

Kd

)8kT

SR2

]1/4

. (3)

In the following we assume the contact area size to be a
constant, even when the virus is rolling.

C. Torque balance

The torque of an attached virus can be calculated using the
stretching force per linker Fel = − ∂

∂l Eel yielding a torque ∝
SR2(1 − cos φ) sin φ � 1

2 SR2φ3 for small angles. If the link-
ers have an angular density ρHA b(φ) with ρHA the angular
density of HA spikes and b(φ) the angular probability density
of each linker being bound, the total torque acting on the virus
is just the integral over all bound linkers,

m = −m0

∫ +φc

−φc

b(φ)φ3 dφ, (4)

with m0 = 1
2 SR2ρHA the characteristic torque scale.

When the virus is rolling at typical angular speeds, experi-
mentally ω � 1 s−1 [5], using typical densities of linkers one
can estimate all other torques, e.g., from hydrodynamics, to
be negligible. Therefore the torque balance m = 0 has to hold
(to very good approximation) at all times.

Note that for simplicity we assumed here that there is no
compression of the chains by the virus, except at φ = 0 to
fulfill force balance. This simplification can be relaxed as
explained in Appendix B.

D. Dynamics of bound linkers and free glycans

The binding of the HA spikes to the glycans can be
described by a simple on-off kinetics. Denoting the bound
HA-glycan linker concentration by B, the unbound (open)
HA concentration by O, and the free glycans by G, one has
∂t B = konG O − koff B and an equation with opposite signs
on the r.h.s. for ∂t O. Obviously, as O + B = H0 with H0 the
total number of HA, one can immediately eliminate the equa-
tion for the open HA.

Adding the dynamics for the free glycans, one can write

∂t B + ω∂φB = konG(H0 − B) − koff B, (5)

∂t G + ω∂φG = −konG(H0 − B) + koff B − fcut, (6)

where we accounted for a (potential) rolling with angular
velocity ω, leading to advection of all concentration profiles
as reflected by the second term on the l.h.s., and for the
enzymatic cutting of G by the NA spikes as reflected by the
total cutting rate fcut acting as a sink.

It is important to note that we made the approximation
that the on and off kinetics of HA-glycan binding satisfies
koff
kon

= Kd . That is, we neglected that Kd is in general stretching
force- [24] and hence angle-dependent. This—rather violent-
looking—approximation allows for an analytical treatment.
After having understood the general mechanism of virus
rolling, we show in Sec. VI A that the angle dependence can
be included in both continuum numerics and stochastic sim-
ulations and that this proper account of the detailed balance

does not change the behavior qualitatively. In other words, at
this stage, in the simple model we use the stretch dependence
only to determine the size of the contact interval, but not
for the kinetics. Hence the glycan-binding profile of a static
virus will be boxlike (constant in the contact interval and
zero outside), while in reality it decays with exp(−φ4); cf.
Sec. VI A.

The total cutting rate fcut can be approximated by a
Michaelis-Menten kinetics, as discussed in Sec. II A, with a
Michaelis constant KM and a cutting velocity of the sialic
acid (glycan) residues Vcut = kcutNNA set by the enzymatic
turnover rate kcut and the enzyme concentration NNA, giving
fcut = VcutG

KM+G .
Finally, the minimal model reads

∂t B + ω∂φB = konG(H0 − B) − koff B, (7)

∂t G + ω∂φG = −konG(H0 − B) + koff B − VcutG

KM + G
(8)

and has to be solved on the contact interval φ ∈ [−φc, φc]
with φc given by Eq. (3) and together with the torque balance
constraint, i.e., m defined in Eq. (4), must be zero at all times.

III. STEADY ROLLING: SCALING AND NUMERICS

Let us now discuss the just proposed—deterministic and
mean-field-type—model in the steady state on the scaling
level. In the steady state, the virus either is not moving at all or
rolls with constant angular velocity ω. The first main question
is if states with ω �= 0 are possible, and if so to understand and
analyze the causing mechanism.

A. Scaling arguments

Before diving into the detailed calculations, let us try to
explain the rolling motion using simple scaling arguments.
Our focus lies on what the bound linker distribution looks
like in the contact zone and the effects thereof for the torque
balance.

First consider the simplest case of a virus that is forced to
roll by an externally applied torque, as sketched in Fig. 1(a),
and that does not have enzymatic NA activity, i.e., it only
binds its HA to the glycans on the surface. In the rolling
direction, the virus encounters unbound glycans and the HA
needs time to bind, which means the bound HA-glycan distri-
bution in the comoving virus frame has the shape as sketched
in Fig. 2(a): it increases from zero with a certain slope and
levels off at a plateau value Bpl , corresponding to the mean
bound linker distribution that a nonmoving virus would have.
The slope is determined by two quantities: first, the linker
attachment rate,

α = konH0G0, (9)

which is linked to the plateau value by αtpl = Bpl , with tpl

the time it takes to establish the equilibrium plateau. The
second is the actual rolling speed of the virus ω. Since ωt ∼ φ

the slope in the angular distribution B(φ) is in fact given
by α

ω
. Consequently, one expects the slope to be steep for a

slowly rolling virus and shallow if the virus rolls very fast; cf.
Fig. 2(a) vs Fig. 2(b).
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RUIZ, ZIEBERT, AND KULIĆ PHYSICAL REVIEW E 105, 054411 (2022)

FIG. 2. Sketches of rolling virus cross sections with representa-
tions of their bound linker distributions within the contact zone. (a,
b) Passive case (no NA activity) for low vs high angular velocity ω.
Here the rolling must be due to an externally applied force, and the
linker-induced torque, m, counteracts the rotation. (c, d) Active case
with enzymatic NA activity, again for low and high ω. The linker-
induced torque accelerates (c) or decelerates (d) the rotation. (c2)
Steady state, where the two regions at the front and back counteract
and the total torque is zero. (e) Zoom of the passive (blue dashed)
and active (red) profiles with characteristic profile slopes α and β.

Now let us add a weak enzymatic cutting by NA. In the
rolling direction, the binding kinetics will still dominate, for
weak NA cutting rate ω. Hence the binding-induced positive
slope in the attachment region prevails. For a steady rolling
virus, however, with the distance from the front, the NA has
linearly more time to cut off the glycans, and hence one

expects that the second, plateau region is transformed into
an approximately linear, negative slope, which we denote by
β. This slope has in general a complicated parameter depen-
dence, but it will be roughly proportional to the enzymatic
cutting velocity

β ∝ Vcut. (10)

By the same argument as before, the slope in the angular
distribution B(φ) is given by β

ω
and the slope at the back is

steep for a slowly and shallower for a rapidly rolling virus;
cf. Fig. 2(c) vs Fig. 2(d). Figure 2(e) shows a zoom on the
contact zone with the slopes labeled and with sketches of their
different origins.

What are the consequences of these linker distributions for
the overall torque? Note that a homogeneous, constant dis-
tribution B(φ) (and likewise any symmetric one) is perfectly
balanced. Hence the linkers always missing at the front due
to the time it needs to establish the equilibrium distribution
imply that there is an excess force acting on the back, re-
sulting in a torque counteracting the rotation, as indicated,
e.g., in Fig. 2(a), where the torque m is acting against ω.
Consequently, the attachment dynamics results in an effective
friction. In turn, the second, negative slope implies the op-
posite: an excess force on the front, accelerating the motion.
Note that this is not forbidden thermodynamically: the action
of NA is an active process consuming, or rather cutting in
an irreversible manner, the glycans. Now it depends on the
relative slopes and relative sizes of the two regions whether
the virus is overall accelerating, as in Fig. 2(c), or decelerat-
ing, as in Fig. 2(d). In between there is the possibility of a
stationary state where the overal torque is zero, as sketched in
Fig. 2(c2). This exactly corresponds to the searched-for steady
rolling state in the absence of external driving.

We can substantiate this argument by estimating the
torque-angular velocity relation. This relation is a nonlinear
function—and hence allows for nontrivial steady states—
due to the different ω dependencies of the two regions, the
attachment-dominated front and the cutting-dominated back.
In fact, for the attachment dynamics, if the respective region is
small, the torque evaluates to matt ∝ − α

ω
φ2

plφ
3
c , where the first

term is the profile’s slope, the second term arises from the inte-
gral over the linear slope up to φpl , the angle where the plateau
begins, and φ3

c is related to the geometric lever arm. The
minus sign indicates the direction, opposed to the rotation.
Since φpl = ωtpl one gets matt ∝ −φ3

c α ω, i.e., a “Stokesian
hydrodynamics”-like friction linear in ω. In contrast, for the
cutting dynamics the contribution of the small front region
does not matter as cutting takes place everywhere at a uniform
rate. Hence the torque integral over the region of cutting is
mcut ∝ β

ω
φ2

c φ
3
c , i.e., it depends on ω only via the slope. The

positive sign indicates its accelerating effect discussed above.
Clearly, the overall torque balance 0 = m = matt + mcut, al-
lows for steady-state solutions of the type

ω ∝ ±φc

√
β

α
∝ √

Vcut; (11)

that is, the steady-state rolling velocity grows rapidly for small
cutting velocities Vcut.

054411-4



PHYSICS OF SELF-ROLLING VIRUSES PHYSICAL REVIEW E 105, 054411 (2022)

B. Time-angle correspondence and numerical solution

Let us confirm numerically that self-rolling is possible. In
the steady state we can drop the time derivative in Eqs. (7) and
(8) and must solve

ω∂φB = konG (H0 − B) − koff B , (12)

ω∂φG = −konG (H0 − B) + koff B − VcutG

KM + G
, (13)

combined with b(φ) = B(φ)/H0 giving the closure condition
in terms of the torque balance, Eq. (4),

m = −m0

H0

∫ +φc

−φc

B(φ)φ3 dφ = 0. (14)

To do so, we can apply the following strategy, which could
be called “time-rotation angle correspondence.” The angular
advection operator, ω∂φ , and the time derivative operator,
∂t , can be treated on the same grounds by replacing time
with the angle scaled by the angular frequency: t → φ+φc

ω
(or

φ = ωt − φc). The time window corresponding to passing the
contact interval [−φc, φc] is then [0, T ] with T = 2φc

ω
.

This observation suggests that we think of the steady state
as a dynamic relaxation of the concentrations on the time
interval [0, T ]. One can hence treat the problem as an initial
value problem at one boundary of the interval (the one in
rolling direction) with B(0) = 0 and G(0) = G0 (in the not
yet visited region, nothing has bound and no glycan has been
consumed yet): the solution of the dynamic problem Bdyn(t )
on a time interval [0, Ttest] can be obtained without any refer-
ence to the actual angular frequency ω.

In a second step Bdyn(t ) can be used to obtain the torque by
evaluating

m = −m0

H0

∫ tup=2φc/ω

0
Bdyn(t )(ωt − φc)3ω dt . (15)

Note that high frequencies correspond to taking the integral
over a short time interval and vice versa. Given the curve
Bdyn(t ) on a large enough interval, [0, Ttest] with Ttest > T for
all considered ω values, one can now scan the upper boundary
tup = 2φc/ω by varying the angular frequency and hence de-
termine ω such that m(ω) = 0, which is a simple root-finding
problem. Solving along the same lines for m(ω) = mext, with
an external torque mext, allows us also to obtain the torque-
angular velocity relation.

Figure 3(a) shows the angular velocity of the steady rolling
state, obtained numerically, as a function of enzymatic activ-
ity, i.e., NA concentration. One clearly sees the square-root
behavior as obtained by scaling, ω ∝ √

β with β ∝ Vcut ∝
NNA. Figure 3(b) shows the torque-angular velocity relation
obtained numerically for three values of NA concentration.
Free rolling corresponds to mext = 0.

The results obtained numerically and shown in Fig. 3 are
intriguing: in fact, any—even a small—enzyme activity leads
to finite rolling motion in this mean-field-type model. The
response of the motor close to free rolling is as expected:
an assisting torque speeds up the rolling and a counter-torque
slows it down, but there is a strong nonlinear dependence for
higher counter-torques. Both these findings can be understood
analytically and can be related to the parameters of the spike

(a)

(b)

FIG. 3. (a) Angular velocity ω of the steady rolling state as a
function of NA concentration NNA = [NA]. One obtains a square-root
behavior, ω ∝ √

NNA, as suggested by scaling. (b) Adding an external
torque mext allows us to obtain the torque-angular velocity relation,
which is a nonlinear function of ω. Three different values of NA
concentration are shown; the respective free rolling velocities (for
mext = 0) are also indicated in (a).

dynamics, as shown in the next section. They will then be crit-
ically compared to a model including stochastic fluctuations in
Sec. V.

IV. STEADY ROLLING: ANALYTICAL THEORY

In the steady state much analytical insight can be gained
using the main ideas introduced in the last section, i.e., the
time-angle correspondence and the “line approximations” of
the linker profiles, as sketched in Fig. 2.

A. Analytical solution for forced rolling without
enzymatic activity

We first consider the passive case, i.e., in the absence of
catalytic activity. That is, we assume that the virus is forced
to roll with a given steady-state angular velocity ω by a weak,
externally applied torque. For Vcut = 0 and in the steady state,
Eqs. (12) and (13) imply the conservation law ∂φ (B + G) = 0.
Assuming a homogeneous initial glycan coverage G0, we can
hence rewrite G(φ) = G0 − B(φ). This reduces the problem
to a single equation

ω∂φB = kon(G0 − B) (H0 − B) − koff B, (16)
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FIG. 4. The blue curve shows the bound linker profile on the
contact angle interval [−φc, φc] as given by Eq. (17). The virus is
forced to roll to the left. The fact that the linkers need time to bind
to the newly encountered substrate is reflected by the increase on the
left leveling to a plateau; cf. Fig. 2 and the discussion inSec. III A.
The dashed lines show the two-line approximation given by Eq. (22).
Parameters as given in Sec. II, implying φc � 0.5.

which, for the initial condition B(−φc) = 0 (rolling to the
left), can be solved exactly

B(φ) = C0 − C1

2
− C1

C0+C1
C0−C1

e
C1kon

ω
(φ+φc ) − 1

. (17)

Here C0 = H0 + G0 + Kd , C1 =
√

C2
0 − 4H0G0 are constants

determined by the concentrations and reaction kinetics. The
solution can also be given in a time domain:

B(t ) = C0 − C1

2
− C1

C0+C1
C0−C1

eC1kont − 1
. (18)

The resulting bound linker profile on the contact angle in-
terval [−φc, φc] is shown in Fig. 4; cf. also the cases sketched
as (a) and (b) in Fig. 2. It is characterized by an increase of
the bound HA-glycan links leveling at a plateau value of

Bpl = C0 − C1

2
. (19)

For simplicity, and to be able to proceed with a perturbative
approach taking enzymatic activity into account, we approx-
imate the exact profile with two lines: first, in the region of
its rapid increase, B is approximated by the slope at the front,
and in the second region by its plateau value. This is most
transparent in time space where one has

B(t ) =
{
αt for 0 � t � tm

αtm for tm � t � T
(20)

for t ∈ [0, T ] with T = 2φc

ω
as before and

α = konH0G0, tm = Bpl

α
(21)

with α the initial slope (i.e., the linker binding velocity) and
tm the time needed to reach the plateau or maximum (cf. tpl

discussed in Sec. III A). In angle space one has

B(φ) =
{ α

ω
(φ + φc) for φ ∈ [−φc, φpl ]

α
ω

(φpl + φc) = Bpl for φ ∈ [φpl , φc]
(22)

with φpl the angle where the plateau is reached. This angle
space view is especially transparent to derive the scaling dis-
cussed earlier; cf. Appendix A.

B. Multiple-line approximations

One can proceed with the analysis by using the approxima-
tions of the bound linker profiles with several lines. Typically,
two lines are needed; cf. the cases sketched in Fig. 2 as
(a), (b), and (d). When the linkers are completely cut at the
back, three lines are needed; cf. Fig. 2(c). These multiple-line
approximations also allow us to treat the effect of enzymatic
activity analytically and to discuss the generic physics of the
torque-angular velocity relation associated with a given bound
linker profile.

1. Case of no enzymatic activity

The case of no enzymatic activity is that just discussed
where B(t ) is approximately given by Eq. (20). The clear
advantage of a line approximation is that we can calculate the
torque integral analytically. From Eq. (4) we must evaluate

m = −m0ω
4

H0

∫ T

0

(
t − T

2

)3

B(t )dt (23)

with T = 2φc

ω
. Importantly, we can write this as an integral

of the constant plateau value over the full range, ∝ ∫ T
0 (t −

T
2 )3Bpl dt = 0, which vanishes due to symmetry, plus an in-
tegral over the first zone only (the one at the front in rolling
direction)

m = −m0ω
4

H0

∫ tm

0

(
t − T

2

)3

α(t − tm) dt . (24)

This highlights the fact that the torque arises from the imbal-
ance or asymmetry of the linker distribution associated with
linkers having to form in the rolling direction in the region
0 � t � tm.

Before solving in full generality, we can assume that the
plateau is rapidly reached, i.e., tm � T , yielding

m � m0ω
4

H0
α
(T

2

)3∫ tm

0
(t − tm) dt = −m0

H0

φ3
c

2

B2
pl

α
ω, (25)

where we used T = 2φc

ω
and tm = Bpl/α. Equation (24) can

also be integrated completely to yield

m = m0

H0

α

80
ω4T 5 p

( tm
T

)
(26)

with the polynomial

p(x) = −x2(5 − 10 x + 10 x2 − 4 x3) (27)

for tm � T ; for tm > T one has to use p(1) = −1.
Let us discuss the limits. For very slow rolling [cf.

Fig. 2(a)] the first, attachment-dominated regime shrinks with
only the plateau left, and the torque hence vanishes due to
symmetry. For tm � T , corresponding to intermediate rolling
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speeds and sufficiently rapid build-up of the plateau, one has
p(x) � −5x2, which agrees with Eq. (25). Hence for interme-
diate rolling speed one gets for the torque-velocity relation for
passive rolling,

mdiss(ω) = −ξdissω , ξdiss = m0

H0

φ3
c

2

B2
pl

α
. (28)

This is a purely frictional torque, acting against the motion and
linear in ω. The effective friction constant, ξdiss, is determined
by both the slope, α, and the plateau value, Bpl , of the bound
linker distribution, as well as the size of the contact interval
φc, which themselves contain all system parameters.

For faster rolling, the friction is determined by p(x). For
very fast rolling, faster even than in Fig. 2(b), the linking is
so slow compared to the rolling that there will be no plateau
at all. In that case, one evaluates m = −m0

H0
αω4T 5 1

80 , which
corresponds to the value p(1). The torque is hence still fric-
tional and due to T = 2φc

ω
scales with ω−1. Hence in this

regime, the faster the rolling the less friction: less linkers bind
because of limited time and hence fewer resist the motion.
Overall, friction first increases, then is given by p(x), and then
decreases again.

2. Case of weak enzymatic activity

In the presence of enzymatic NA activity [cf. Figs. 2(c)–
2(e)] the first region of increasing linker density is still present
(in fact, only slightly modified), while the plateau is trans-
formed into a slowly decreasing function, implying B(t ) has
a maximum around tm. Focusing on Figs. 2(d) and 2(e) where
the glycan is not completely cut at the back, we can use the
following parametrization:

B(t ) =
{
αt for 0 � t � tm

αtm − β(t − tm) for tm � t � T
(29)

with two nonnegative constants α > 0, β � 0 (with β = 0
corresponding to the case without NA activity just discussed,
without a maximum but a plateau). At the moment β is just a
parameter. In Sec. IV C we will determine it as a function of
the underlying model parameters using perturbation theory.

We can again bring the torque integral in a convenient form
(using that the integral over the plateau over the full contact
area vanishes) and get

m = −m0ω
4

H0

[∫ tm

0
α(t − tm)

(
t − T

2

)3

dt

−
∫ T

tm

β(t − tm)
(

t − T

2

)3

dt

]
. (30)

If the plateau is rapidly reached, tm � T , one obtains

m = −m0

H0

[
αω

1

2
(tm)2φ3

c − β

ω

2

5
φ5

c

]
(31)

[this is also derived in Eq. (A4)]. Importantly, the second term
has the opposite sign—it is active—since now t > tm in the
integration. Second, the second term is independent of tm for
small tm, which leads to the 1/ω dependence.

Equation (30) can again be integrated completely, yielding

m = m0ω
4

H0
T 5

{
α

80
p
( tm

T

)
+ β

80

[
p
( tm

T

)
+ 1

]}
. (32)

We hence get the relation

80H0

(α + β )ω4T 5

m

m0
= p

( tm
T

)
+ β

α + β
, (33)

from which one can draw general conclusions: First, ω = 0,
implying T = ∞ and hence tm

T = 0 and p( tm
T ) = 0, is a so-

lution for β = 0. This corresponds to the static, nonrolling
case without activity. Next, the polynomial p( tm

T ) is always
negative (except for tm

T = 0), with its modulus increasing with
tm. Therefore, only when the term β > 0 is present, there is
the possibility to ensure m ∝ p( tm

T ) + β

α+β
= 0, i.e., torque

balance, for finite tm
T and hence ω. On the other hand, for any

β > 0 there is in fact always a solution tm = t∗
m at which the

torque vanishes, namely,

p

(
t∗
m

T

)
= − β

α + β
.

We have hence shown that, at least in a two-slope approxima-
tion, any finite enzyme activity will induce motion in the simple
model.

3. Case of slow rolling and high enzymatic activity: Three-line
approximation

Let us discuss the case sketched in Fig. 2(c). So far we
had assumed that the bound linkers cannot decay to zero in
the time interval [0, T ]. However, for small ω and high β,
the two-line approximation breaks down if the bound linker
concentration becomes negative in [t0, T ] with αtm − β(t0 −
tm) = 0 or

t0 = α + β

β
tm. (34)

To cover the whole range of frequencies, we generalize the
profile to a three-line approximation (3LA) by writing

B(t ) =

⎧⎪⎨
⎪⎩

αt for 0 � t � tm

αtm − β(t − tm) for tm � t � t0

0 for t0 � t � T

. (35)

We simplify the evaluation of the torque integral as follows:
in the limit of small ω (i.e., large T ) and not too high β (such
that t0 > tm and α+β

β
� α

β
) the integral over the second region

dominates over the first, which is very small (rapid rise to the
plateau), and the third region does not contribute anyway. It is
hence enough to evaluate

m � −m0ω
4

H0

∫ t0

tm

(
t − T

2

)3

[αtm − β(t − tm)] dt .

Moving the lower boundary to 0 and using t0 � α
β

tm (as dis-
cussed above) one gets by neglecting terms which are a factor
tm/t0 smaller

m � −m0ω
4

H0

β

80
T 5 p

( t0
T

)
(36)

still with the same polynomial; cf. Eq. (27).
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4. Full torque-angular velocity relation

Using T = 2φc

ω
one can introduce the characteristic fre-

quency

ω0 = 2φc

t0
= 2φc

tm

β

α
(37)

to replace the argument of the polynomial in Eq. (36) by
ω/ω0. Rescaling as ω̃ = ω/ω0 one gets the following torque-
angular velocity relation for small frequencies, ω̃ < 1, i.e.,
ω < ω0:

m = m0
Bpl

H0

φ4
c

5
ω̃(−4 ω̃3 + 10 ω̃2 − 10 ω̃ + 5). (38)

For larger frequencies, ω̃ > 1, we can use Eq. (31), which
can be rescaled the same way to yield

m = −m0
Bpl

H0

φ4
c

5

(
5
β

α
ω̃ − 1

ω̃

)
. (39)

We hence have established the full torque-angular velocity
relation for a rolling virus. While α is determined simply by
the HA-glycan on-kinetics, β is yet not specified. We will
determine it in the next section by a perturbation expansion
of the nonenzymatic state and postpone the discussion of
the steady rolling and the torque-angular velocity relation to
Sec. IV D.

C. Including enzymatic activity: Perturbative solution

We now include the enzymatic activity of NA and treat it
as a perturbation of the forced-rolling steady state, obtained
in Sec. IV A, where HA-glycan binding leads to the two-line
profile with a rapid increase at the front (characterized by α)
leveling off to a plateau.

We hence assume that ε = Vcut/α is a small parameter,
i.e., the enzyme-cutting activity is small against the binding
kinetics. We then can write

B = B1 + εB2 + · · · , G = G1 + εG2 + · · · (40)

such that the zero order O(ε0) is just the passive (i.e., forced
rolling) case of Sec. IV A.

To next order O(ε) one has to consider

ωB′
2 = konH0G2 − koff B2 − kon(G1B2 + B1G2),

ωG′
2 = −konH0G2 + koff B2 + kon(G1B2 + B1G2)

−konH0G0G1

KM + G1
. (41)

As the binding kinetics is assumed to be fast, we use an
adiabatic approximation, ωB′

2 � 0. Then the equations for G2

and B2 simplify to

ωG′
2 = −konH0G0G1

KM + G1
, B2 = H0 − B1

Kd + G1
G2. (42)

Neglecting the boundary layer close to the front, we can re-
place B1 � Bpl , G1 � Gpl = G0 − Bpl by their plateau values.
Also note that G2(t = 0) = 0, since the boundary conditions
at the front are already fulfilled in zero order. Transforming
to time space we get the dynamical profile for the glycans

G2(t ) = − konH0G0Gpl

KM+Gpl
t and hence for the bound linkers

B2(t ) = − H0 − Bpl

Kd + Gpl

konH0G0Gpl

KM + Gpl
t . (43)

Transforming back to angle space and using ε = Vcut/α where
α = konH0G0, yields [25] B2 = −α f φ+φc

ω
or

β = Vcut f , f = H0 − Bpl

Kd + Gpl

Gpl

KM + Gpl
. (44)

This result directly implies an expansion for the torque,

m = m1 + εm2, (45)

where m1 = mdiss is the passive torque, given in Eq. (28), and
εm2 = mact is the active torque. Explicitly one obtains

mact = pact

ω
, pact = m0

H0
f

2φ5
c

5
Vcut. (46)

Here pact is the power injected by the NA operation. The active
torque is positive (since Bpl < H0), and it is proportional to
Vcut and has a 1/ω dependence, unlike the passive one which
is linear in ω.

D. Discussion of rolling velocity and force-velocity relation

Let us now discuss the results obtained analytically. In the
case of weak enzymatic activity, we can combine Eq. (28)
for the dissipative torque and Eq. (46) for the active driv-
ing torque to the torque balance mdiss + mact = 0 = −ξdissω +
pact/ω. This immediately implies a pitchfork bifurcation for
the steady-state rolling velocity

ω = ±
√

pact

ξdiss
∝ φc

√
f

√
αVcut

Bpl
. (47)

This is exactly what had been observed in Fig. 3(a), the ve-
locity scaling like ω ∝ ±√

β with β ∝ Vcut with Vcut linear in
the NA concentration. As the total torque is zero, the torque
scale m0 = 1

2 SR2ρHA cancels out. Nevertheless the parameters
S (linker stiffness) and R (radius of the virus) are still present
since they enter the contact interval size φc. The result in fact
depends on all model parameters, especially the kinetics of
attachment and detachment and cutting contained in f .

Using the specific parameter values for the influenza virus
given in Sec. II A, Eq. (47) yields values of the order of ω =
0.4 s−1. This compares well to the experimentally measured
values by Sakai et al. [4,5]: there translational speeds of of
v � 10–30 nm/s were reported, corresponding to ω between
0.2–0.6 s−1 for physiological NA activity.

To critically discuss the torque-angular velocity relation,
we will introduce

A = β

α
, (48)

which is an “activity parameter” proportional to the enzymatic
activity. Adding now a term 5Aω̃ to Eq. (38), which represents
a small correction since β � α, allows us to combine the two
obtained limits, Eq. (38) and Eq. (39), into one continuous
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FIG. 5. Torque-velocity relation obtained from the numerical so-
lution of the continuum model (red curve), from the approximate
multiline theory, Eq. (49), with β from the perturbation theory (green
curve), and from stochastic simulations (symbols). Close to steady
torque-free rolling, the agreement between numerics and stochastic
simulations is excellent; the approximate theory displays the correct
overall shape. The torque is given in pN/L where L is the virus’s
length along the cylinder axis. For the stochastic simulations, the
velocity has been averaged over the whole simulated trajectory with
error bars displaying standard deviation. The points P1, P2, P3 char-
acterizing the “motor curve” are discussed in the text.

curve,

m̃(ω̃) ≈ −
{
ω̃[−4ω̃3 + 10ω̃2 − 10ω̃ + 5(1 − A)]; ω̃ � 1

ω̃−1 − 5Aω̃; ω̃ > 1
(49)

where in addition we nondimensionalized the torque m̃ = m
mc

with mc = m0
Bpl

H0

φ4
c

5 . Note that, maybe counterintuitively, the
activity is now in front of the passive torque for the branch
ω̃ > 1. This is due to the characteristic frequency, ω0 = 2φc

t0
=

2φc

tm
A, being proportional to the activity parameter: the higher

the activity, the larger the rolling frequency must be to prevent
the depletion zone at the back (the B = 0 region) to occur, and
to stay in the regime ω̃ > 1.

Figure 5 shows the torque-velocity relation from a numer-
ical solution of the continuum model (red curve) as explained
in Sec. III B and the approximate multiline theory (green
curve). The stochastic simulation results (symbols) shown are
explained in the next section. In view of the approximations
made, the green curve given by Eq. (49) captures the behav-
ior well on the semiquantitative level and displays the same
features as the numerically obtained red curve, namely, three
characteristic points.

First, (P1): for (ω, m) = (0, 0) the virus is in the immo-
bile state, which always should be a solution. Second, (P2):
the point (ω, m) ≈ (

√
5

2 ω0, (5.6 A − 0.8)mc) characterizes the
maximum sustainable torque (in the deterministic, mean-field
model). For counter-torques of larger amplitude, the motion
is no longer stable. Finally (P3): for (ω, m) = ( ω0√

5A
, 0) ∝

(A1/2, 0) the system is in the steady, self-propelled rolling
state and torque free, a behavior that is well captured already
by Eq. (47).

Concerning (P2), interestingly for small activity A → 0 the
maximum torque the virus can sustain becomes independent
of the activity parameter: m → −0.8mc. The corresponding
minimal speed under subcritical forcing vanishes linearly with
activity as ω =

√
5

2 ω0 ∝ A → 0. In the same (singular) limit,
A → 0+, the torque-free motion, i.e., point (P3), has no thresh-
old and scales as ωfree ∝ A1/2 ∝ φc

√
αVcut, as already derived.

Thus, in the absence of external torque and for arbitrary low
activity A, one always has an (arbitrary slow) self-sustained
rolling motion.

V. STOCHASTIC SIMULATIONS

A. Implementation and comparison stochastic
vs continuum model

So far we have investigated the problem of rolling on the
mean-field level, where we could show the existence of a
steady rolling state for a virus having enzymatic NA activ-
ity. The questions whether this state is stable in view of the
strongly fluctuating conditions at the nanoscale and how the
virus actually reaches this state, i.e., self-polarizes, demand a
stochastic modeling framework. We here briefly explain the
implementation of the model using the Gillespie algorithm
(with details given in Appendix C) and then critically compare
the stochastic simulations to the continuum theory.

Let us consider a cylindrical virus (cf. Fig. 1) of length L
and presenting a number of Nvir ∝ L discrete binding sites and
project the cylinder onto a single cross section. Then all bind-
ing sites (that one can assume randomly densely packed along
the virus surface) get projected onto this circle. As the contact
zone size, 2φcR is fixed, the relation Nvir�x = 2φcR defines
the effective size �x of a projected binding site. Nvir → ∞
(i.e., �x → 0) represents the continuum deterministic limit.
In turn, small Nvir can be interpreted as a circular virus, for
which, using the size of an HA and a circular contact area,
one estimates Nvir � 20.

In the numerical algorithm, space is discretized by �x
on a large box (having typically N = 2000 � Nvir sites)
with periodic boundary conditions. The angular variable used
in the mean-field model is discretized accordingly, i.e., by
φ = 2φcn/Nvir defining the discrete bound linkers and free
glycans, B = B[n] and G = G[n], respectively. To obtain
the effective molar concentrations of the spike proteins and
the ligands one needs to convert from known surface den-
sities on the virus and the substrate to volume densities.
Estimating the characteristic volume of a molecule by Vm ∼
(10 nm)3, the molar concentration is given by CM = 1l

NAVm
�

1 mM, or in other words, 1 molecule/Vm corresponds to �
1 mM.

The Gillespie method [26] is an event-driven algorithm,
and time ti = ∑i

m=1 �tm is discretized in waiting times �tm.
For every waiting time �tm one considers all possible events,
i.e., binding, unbinding, and cutting with their discretized
rates. The waiting times are drawn according to �tm = − ln ξ

aT

where ξ ∈ [0, 1] is a uniform random variable and aT is the
sum of the rates of all possible events (see Appendix C for
details). A second random number is used to choose which
event takes place.
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Finally, one has to evaluate the torque balance using the
newly obtained linker configuration to determine the new
center of mass position of the virus, s(ti+1). Torque balance
is assumed to be instantaneously established, and, expressing
the contact interval [−φc, φc] via the binding sites [nL, nR],
the discretized torque balance reads

nR∑
n=nL

(n − s)3 B[n] = 0. (50)

This is a cubic equation for s = s(ti+1) (for details see
Appendix C) and always has a real solution that can be
determined by root finding after every event that changes
B[n]. Having the new position s (the nearest binding site is
chosen), we get the new binding interval by shifting B to its
new center of mass position s. This simulation yields trajec-
tories s(ti ), from which angular velocities ω(ti ) and velocities
v(ti ) = Rω(ti ) can be readily determined, as well as the pro-
files B[n], G[n] at every ti.

To compare the stochastic implementation to the mean-
field, continuum model we first choose a high number of
linkers, Nvir = 200, such that effects like stochastic reversals
of the direction of motion or even complete detachment of the
virus do not occur (see the next section for a discussion of
these effects). If not stated otherwise, we simulate the system
for the parameters, already given and discussed in Sec. II.
Going back to Fig. 5 that compares the torque-velocity rela-
tion obtained from stochastic simulations (symbols) to those
from the numerical solution (red curve) and the approximate
multiline theory (green curve) of the mean-field model, one
can see that the numerics and the stochastic simulations agree
very well in a substantial region around the torque-free rolling.

Interestingly, in the stochastic simulations we were unable
to get the full branch from the torque-free rolling down to the
minimum of m(ω): the virus always reversed its direction for
large counter-torque, i.e., the system jumped to the negative
velocity branch; note that for negative velocity, the torque
velocity is the same curve as displayed for positive velocities,
but upside down. Without stochasticity, one would expect the
branch to be stable down to the minimum and only the branch
from the minimum up to (m, ω) = (0, 0) to be unstable. The
latter branch corresponds to bound linker distributions with
a three-line profile, i.e., where the glycan is completely cut at
the back. This suggests that these states and profiles are impor-
tant to understand the full torque-angular velocity relation, but
that they are dynamically unstable, especially in the presence
of stochastic fluctuations.

B. Stochastic effects: Virus detachments and reversals

The stochastic implementation in addition allows to in-
vestigate the effects of finite linker numbers on the overall
behavior of virus rolling, inducing, for instance, reversal of
rolling direction or even complete detachment. Decreasing
Nvir to values below 100 (for the given, realistic parameters),
Fig. 6(a) shows the time it takes for a virus, initially placed on
a homogeneous glycan-covered substrate, to get completely
detached, reaching the state with B[n] = 0 for all n in the
contact zone. In turn, Fig. 6(b) shows the averaged amount

(a)

(b)

FIG. 6. Study of a virus (radius 50 nm, Nvir binding sites) rolling
on a substrate with periodic boundary conditions (total number of
binding sites 2000). (a) The average time until the virus detaches
completely from the substrate as a function of the number of linkers
Nvir . (b) The average glycan remaining on the substrate after the virus
has detached, again as a function of the number of linkers. Averages
were taken over 20 realizations for every value of Nvir; shaded areas
show the standard deviation.

of glycan that is still left on the substrate, after the virus has
detached.

Figure 6 suggests that the origin of detachment for small
values of Nvir is due to intrinsic stochasticity of binding, as
the glycan level after detachment is still high. In contrast,
for large values of Nvir the virus rather detaches since the
glycan level becomes low. The latter is due to the fact that the
virus consumes part of the substrate while rolling. It may also
change direction of movement or go through the periodic box
such that it crosses again the same, already partially glycan-
depleted region more than once.

If the substrate were not consumed one would expect the
time to get detached to grow exponentially with the number
of linkers, since so does the number of possible configurations
of B[n]. In order to study reversals and run times in a way
that is not influenced by the history of the virus’s path, in the
following we will consider the case were the glycans are re-
covered by the cell. For simplicity we assume this recovery to
be infinitely fast. Specifically, whenever a virus has rolled over
a part of the substrate, the respective value G(n) is restored to
the initial level G0. This corresponds to a virus rolling on a cell
that has a high membrane diffusivity and rapidly reshuffles its
surface glycans. We also come back to this point in Sec. VII;
note that glycan reshuffling via lateral diffusion within the cell
membrane has been readily observed in experiments [27,28].

Implementing this infinitely fast glycan recovery outside of
the contact zone of the virus one can study the statistics of the
reversals of direction of the rolling virus and quantify the typ-
ical run lengths as a function of parameters and independent
of the simulation box size. The results are shown in Fig. 7.
The blue data in Fig. 7(a) show the frequency of reversals as
a function of the number of linkers for homogeneous glycan
distribution G0 outside the contact zone. For the red data,
we added a stochastic glycan distribution (noise level 50%
of mean value). In both cases, the reversals decrease if the
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(a) (b) (c)

FIG. 7. Study of a virus (radius 50 nm, Nvir binding sites) rolling on a substrate with periodic boundary conditions (total number of binding
sites 2000) and infinitely rapid glycan recovery outside the virus’s contact zone. (a) The frequency of reversals (number per time) and (b) the
average run length between two reversals. (c) The average velocity obtained from the two former quantities. For the blue data the glycan
distribution on the substrate was perfectly homogeneous at the standard value used, G0 = 10, while for the red data a noisy distribution was
implemented (with strong noise amplitude of G0/2). All averages were taken over 20 runs of 500 s running time each; shaded areas show the
standard deviation.

linker number increases. For the blue data, these reversals
are solely due to the intrinsic stochasticity of the dynamics.
As expected, for the noisy glycan distribution, reversals occur
more frequently, but the rolling is still robust.

Figure 7(b) shows the average run lengths, i.e., the distance
traveled between two reversals, obtained from the same raw
data. The run length increases with the number of linkers
and can easily reach several microns (meaning many tens
the virus diameters) for a homogeneous glycan distribution.
Noisy glycan distributions impede this substantially, but the
virus still travels few times its size for still moderate linker
numbers. Finally, from Figs. 7(a) and 7(b) one can estimate
the mean velocity of the virus as shown in Fig. 7(c). This is in
good qualitative agreement with the theory of the continuum
model, which for the given parameters (and Nvir → ∞) is
20 nm/s; cf. Sec. IV D.

VI. FURTHER TOPICS

A. Approximations made, especially detailed balance
for on-off kinetics

Within the simple model approach it is very satisfying to
see the good agreement between the numerical and analyt-
ical approaches to the mean-field model and the stochastic
implementation. However, to be amenable to an analytical

treatment, we made several—in part strong—approximations
that should be critically discussed.

First, in Sec. II C concerning the torque balance, we applied
a small angle approximation for the contact angle. We checked
numerically that for the given, realistic parameters, this has
only a minor quantitative effect. Second, we neglected the
effect of linker compression. In small angle approximation,
linker compression can be included even analytically, with
details given in Appendix B. Again, this leads only to a quan-
titative correction.

The most critical approximation was made in Sec. II D:
namely, the simple model only approximately fulfills detailed
balance for the HA-glycan on-off kinetics. In fact, while in
Sec. II B we used the force dependence (and hence angle
dependence) of the attachment and detachment kinetics of
the linkers to determine the size of the contact interval, this
dependence was neglected in the dynamic equations (7) and
(8).

To improve on this point we now assume that the disso-
ciation constant increases with the “Boltzmann factor” of the
elastic stretch energy

Kd (φ)

Kd (0)
= exp

( Eel

kBT

)
= exp

(
SR2

8kBT
φ4

)
. (51)
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FIG. 8. Test of the effect of detailed balance of the on-off ki-
netics. Shown are bound linker distributions obtained numerically
(solid) and by stochastic simulations (symbols). The blue curves are
for the simple model (discussed throughout so far, without detailed
balance), while the green curves obey detailed balance; i.e., Kd (φ) is
angle-dependent as given by Eq. (51). In the latter case, the sloped
linker profile in the center prevails, and the virus is still able to roll
steadily. Stochastic simulations are averaged over 106 realizations.

The equilibrium probability distribution of the bound linkers
is then given by Bpl (φ) = C0−C1

2 , as given in Sec. IV A, but
now with the angle-dependent Kd entering C0, C1, explicitly

Beq(φ)

H0
= 1

2

(
B̄ −

√
B̄2 − 4

G0

H0

)
(52)

with B̄ = 1 + G0+Kd (φ)
H0

. The resulting Beq(φ) implies a bell-
shaped linker profile, with a maximum at φ = 0 and decaying
rapidly [like exp(−φ4)] for finite angles.

We can now determine the size of the contact interval more
properly: defining φc as the point where pbound = Beq (φ)

H0
drops

below 1/2, from Eq. (52) one gets G0 − H0
2 = Kd (φc). For

typical parameters, H0/2 � G0 holds. Inserting Eq. (51) and
solving for φc then yields exactly the scaling result, Eq. (3).

To scrutinize the effect of the detailed balance of the on-off
kinetics on the bound linker distribution and ultimately on
the rolling motion, we compared numerical solutions of the
mean-field model to stochastic simulations, both without de-
tailed balance (constant Kd ) and with detailed balance, Kd (φ).
The result is shown in Fig. 8. The blue curve shows the case
studied before, the two slopes quantified by α and β being
clearly visible. The green curve shows the case with detailed
balance. One can see that the bound linker profile decays
much more strongly both in the rolling direction (to the left)
and at the trailing edge (to the right), but overall the sloped
distribution in the center region prevails and is sufficient to
allow a persistent rolling motion. We also checked that the
speed is only quantitatively affected (for the given, realistic
parameters by 10%–20%).

B. Linker distribution as an “internal flywheel”

As observed already in Ref. [11], the Gillespie simulation-
based computer experiments reveal a surprising robustness
of the rolling virus: even when facing obstacles in form of

glycan-depleted spots on the surface, the virus often just rolls
over them as if it possesses an internal “inertia.” A once
directionally polarized virus can even persistently roll against
a glycan gradient as long as there is a sufficient amount
of glycan left to bind. Thus the virus is not performing a
(chemo)taxis on the glycan concentration (as one would ex-
pect for a burned bridge Brownian ratchet). Instead the glycan
acts here as a mechano-chemical free-energy source in anal-
ogy to the role of ATP for classical molecular motors. The fact
that the glycan is confined (or sometimes even immobilized)
on a 2D surface while ATP typically freely diffuses in 3D is
only a superficial difference.

To understand the origin of the observed processivity be-
havior, we pose the following question: What happens when
a steady rolling virus at initial angular velocity ωfree is sud-
denly stopped—by an external force, such as an immovable
obstacle—at time t = 0? How does its torque m(t ) dynami-
cally respond to this sudden constraint?

Initially, for t < 0, the virus was rolling in a torque-free
state, implying that any torque buildup starts from m(0) = 0.
The virus being blocked for t > 0, the advective (rolling)
term is now missing in Eqs. (7) and (8), and the linker
distribution in the front region will respond by rapidly equi-
librating to the plateau value there. This front equilibration
has the timscale t ∼ Bpl/α and due to torque imbalance it is
accompanied by an buildup of torque m(t ). While the front
region’s slope (cf. Fig. 2) becomes flatter during this fast and
transient process, the more extended, cutting-dominated rear
region stays roughly unperturbed as it responds much slower.
This implies a maximum torque mmax ∝ −β/ωfree given only
by the cutting-induced gradient at the rear. Finally, on the
long timescale t ∼ Bpl/β, the progressive NA linker cutting
makes the linker profile decay to zero in the whole contact
zone, leading to a gradually vanishing torque m(t ) → 0. In
summary, a suddenly stopped virus responds with a transient
torque buildup for t > 0 of the approximate form

m(t ) � mmax tanh

(
α

Bpl
t

)
e
− β

Bpl
t
, (53)

where mmax � pact/ωfree.
Figure 9 shows a comparison of the torque buildup mea-

sured in stochastic simulations (averaged over 10 stopping
events) and the scaling formula, Eq. (53). It confirms the
interpretation that a stopped virus mobilizes its bound linkers
and puts up dynamic resistance against the obstacle. One
could say that the system formally behaves as if it possessed a
built-in “flywheel”—here of mechano-chemical origin—that
is dissipatively coupled to the rolling angle variable and tends
to maintain its angular momentum. This “flywheel” dynamic
response is associated to the reequilibration of an internal
nonequilibrium steady state. It seems to be a defining fea-
ture of other dissipative rolling objects as well [29–31] and
deserves closer inspection in the future.

VII. DISCUSSION

We have proposed and analyzed a new mechanism allow-
ing a virus to actively roll along a substrate and shown that this
rolling is essentially inevitable, once a few basic conditions
are met: namely, (1) existence of a rolling axis for the virus,
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FIG. 9. Demonstration of the “mechano-chemical flywheel” ef-
fect. A virus that was rolling steadily was suddenly stopped at t = 0.
Since the internal linker profile needs time to relax, a characteristic
buildup of torque occurs with a characteristic time of the order of
10 s. Shown are results from stochastic simulations (blue; averaged
over 10 events) and the scaling estimate, Eq. (53), in red (with no fit-
ting parameter). Linker stiffness S = 0.1kBT/nm2; other parameters
as given in Sec. II.

(2) presence of ligands on the substrate, and (3) viral spikes
(one or several types) that bind and enzymatically cut these
ligands. The obvious question to ask next is: how does the
virus benefit from it?

A. Why the rolling?

Obviously, being a nanoscale object the virus could just
move through the bulk of a low viscosity fluid via thermal
diffusion. However, in the case of mucus-binding viruses like
influenza, the large viscosity and the gel-like nature of the
environment severely limits this. An additional danger the
influenza virus faces is getting stuck in or to the mucus and
eventually being swept away by the beating cilia of our res-
piratory tract. To make the situation even worse for the virus,
during its entry phase [32,33] the virus can become localized
at wrong spots on the cell membrane (or on a wrong cellular
structure like a cilium), being unable to enter the cell at all.
If the cell membrane is sufficiently fluid, 2D diffusion can
help, but not if the glycan receptors (glycolipids and proteins)
are trapped within local membrane domains controlled by the
cytoskeleton underneath. The influenza virus could respond
by weakening its bonds with the immobile glycans in order
to still diffuse on the quasirigid substrate, the drawback being
that increasing diffusivity also increases the virus-membrane
detachment rate. All these are likely reasons for the virus hav-
ing evolutionarily come up with the active enzyme solution.

In spite of sufficiently strong collective, multilinker bind-
ing by the HA spikes, the virus can still actively weaken these
links via the NA spikes’ cutting activity. However, if this form
of “stick-and-cut” behavior was spatially uncoordinated, it
would be difficult to comprehend how it could give rise to
any sufficiently fast or even directed motion. How should the
virus decide which way to go and keep a certain persistence
of direction? Obviously, the (immobile) glycan-covered sub-
strate could help the virus to some extent by keeping records

of where the virus has already been: the virus would then
simply statistically avoid the NA-generated glycan-depleted
regions and perform a form of 2D self-avoiding walk, which
is the idea underlying the so-called burnt-bridge Brownian
ratchet [9,10]. This strategy could be enhanced by a polarized
distribution of the spikes [20], with NA enriched at the rear,
depleting more glycans there, and HA enriched in front, both
effects enhancing forward binding and stabilizing directional
movement. Indeed this is observed for IVA where HA and
NA are physically separated molecules “floating” rather freely
in the membrane, where they can polarize the virus via a
partial phase separation. The motion in this case happens
along the long axis of the ellipsoidal or filamentous virus.
However, for IVC the two spikes are “glued together” into
a single, inseparable unit, the HEF protein [19]. Naively, this
additional constraint would make the virus less motile, yet the
opposite is true: IVC moves about 5–10 times faster than IVA
[4,5]. In addition to its larger speed, most notably IVC moves
orthogonally to its long axis.

It seems that these two propulsion modes—parallel and
orthogonal to the axis—have radically different physical
mechanisms. Here we suggested that the motion orthogonal
to the cylindrical axis is tightly coupled to axial rotation.
This coupling is more than just an easy, low dissipation mode
of motion, but rather intrinsically linked to the very mech-
anism of dynamic linker polarization: on the one hand, the
angular rotation itself leads to a linker polarization within the
virus-substrate contact zone. On the other hand, the linker
polarization front vs rear gives rise to a torque and the angu-
lar velocity. Both interdependent effects are inseparable and
make rolling propulsion fast, robust, and efficient compared
to longitudinal gliding.

The emergence of rolling can be seen as a step in the evo-
lutionary race between the virus and the host. Naturally, this
race is still ongoing, and the host could also take countermea-
sures. One possibility is the mixing up and quick replacement
of the cut glycans by fresh ones (cf. the glycan recovery in
Sec. V B). However, for this to be efficient it has to affect the
contact zone, as the rolling virus is not very sensitive to gra-
dients outside. Hence glycan replacement must be extremely
fast (the virus passes the contact zone within few seconds).
Another possibility is to “clog” the rotation by firmly binding
ligands (antibodies) to some of the free HA or HEF. In this
case, the virus would have to resort to other, less efficient
propulsion mechanisms like gliding. Alternatively, it could
counteract the clogging by allowing sterically blocked HA
or HEF to float by keeping the transmembrane proteins (in-
cluding the spikes) in a fluid state. As just sketched here, the
game theory of this intricate evolutionary race promises new
surprises for future studies.

B. Experimental questions

From the experimental point of view, advancing elegant
in vitro setups like those by Sakai et al. [4,5] should allow
one to quantitatively probe the detailed mechanism proposed
here, the most robust and easy-to-test predictions being the
following:

(1) The rolling speed as a function of NA, HA, and glycan
surface concentrations, especially the characteristic square
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root relation ω ∝ √
Vcut [cf. Eq. (47)] between the angular

velocity and the cutting rate Vcut ∝ [NA].
(2) The force velocity or “motor relation” shown in Fig. 5

and the characteristic points P1-P3 therein, as well as the
scaling behavior of the curve.

(3) The instantaneous force response of a stalled, immo-
bilized virus, as shown in Fig. 9 and quantified in Eq. (53).

Experimentally these should be accessible as the filamen-
tous viruses are large (long axis 1 μm) and sufficiently slow
(tens of nm/s) to be readily captured by various microscopy
methods. Even smaller viruses have been studied already
using high-resolution techniques [34]. The force magnitudes
(tens of pN) and their moderately slow time evolution (few
seconds) are also well within the range of common force
spectroscopy methods [35,36]. To test the theory it is most
practical to utilize filamentous viruses. Although the model
developed here also applies to spherical viruses on small
timescales, the high rotational diffusion constant of a tiny
nanosphere and the small number of linkers making contact
(Nvir � 20) will in this case give rise to large orientational and
velocity fluctuations. As for any directionally self-propelled
object of characteristic size L, there will be a crossover
from ballistic to diffusive motion at a timescale trot ∝ 1/Drot

with Drot ∝ L−3 the rotational diffusion constant. While for a
sphere L will be the radius, for a cylinder it will be its length,
making the directed propulsion of the latter experimentally
much easier to probe.

Many interesting questions still remain, including the role
of the different motility modes—gliding by spike polarization
[20] and rolling [4,5]—under similar conditions. Can IVA
actually switch between the two motility modes? And how do
IVs finally switch from rolling to entering the cell [32,33,37]?

On the physics side there is an interesting conceptual ques-
tion that still needs to be addressed: Other nonequilibrium
filamentous rollers are known to exist, but these are bulk-
driven, meaning there is a matter-energy flow (e.g., of heat
[30] or solvent [31]) through the cross section of the cylinder.
So what are similarities and differences of active rollers that
are bulk-driven vs surface-driven in view of a general de-
scription, their efficiency, or the existence and nature of their
internal flywheel modes?

VIII. CONCLUSIONS

In conclusion, the rolling mechanism renders the influenza
virus an even smarter adversary than previously thought. In
contrast to classical virology dogmas, this virus type displays
a “surface metabolism” harvesting the chemical energy of
sugars on the host’s membrane for directional force gener-
ation. In turn, this transforms the whole virus capsid into a
complex rotary motor. The underlying linker dynamics shares
similarities with passive (e.g., shear induced [38–40]) or other
[41] adhesive rolling mechanisms, as well as with collective
motor ensembles [42–44], but with the crucial addition of the
enzymatic substrate cutting. The mechanism discussed here
for the influenza virus should also apply to other viruses hav-
ing enzymatic spike proteins: candidates are the torovirus and
some of the betacoronaviruses [45]. We can also flip the coin
and learn from the virus’s workings: in fact, the combination
of a binding molecule, a cutting enzyme, and the spherical or

cylindrical geometry already has been used to propel DNA-
coated beads [29,46,47] along RNA-covered surfaces, and the
insights developed here could now be used to optimize such
and related artificial rollers.

APPENDIX A: CALCULATION IN ANGLE SPACE
AND SCALING

The calculation of the torque becomes especially transpar-
ent in angle space, where the two-line linker distribution reads

B(φ) =
{

α
ω

(φ + φc) for −φc � φ � φpl

α
ω

(φpl + φc) − β

ω
(φ − φpl ) for φpl � φ � φc

.

(A1)
Rewriting the torque, Eq. (4), by again using that a constant

linker distribution is torque-free, yields

m= −m0

H0

1

ω

[
α

∫ φpl

−φc

(φ−φpl )φ
3 dφ−β

∫ φc

φpl

(φ−φpl )φ
3 dφ

]
.

(A2)
In the first integral, one substitutes φ̃ = φ + φc and uses
that φpl + φc � 1. In the second, one uses φpl � −φc. Both
amount to the same statement, that the plateau is rapidly
reached (i.e., close to the boundary in the rolling direction).
One obtains

m = −m0

H0

[
α

ω

1

2
(φpl + φc)2φ3

c − β

ω

2

5
φ5

c

]
, (A3)

and using φpl + φc = ωtm one regains

m = −m0

H0

[
αω

1

2
(tm)2φ3

c − β

ω

2

5
φ5

c

]
. (A4)

As stated already in Sec. III A when discussing the scaling,
if the plateau is reached sufficiently rapidly, the torque integral
over the negative slope region is independent of the dynamics.
Basically, there is degradation everywhere, resulting just in a
power of φc, the contact area size. It remains only the 1/ω

dependence from the slope in angle space. In contrast, for the
first, passive contribution [cf. Eq. (A3)] the dynamics is im-
portant: the angle-integrated slope yields a square dependence
in the plateau angle and hence in ω, which together with the
1/ω from the slope yields a linear friction ∝ ω.

APPENDIX B: EFFECT OF LINKER COMPRESSION

In Sec. II C we introduced a distribution of linker exten-
sions, which was assumed to be zero at the symmetry axis and
growing quadratically with angle φ. This implied only tensile
linker forces for φ �= 0 and a delta-peak counterforce with
opposite sign at φ = 0. Physically, this assumption means that
the stiff viral spike proteins can sustain a compressive load
with little compliance, but they easily stretch when tension is
applied.

One can take the concept of linear linker elasticity more
seriously and allow the virus to push down on and com-
press the linkers. Assuming a similar chain stretching as
before, including the possibility that the virus cross section is
shifted downwards by a (to be determined) length l0, one has
l (φ) = R[1 − cos(φ)] − l0. The energy of the elastic spring
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foundation reads (for small φ)

eel (φ) = S

2
l2(φ) � SR2

2
(φ2/2 − ε0)2, (B1)

with ε0 = l0/R the vertical deformation. It is determined to be
ε0 = 1

6φ2
c by the vanishing force condition,

∫ φc

−φc
fel (φ) dφ =

0, with fel = − ∂eel (φ)
∂l . The torque balance, Eq. (4), then gen-

eralizes to

mincl compr = −m0

H0

∫ φc

−φc

B(φ)(φ3 − 2ε0φ) dφ. (B2)

In addition to the third moment, there now also is a contribu-
tion from the first moment, having opposite sign. Evaluating
this torque using Eq. (A1) leads to ωincl compr = √

2/3 ω im-
plying a reduction of � 20%.

APPENDIX C: DETAILS FOR THE STOCHASTIC
IMPLEMENTATION

The Gillespie algorithm [26] is event driven: at any time
step, one decides whether at the picked position n a binding
event (B[n] → B[n] + 1 and G[n] → G[n] − 1), an unbinding
event (B[n] → B[n] − 1 and G[n] → G[n] + 1), or a cutting

event (G[n] → G[n] − 1) occurs. The weights of these events
can be read off directly from Eqs. (7) and (8):

ab[n] = konG[n](H0 − B[n]), au[n] = koff B[n],

ac[n] = Vcut
G[n]

G[n] + KM
, (C1)

which must be normalized by the sum aT = ∑
n(ab[n] +

au[n] + ac[n]) to assign probabilities to each process. The
waiting times �tm between two events can then be picked as
�tm = − ln ξ

aT
, with ξ a uniform random variable on [0,1].

Finally, to find the new center of mass position of the virus,
at each step one solves Eq. (50), i.e., the cubic equation,

s3 + c2s2 + c1s + c0 = 0, (C2)

with coefficients determined by the bound linkers as

c2 = − 3

�

iR∑
i=iL

n B[n], c1 = 3

�

iR∑
i=iL

n2 B[n],

c0 = − 1

�

iR∑
i=iL

n3 B[n], (C3)

where � = ∑iR
i=iL

B[n].
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