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Cell membranes are composed of a great variety of protein and lipid species with distinct unperturbed
hydrophobic thicknesses. To achieve hydrophobic matching, the lipid bilayer tends to deform around membrane
proteins so as to match the protein hydrophobic thickness at bilayer-protein interfaces. Such protein-induced
distortions of the lipid bilayer hydrophobic thickness incur a substantial energy cost that depends critically
on the bilayer-protein hydrophobic mismatch, while distinct conformational states of membrane proteins often
show distinct hydrophobic thicknesses. As a result, hydrophobic interactions between membrane proteins and
lipids can yield a rich interplay of lipid-protein organization and transitions in protein conformational state. We
combine here the membrane elasticity theory of protein-induced lipid bilayer thickness deformations with the
Landau-Ginzburg theory of lipid domain formation to systematically explore the coupling between local lipid
organization, lipid and protein hydrophobic thickness, and protein-induced lipid bilayer thickness deformations
in membranes with heterogeneous lipid composition. We allow for a purely mechanical coupling of lipid and
protein composition through the energetics of protein-induced lipid bilayer thickness deformations as well as a
chemical coupling driven by preferential interactions between particular lipid and protein species. We find that
the resulting lipid-protein organization can endow membrane proteins with diverse and controlled mechanical
environments that, via protein-induced lipid bilayer thickness deformations, can strongly influence protein
function. The theoretical approach employed here provides a general framework for the quantitative prediction
of how membrane thickness deformations influence the joint organization and function of lipids and proteins in
cell membranes.

DOI: 10.1103/PhysRevE.105.054410

I. INTRODUCTION

Lipids and membrane proteins in cell membranes show
an intricate, submicron organization into membrane domains
that vary in molecular composition and hydrophobic thick-
ness [1–4]. The resulting heterogeneity in the mechanical
and chemical properties of cell membranes permits the local
regulation of membrane protein function through lipid-protein
interactions and plays a critical role in a variety of cellu-
lar processes [2–5]. Experiments suggest that cell membrane
organization is influenced by preferential chemical interac-
tions between particular lipid and protein species as well as
nonspecific hydrophobic lipid-protein interactions [1–8]. For
instance, some ion channels are thought to aggregate specific
lipid species in their vicinity, thereby creating a local bilayer
environment with controlled mechanical properties [9–11].
The resulting membrane domains may serve to bias ion chan-
nels towards closed or open conformational states, and hence
modulate ion channel function.

The preferred hydrophobic thickness of lipid bilayers de-
pends strongly on the lipid chain length [1–3,12], with a
variation in bilayer hydrophobic thickness between roughly
3.4 nm and 4.4 nm for the lipid chain lengths typically found
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in cell membranes. Similarly, the hydrophobic thickness of
membrane proteins varies substantially between different
membrane proteins, and even among distinct conformational
states of the same membrane protein. For instance, the
closed and open conformational states of the mechanosensi-
tive channel of large conductance (MscL) have approximate
hydrophobic thicknesses of 3.8 nm and 2.6 nm [13,14],
respectively. Differences in the preferred hydrophobic thick-
ness of lipids and membrane proteins generally result in
deformations of the lipid bilayer thickness in the vicinity of
membrane proteins so as to achieve hydrophobic matching
at bilayer-protein interfaces [15–18]. Such protein-induced
lipid bilayer thickness deformations tend to incur a substantial
energy cost >10 kBT [15–18]. Protein-induced lipid bilayer
thickness deformations yield, on the one hand, a coupling
between protein conformational state and lipid bilayer thick-
ness [15,19–23]. On the other hand, protein-induced lipid
bilayer thickness deformations give rise to bilayer-mediated
interactions between membrane proteins [16,24–28]. Such
bilayer-thickness-mediated protein interactions tend to be
strongly favorable at close enough separations for proteins
with identical hydrophobic thickness, and can yield self-
assembly of membrane protein clusters [29–36].

The energy cost of protein-induced lipid bilayer thick-
ness deformations depends critically on the lipid chain
length [15–18,37]. In membranes containing lipids with
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distinct chain lengths, one therefore expects a coupling
between local lipid composition and membrane protein
hydrophobic thickness. Expanding on a previous short
communication [38], we systematically explore here the
mechanochemical coupling of local lipid organization, protein
and lipid hydrophobic thickness, and protein-induced lipid
bilayer thickness deformations in bilayers with heterogeneous
hydrophobic thickness. Our approach builds on previous work
on lipid phase separation in bilayers with heterogeneous
hydrophobic thickness [39,40], and on the coupling be-
tween bilayer mean curvature and lipid composition [41–43].
We describe how lipid-protein organization in bilayers with
heterogeneous hydrophobic thickness can be captured quan-
titatively by combining the elasticity theory of lipid bilayer
thickness deformations [15–17,24–28,44] with the Landau-
Ginzburg (LG) theory of lipid domain formation [41,45–53].
We illustrate our theoretical approach for MscL, which pro-
vides a paradigm for the coupling of local lipid composition
and membrane protein function [9,21,22,54]. In agreement
with a wide range of experimental studies [1–3,55–57], we
find that membrane hydrophobic thickness provides a key
control parameter for lipid-protein organization and regulation
in membranes with heterogeneous lipid composition.

This article is organized as follows. Section II develops
the general theory of protein-induced lipid bilayer thickness
deformations in bilayers with heterogeneous hydrophobic
thickness. On the one hand, we thereby consider a purely
mechanical, nonspecific coupling of lipid and protein compo-
sition through the energetics of protein-induced lipid bilayer
thickness deformations [38]. On the other hand, we allow for a
chemical coupling between the local lipid and protein compo-
sitions driven by preferential interactions between particular
lipid and protein species [58–65]. Section III considers the
most straightforward scenario of a single-membrane protein
in a heterogeneous lipid bilayer composed of two lipid species
with distinct lipid chain lengths. We determine how the local
lipid composition around the membrane protein depends on
the protein hydrophobic thickness, the lipid-protein chemical
affinity, and the local lipid chemical potential. Using MscL as
a model system, we show that lipid heterogeneity can induce
transitions in the protein conformational state. In Sec. IV we
consider the crowded membrane protein environments typical
for cell membranes [1–5,18]. We find that heterogeneity in
the lipid composition can expand the repertoire and range
of bilayer-thickness-mediated protein interactions, can yield
colocalization of lipids and membrane proteins according to
their preferred hydrophobic thickness, and can strongly af-
fect bilayer-mediated protein cooperativity in cell membranes.
Section V provides a summary and discussion of our results.

II. PROTEIN-INDUCED MEMBRANE THICKNESS
DEFORMATIONS IN HETEROGENEOUS LIPID BILAYERS

We aim here to explore generic features of the interplay
between lipid-protein organization and membrane thickness
deformations that are independent of most molecular de-
tails [38]. We therefore consider an idealized bilayer-protein
system, in which a cylindrical membrane protein of radius
R is located at the center of a circular membrane patch

FIG. 1. Schematic of bilayer-protein hydrophobic matching in
heterogeneous bilayers. We consider a membrane protein with an
approximately cylindrical hydrophobic surface of radius R and height
2H0 at the center of an axisymmetric lipid bilayer patch composed of
two lipid species with distinct unperturbed hydrophobic thicknesses
(lipid species indicated in red and blue). The inner boundary of the
lipid bilayer annulus in the membrane patch is constrained by the
membrane protein at the center of the membrane patch, while we
allow the outer boundary of the membrane patch to be either free or
constrained by other proteins. We denote the hydrophobic thickness
of the lipid bilayer leaflets by h and the radial coordinate about the
protein center by r.

representing the local lipid environment of the membrane
protein (see Fig. 1). We take the local lipid environment
of the membrane protein to be approximately axisymmetric
about the protein center. Furthermore, we assume up-down
symmetry in the hydrophobic thickness and composition of
the upper and lower lipid bilayer leaflets. Models assum-
ing such an idealized, symmetric lipid bilayer environment
have been employed successfully to describe the coupling
of membrane protein conformational state and lipid bilayer
thickness in homogeneous bilayers [15,19–23] as well as
bilayer-thickness-mediated protein interactions in homoge-
neous bilayers [16,24–36].

In particular, previous work on MscL in homogeneous
bilayers [14,17,18,21,22] has suggested that the energetic
cost of MscL-induced bilayer thickness deformations dom-
inates the MscL gating energy. MscL was thereby modeled
as an axisymmetric, cylindrical membrane protein that in-
duces bilayer thickness deformations in the surrounding
membrane [17,18,22]. Other types of membrane proteins
may induce distinct modes of bilayer deformation. For
instance, Piezo ion channels induce strong midplane defor-
mations in the lipid bilayer [66–68]. Furthermore, mem-
brane proteins do not, in general, show smooth rotational
symmetry about the central (transmembrane) protein axis,
which can have substantial effects on bilayer-protein inter-
actions [26–28,33,35,43,69]. Here we focus on azimuthally
uniform bilayer thickness deformations, and model proteins as
cylindrical membrane inclusions (Fig. 1). Further simplifica-
tion of the modeling approach employed here can be achieved
through an effectively one-dimensional version of this model,
which we explore in Appendixes A and B.
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A. Energy of protein-induced bilayer thickness deformations in
heterogeneous lipid bilayers

Protein-induced lipid bilayer thickness deformations tend
to decay rapidly away from the lipid-protein boundary, with a
decay length ≈1 nm [18,54], tend to be small compared to the
unperturbed lipid bilayer thickness, and tend to show small
gradients [20,22,28,44] (Fig. 1). As a result, it is useful to
describe protein-induced lipid bilayer thickness deformations
by expanding the Monge representation of the elastic bilayer
deformation energy to leading order in (h − a) and its deriva-
tives [16,24,28,70], where h is the hydrophobic thickness of
the lipid bilayer leaflet at the Cartesian coordinates (x, y) and
a is the unperturbed hydrophobic thickness of the lipid bilayer
leaflet, which depends on the lipid chain length (Fig. 1). The
elastic thickness deformation energy of the lipid bilayer can
then be written in the form [15–17,22,24–28,44,54]

Gh =
∫

dx dy

{
Kb

2
(∇2h)2 + Kt

2

(
h − a

a

)2

+ τ

2

[
(∇h)2 + 2

(
h − a

a

)]
+ τ 2

2Kt

}
, (1)

where the integral runs over the (in-plane) lipid bilayer sur-
face, Kb is the lipid bilayer bending rigidity, Kt is the bilayer
thickness deformation modulus, and τ is the (lateral) mem-
brane tension. For a given lipid composition, the values of
the parameters Kb, Kt , and a in Eq. (1) can be measured di-
rectly in experiments [12,17,18]. We have added the constant
term τ 2/2Kt in the integrand in Eq. (1) such that Gh = 0
for all extremal functions of Gh corresponding to a constant
h(x, y) [28].

We consider here protein-induced lipid bilayer thickness
deformations in heterogeneous bilayer membranes that effec-
tively consist of two lipid species with distinct unperturbed
hydrophobic thicknesses, in a regime in which the two lipid
species can form distinct domains with rapid lateral diffu-
sion of lipids in the plane of the membrane [1–7,40,50,51].
At the mean-field level, lipid domain formation in such a
binary system is successfully described by the LG free en-
ergy [39,40,47,50–52]

Gc =
∫

dx dy
[ε

2
(∇c)2 + φ(c) − μc + μ0

]
, (2)

where the integral runs over the (in-plane) lipid bilayer sur-
face, c(x, y) is a continuous function describing the (mean)
lipid composition at the Cartesian coordinates (x, y) such that
c = 0 and c = 1 correspond to the two lipid species under
consideration, the parameter ε specifies the energy penalty
associated with lipid domain boundaries, the function φ(c)
is the (even) mean-field potential associated with lipid phase
separation, and μ is the (local) lipid chemical potential. In
analogy to Eq. (1), we include in the integrand in Eq. (2)
the constant term μ0 = (|μ| + μ)/2, where |μ| denotes the
absolute value of μ, such that Gc � 0 for all extremal func-
tions of Gc corresponding to a constant lipid composition
c(x, y) = 0 or c(x, y) = 1. The chemical potential μ in Eq. (2)
allows for a breaking of the symmetry between c = 0 and
c = 1 in Eq. (2), and locally biases the lipid composition of
the membrane patch under consideration towards a particular

lipid species. For μ = 0 in Eq. (2) we recover the scenario we
considered previously [38], which corresponds to situations in
which lipids of either species can freely diffuse into and out
of the membrane patch without any external constraints on the
lipid composition of the membrane patch.

Following previous work [47,50,71], we consider for the
mean-field potential φ(c) in Eq. (2) a fourth-order polynomial
in c centered at c = 1/2:

φ(c) = b0 − b1

2

(
c − 1

2

)2

+ b2

4

(
c − 1

2

)4

. (3)

The mean-field potential in Eq. (3) can be derived [47,50,71]
by expanding additive contributions to the bilayer free energy
due to lipid mixing, which oppose lipid domain formation, and
lipid-lipid interactions, which favor lipid domain formation.
From the LG theory of lipid domain formation [50] we have
b1 = 4n0kBT/3 and b2 = 16n0kBT/3, where n0 is the mean
lipid number per unit area, so that the mean-field potential
in Eq. (2) has minima at c = 0 and c = 1. Furthermore,
we set b0 = n0kBT/12 so that the mean-field potential in
Eq. (2) is zero at these two minima. The two key physical
parameters entering Eq. (2) are thus ε and n0. We follow
here the phenomenological approach in Refs. [40,50] and use,
unless specified otherwise, the order-of-magnitude estimates
ε ∼ 1 kBT and n0 ∼ 1 nm−2, which were found previously
to successfully describe lipid domain formation in bilayers
composed of distinct lipid species [39,51,52]. These phe-
nomenological estimates of ε and n0 yield a lipid-lipid line
tension ∼0.5 kBT/nm that is of the same order of magnitude
as the lipid-lipid line tension estimated in experiments on lipid
domain formation in giant unilamellar vesicles [72].

We obtain the total bilayer (free) energy of the membrane
patch, G, by adding Eqs. (1) and (2):

G = Gh + Gc. (4)

The fields describing the lipid leaflet thickness, h(x, y), and
the lipid bilayer composition, c(x, y), in Eq. (4) are, in princi-
ple, coupled [39,40] via the elastic parameters Kb, Kt , and a in
Eq. (1), which all depend on the lipid composition [12,17,18].

A variety of experiments on membranes with heteroge-
neous hydrophobic thickness [1–3,55–57] indicate that lipid
bilayer and protein composition couple through hydrophobic
lipid-protein interactions driven by differences in the energeti-
cally preferred hydrophobic thickness of lipids and membrane
proteins, suggesting that a in Eq. (1) provides the dominant
coupling of h and c. Based on the experimental data on the
dependence of bilayer elastic properties on lipid composition
compiled in Ref. [12], we explore in Appendix C the relative
importance of the dependence of Kb, Kt , and a in Eq. (1) on
lipid composition [17,18]. For all the scenarios considered
here we find that the dependence of a on c dominates over
the dependence of Kb and Kt on c. We therefore focus on
the coupling of h and c through a(c) [39,40]. Notably, ex-
periments show that a depends crucially on the lipid chain
length [12]. A major lipid component of cell membranes is
provided by phospholipids, for which a roughly varies from
a ≈ 1.7 nm to a ≈ 2.2 nm for the approximate range in lipid
chain length relevant for cell membranes [1–3,12]. Following
Refs. [12,22,38,44] we approximate a(c) by a linear function.
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We identify the two lipid species in the bilayer with a(c =
0) = 1.7 nm (lipid species A) and a(c = 1) = 2.2 nm (lipid
species B), in which case we have

a(c) ≈ α1c + α0, (5)

where α1 = 0.5 nm and α0 = 1.7 nm [12,22,38,44]. Unless
stated otherwise, we use the fixed values Kb = 20 kBT and
Kt = 60 kBT/nm2 typical for phospholipid bilayer mem-
branes [12,18]. Appendix C considers expressions analogous
to Eq. (5) for Kb and Kt .

B. Energy minimization and boundary conditions

We assume that the dominant configurations of the lipid
leaflet thickness field h(x, y) and the lipid bilayer composi-
tion field c(x, y) minimize the functional G in Eq. (4) with
Eqs. (1)–(3) subject to suitable boundary conditions. To de-
termine the minimal h(x, y) and c(x, y) of G, it is convenient
to write the total energy in Eq. (4) in polar coordinates such
that the fields h and c only depend on the radial coordinate
r =

√
x2 + y2. The integrands in Eq. (1) and (2) are easily

transformed to polar coordinates by noting that, for rotation-
ally symmetric systems such as considered here, ∇h = dh

dr r̂
and ∇c = dc

dr r̂, where r̂ is the radial unit vector, and ∇2h =
1
r

d
dr (r dh

dr ). We minimize G in the domain R � r � R + L
(Fig. 1), where L is the width of the lipid bilayer annulus in
the membrane patch. To this end, it is useful to write G in the
form

G = 2π

∫ R+L

R
g(r)r dr, (6)

where g(r) is the lipid bilayer energy density. We numerically
minimize G in Eq. (6) using the L-BFGS-B solver [73,74].
Appendix D provides a detailed discussion of the numerical
approach employed here, and compares the results obtained
using the L-BFGS-B solver to the corresponding results
obtained by numerical solution of the Euler-Lagrange equa-
tions associated with Eq. (4), which we found to provide a less
convenient mathematical approach for the minimization of G.
To calculate protein interaction potentials Gint (L) in heteroge-
neous lipid bilayers, we subtract from the total bilayer energy
G in Eq. (4) the G obtained in the large-L, noninteracting
regime (see Appendix E).

The mathematical form of the bilayer boundary conditions
associated with G in Eq. (4) follows from the calculus of
variations [75,76]. In particular, we can have natural (free) or
fixed-value boundary conditions on h(r), ∇h(r), and c(r) at
r = R and r = R + L. At a boundary r = rb, with rb = R or
rb = R + L, the natural boundary conditions on h(r), ∇h(r),
and c(r) are given by{

d

dr

[
τh − Kb

1

r

d

dr

(
r

dh

dr

)]}
r=rb

= 0, (7a)

[
1

r

d

dr

(
r

dh

dr

)]
r=rb

= 0, (7b)

dc

dr

∣∣∣∣
r=rb

= 0, (7c)

respectively. With natural boundary conditions, the values of
h(r), ∇h(r), or c(r) at r = rb can be adjusted as part of the
energy minimization. Conversely, the fixed-value boundary
conditions on h(r), ∇h(r), and c(r) at a boundary r = rb are
given by

h(rb) = Hb, (8a)

dh

dr

∣∣∣∣
r=rb

= sb, (8b)

c(rb) = cb, (8c)

respectively, where Hb, sb, and cb take given, fixed values.
In principle, one can have any combination of the natural

and fixed-value boundary conditions on h(r), ∇h(r), and c(r)
in Eqs. (7a)–(7c) and Eqs. (8a)–(8c) at rb = R and rb = R + L.
The specific form of the boundary conditions used for a given
scenario encodes some of the key physical properties of the
particular system at hand. We first note that it is energeti-
cally very unfavorable to expose the hydrophobic surfaces
of lipids or membrane proteins to water while, in general,
membrane proteins are considerably more rigid than lipid
bilayers [15,17–20,22,44,54]. As a result, one expects that a
given conformational state of a membrane protein imposes
a given bilayer leaflet thickness Hb at the bilayer-protein
boundary. Throughout this article, we therefore use Eq. (8a) at
bilayer-protein interfaces. We explore the possible response of
membrane proteins to (substantial) bilayer-protein hydropho-
bic mismatch by, on the one hand, studying the dependence
of the bilayer energy on the protein hydrophobic thickness.
Such a variable protein hydrophobic thickness could, for in-
stance, originate from a tilting of transmembrane helices. On
the other hand, we allow for different conformational states
of membrane proteins with distinct hydrophobic thickness,
and study the effect of bilayer composition and organization
on the thermodynamic competition between these states. In
particular, we employ here MscL as a model system to explore
lipid-protein organization and regulation through membrane
thickness deformations. The closed and open conformational
states of MscL yield the approximate hydrophobic thicknesses
Hc = 1.9 nm and Ho = 1.3 nm, respectively, with the approx-
imate protein radii Rc = 2.5 nm and Ro = 3.5 nm in the closed
and open conformational states of MscL [13,14,22,44,54],
which we use as reference values for Hb in Eq. (8a) and R.

The choice of the boundary condition on ∇h at bilayer-
protein interfaces has been a matter of debate, with some
studies suggesting the natural boundary condition in Eq. (7b)
and other studies suggesting the fixed-value boundary con-
dition in Eq. (8b) with s0 = 0 [15,20,22,44,54,69]. We use
here Eq. (8b) with s0 = 0 at bilayer-protein interfaces. We
consider both the natural and fixed-value boundary conditions
on c in Eqs. (7c) and (8c) at bilayer-protein interfaces, respec-
tively, with cb = 0 or cb = 1. The former boundary condition
corresponds to nonspecific lipid-protein interactions, while
the latter boundary condition corresponds to a lipid-protein
chemical affinity driven by preferential interactions between
particular lipid and protein species. Finally, for scenarios
where the (outer) boundary of the membrane patch under
consideration is not constrained by membrane proteins, we
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FIG. 2. Illustration of the local lipid environment of a single-
membrane protein with (a) zero chemical potential and no chemical
affinity between the membrane protein and a particular lipid species,
(b) zero chemical potential with a chemical preference of the mem-
brane protein for a particular lipid species (indicated in blue), (c) a
nonzero chemical potential with no chemical affinity between the
membrane protein and a particular lipid species, and (d) a nonzero
chemical potential with a chemical preference of the membrane
protein for a particular lipid species (indicated in red). For ease of
visualization, we took here one lipid species (indicated in red) to
yield an unperturbed hydrophobic bilayer thickness that is identical
to the hydrophobic thickness of the membrane protein at the center
of the membrane patch.

use the natural boundary conditions in Eqs. (7a)–(7c) for h,
∇h, and c.

III. LIPID-PROTEIN DOMAINS IN DILUTE MEMBRANES

This section focuses on lipid-protein organization and
regulation through membrane thickness deformations for a
single-membrane protein in a heterogeneous lipid bilayer
composed of two lipid species with distinct unperturbed hy-
drophobic thicknesses. It is useful to distinguish here between
four basic scenarios, which are illustrated in Fig. 2. First, we
consider the case of zero chemical potential in Eq. (2) with no
chemical affinity between the membrane protein at the center
of the membrane patch and a particular lipid species [see
Fig. 2(a)], for which lipid-protein organization is driven solely
by the energetics of lipid bilayer thickness deformations [38].
Second, we consider the case of zero chemical potential in
Eq. (2) with a chemical preference of the membrane protein
at the center of the membrane patch for a particular lipid
species [see Fig. 2(b)]. If the preferred lipid species yields
an unperturbed bilayer thickness that is distinct from the
hydrophobic thickness of the membrane protein, such a chem-
ical affinity frustrates hydrophobic lipid-protein interactions.
Third, we consider the case of a nonzero chemical potential
in Eq. (2) with no chemical affinity between the membrane
protein at the center of the membrane patch and a particular
lipid species [see Fig. 2(c)]. Similarly to Fig. 2(a), the ener-
getics of protein-induced lipid bilayer thickness deformations
can then yield, driven by local matching of bilayer and protein
hydrophobic thickness, local segregation of a particular lipid
species around the membrane protein. Finally, we allow for
an interplay of bilayer thickness deformations with a nonzero

chemical potential in Eq. (2) and a chemical affinity between
particular lipid and protein species [see Fig. 2(d)], which can
perturb the lipid-protein organization obtained from a local
matching of bilayer and protein hydrophobic thickness.

Since we focus here on a single-membrane protein in a
heterogeneous lipid bilayer membrane we use, throughout this
section, the natural boundary conditions in Eqs. (7a)–(7c) at
the (outer) membrane patch boundary rb = R + L. Further-
more, we choose membrane patch sizes large enough so that
g(R + L) ≈ 0 in Eq. (6). We first consider how lipid-protein
organization and the energy of protein-induced lipid bilayer
thickness deformations depend on the membrane protein hy-
drophobic thickness with and without a chemical affinity
between the membrane protein and a particular lipid species,
at zero chemical potential in Eq. (2) and at zero membrane
tension in Eq. (1) (see Sec. III A). We then allow for a nonzero
chemical potential in Eq. (2), which effectively biases the
composition of the lipid bilayer patch towards a particular
lipid species, and explore the effects of such a bias on lipid-
protein organization and the energy of protein-induced lipid
bilayer thickness deformations, again at zero membrane ten-
sion in Eq. (1) (see Sec. III B). Finally, we consider the effects
of a nonzero membrane tension in Eq. (1) on protein-induced
lipid bilayer thickness deformations in heterogeneous bilay-
ers (see Sec. III C). In particular, using MscL as a model
system, we study how heterogeneity in the preferred bilayer
hydrophobic thickness affects the tension-dependent gating of
ion channels. We find that, even at fixed (low) membrane ten-
sion, changes in lipid heterogeneity can induce MscL gating.

A. Lipid-protein chemical affinity

Figure 3 contrasts lipid-protein organization and the energy
of protein-induced lipid bilayer thickness deformations for
scenarios without and with a chemical affinity between partic-
ular lipid and protein species [Figs. 2(a) and 2(b)]. A detailed
discussion of the former scenario is provided in Ref. [38].
Throughout this section we assume zero membrane tension
in Eq. (1) and zero chemical potential in Eq. (2). For general
values of the hydrophobic thickness of the membrane protein
at the center of the membrane patch, Hb = H0, we find that a
chemical affinity between the membrane protein and a partic-
ular lipid species only has a minor effect on the overall lipid
composition of the bilayer patch surrounding the membrane
protein, with the average lipid composition of the bilayer
patch being driven primarily by the interplay of lipid and
protein hydrophobic thickness [38]. However, we also find
that, if the hydrophobic thickness of the membrane protein (or
of the lipids) is tuned to lie within a certain (narrow) range,
modification of the lipid-protein chemical affinity can have
a dramatic effect on the lipid composition of the membrane
patch. For instance, for the parameter values used for Fig. 3 we
find that two proteins with similar hydrophobic thicknesses
within the range 1.91 nm � H0 � 1.98 nm but different chem-
ical affinities—one for lipid species A (cb = c0 = 0) and the
other for lipid species B (cb = c0 = 1)—can yield markedly
different lipid compositions of the membrane patch, with the
membrane patch composition being dominated by either lipid
species A or B [see Fig. 3(a)].
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FIG. 3. Lipid-protein organization for a single-membrane pro-
tein with and without a lipid-protein chemical affinity. (a) Bilayer
leaflet thickness profile h (left axes), lipid composition c (color
bars), and energy density g in Eq. (6) (right axes) for the fixed-
value boundary conditions c(R) = c0 with c0 = 0 (upper panel) and
c0 = 1 (lower panel) as a function of the radial coordinate r at
H0 = 1.94 nm. (b) Total bilayer energy G in Eq. (4) as a function
of H0 for a heterogeneous bilayer containing lipid species A and B
and homogeneous bilayers composed solely of lipid species A or
B for natural boundary conditions on c at r = R or the indicated
lipid-protein affinities. The dashed vertical lines show H0 = H∗

0 for
fixed c0 = 0, free c0, and fixed c0 = 1 (right to left), for which the
dominant lipid composition in the membrane patch changes sharply
from lipid species A to lipid species B. At r = R + L we use, for
all panels, the natural boundary conditions in Eqs. (7a)–(7c). We set
L = 20 nm, R = Rc, μ = 0, and τ = 0.

For membrane proteins without a chemical affinity for
a particular lipid species, changes in the protein hydropho-
bic thickness H0 across a critical value H∗

0 yield a sharp
change in the lipid composition of the bilayer patch [38]
[see Fig. 3(b)]. A similar transition in lipid composition is
obtained for membrane proteins that have a chemical affinity
for a particular lipid species, but at different values of H∗

0
[Fig. 3(b)]. For instance, for the parameter values used for
Fig. 3, we have H∗

0 = 1.95 nm for natural boundary conditions
on c at the bilayer-protein interface, but H∗

0 = 1.98 nm and
H∗

0 = 1.91 nm for the fixed-value boundary conditions c0 = 0
and c0 = 1, respectively. Furthermore, a chemical affinity be-
tween particular lipid and protein species dramatically affects
the energy landscape of lipid-protein interactions [Fig. 3(b)].
Notably, G shows minima at both H0 = a(0) and H0 = a(1)
for natural boundary conditions on c at the bilayer-protein
interface. In contrast, fixed-value boundary conditions on c
at the bilayer-protein interface yield a unique minimum of G
at H0 = a(c0).

The foregoing results can be understood intuitively by not-
ing that, in the case of a (strong) chemical affinity between
particular lipid and protein species, the lipids at the bilayer-
protein boundary deviate from their preferred hydrophobic
thickness if H0 �= a(c0), yielding a frustrated bilayer-protein
configuration. However, since gradients in c are energetically
unfavorable, the membrane patch maintains an approximately
uniform lipid composition with c ≈ c0, as long as H0 ≈ a(c0).
But, if H0 deviates strongly enough from a(c0), the energetics
of bilayer thickness deformations can make it favorable for
the lipid bilayer composition to rapidly transition around the
membrane protein to a composition c �= c0, yielding a domi-
nant lipid composition of the membrane patch that is distinct
from c0, with substantial bilayer thickness deformations and
substantial |∇c| in the immediate vicinity of the membrane
protein.

B. Lipid chemical potential

A nonzero chemical potential μ introduces an external bias
to the lipid composition of the membrane patch. Such an
external bias may arise through interactions of the membrane
patch with the surrounding membrane in which, for instance,
one lipid species may be dominant overall. A nonzero chemi-
cal potential μ competes with bilayer thickness deformations
and/or a chemical affinity between particular lipid and pro-
tein species to drive lipid-protein organization [Figs. 2(c)
and 2(d)]. For example, for a membrane protein with a hy-
drophobic thickness H0 = 1.7 nm matching the unperturbed
bilayer leaflet thickness associated with lipid species A and
no lipid-protein chemical affinity, the membrane patch only
contains lipids of species A for μ = 0. However, as μ is
increased from zero, the lipid bilayer composition is increas-
ingly biased towards lipid species B, eventually resulting in
the localization of lipid species A in the immediate vicinity
of the membrane protein, with the overall lipid composition of
the membrane patch being dominated by lipid species B [see
Fig. 4(a)]. For moderate values of |μ|, the total bilayer energy
of the membrane patch, G in Eq. (4), shows two minima as
a function of H0 corresponding to lipid species A and B,
respectively, with the minimum associated with lipid species
A providing the global energy minimum for μ < 0, and vice
versa [see Fig. 4(b)]. As |μ| is increased, the energy landscape
of the membrane patch approaches that associated with a
membrane patch containing only lipids of species A or B,
yielding a unique energy minimum at H0 ≈ a(0) or H0 ≈ a(1)
[Fig. 4(b)].

The competition between a nonzero chemical potential, bi-
layer thickness deformations, and a chemical affinity between
particular lipid and protein species can produce a variety
of scenarios for lipid-protein organization [see Figs. 4(c)
and 4(d)]. For instance, the external chemical potential may
compete with lipid-protein affinity, thereby frustrating lipid-
protein organization. In this case, the lipid composition of
the membrane patch in the immediate vicinity of the mem-
brane protein is determined by the chemical preference of
the membrane protein for a particular lipid species, while
the lipid composition of the membrane patch away from
the membrane protein is dominated by the competition be-
tween the external chemical potential and bilayer thickness
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FIG. 4. Dependence of lipid-protein organization on the membrane patch chemical potential μ, in the case of a single-membrane protein.
Bilayer leaflet thickness profile h (left axes), lipid composition c (color bars), and energy density g in Eq. (6) (right axes) for (a) natural boundary
conditions on c at the bilayer-protein interface and H0 = 1.7 nm with μ = 10−3 kBT/nm2 (upper panel) and μ = 10−2 kBT/nm2 (lower panel),
and (c) the fixed-value boundary condition c(R) = c0 at the bilayer-protein interface and H0 = 1.9 nm with c0 = 0, μ = 10−2 kBT/nm2

(upper panel) and c0 = 1, μ = −10−2 kBT/nm2 (lower panel). Total bilayer energy G in Eq. (4) as a function of H0 for a heterogeneous
bilayer containing lipid species A and B and homogeneous bilayers composed solely of lipid species A or B for the indicated values of μ

with (b) natural boundary conditions on c at the bilayer-protein interface and (d) the indicated fixed-value boundary conditions on c at the
bilayer protein interface with μ = ±10−2 kBT/nm2 (μ ≷ 0) (curves corresponding to free c0 included for reference). In panel (b), the dashed
vertical lines show H0 = H∗

0 for free c0 at μ = 10−3 kBT/nm2, μ = 0, and μ = −10−3 kBT/nm2 (right to left), for which the dominant lipid
composition in the membrane patch changes sharply from lipid species A to lipid species B. Similarly, the gray dashed vertical lines in panel
(d) show H0 = H∗

0 for c0 = 0, free c0, and c0 = 1 at μ = 0 (right to left). At r = R + L we use, for all panels, the natural boundary conditions
in Eqs. (7a)–(7c). We set L = 20 nm, R = Rc, and τ = 0 for all panels.

deformations [Fig. 4(c)]. Examining G in Eq. (4) as a function
of H0 we find a unique energy minimum for large enough
|μ| that neither corresponds to the unperturbed hydrophobic
thickness associated with lipid species A nor to the unper-
turbed hydrophobic thickness associated with lipid species B
[Fig. 4(d)]. However, this minimum in G(H0) can be rather
shallow, suggesting strong fluctuations in the lipid-protein
organization in this regime, with no sharp transition in the
lipid composition of the membrane patch as H0 is varied.

C. Gating of ion channels in heterogeneous bilayers

The results in Figs. 3 and 4 show that heterogeneity in
the unperturbed lipid bilayer thickness can have a pronounced
effect on the energy of protein-induced lipid bilayer thickness
deformations. For conformational transitions in membrane
proteins that involve a change in protein hydrophobic thick-
ness [15,17–23], lipid heterogeneity is therefore expected to
bias the protein conformation towards particular states. We
illustrate here the regulation of protein function through het-
erogeneity in the unperturbed lipid bilayer thickness using
the tension-dependent gating of MscL as a model system.
The experimental phenomenology of MscL is captured by a
two-state model, in which MscL is assumed to be either in

closed or open conformational states with gating probability

Po = 1

1 + e(�G−τ�A)/kBT
, (9)

where �G = Go − Gc is the energy difference between the
open and closed states of MscL and �A = π [(Ro)2 − (Rc)2]
is the change in (in-plane) membrane area. The gating energy
�G involves contributions due to internal protein conforma-
tional changes as well as bilayer-protein interactions.

Remarkably, the basic experimental phenomenology of
MscL gating in homogeneous bilayer membranes can already
be captured based solely on contributions to �G arising from
bilayer thickness deformations [21,22,44,54]. We consider
here MscL gating in heterogeneous lipid bilayers [38], and
calculate �G from Eq. (4) for the open and closed states of
MscL, using the boundary conditions described in Sec. II B.
To quantify MscL gating, we define the MscL gating ten-
sion τ̄ as the smallest membrane tension τ with Po � 1/2.
Experiments on MscL gating in Escherichia coli giant sphero-
plasts have yielded an estimate τ̄ ≈ 2.5 kBT/nm2 [54,77],
but τ̄ is known to depend on the lipid bilayer composi-
tion [9,21,22,44]. While there is, to our knowledge, currently
no experimental evidence demonstrating a strong chemical
affinity between (closed- or open-state) MscL and a particular
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FIG. 5. Gating of single MscL in heterogeneous lipid bilayers.
MscL gating probability Po in Eq. (9) as a function of membrane
tension τ for heterogeneous bilayers composed of lipid species A and
B for (a) μ = 0 with natural boundary conditions on c at the bilayer-
MscL interface or the indicated values of c0 in the closed (c0 = cc

0)
and open (c0 = co

0) conformational states of MscL, (b) μ �= 0 with
natural boundary conditions on c at the bilayer-MscL interface, and
(c) μ �= 0 with various combinations of free and fixed boundary con-
ditions on c for the closed and open conformational states of MscL.
In panel (c) we use μ = ±10−2 kBT/nm2 (μ ≷ 0). For reference, we
show in all panels the corresponding results obtained for μ = 0 with
natural boundary conditions on c at the bilayer-MscL interface [38],
and for homogeneous bilayers composed solely of lipid species
A or B.

lipid species, MscL could be modified to synthetically engi-
neer such an affinity and, more generally, a great variety of
other membrane proteins have been found to show chemical
affinities for particular lipid species [61–65].

We have shown previously [38] that, for zero chemical
potential and no lipid-protein chemical affinity, lipid bilayer
heterogeneity can produce shifts in τ̄ that are a substantial
fraction of the bilayer rupture tension τr ≈ 3 kBT/nm2 [54].
Here we find that a lipid-protein chemical affinity [see
Fig. 5(a)], a nonzero chemical potential [see Fig. 5(b)], or a
combination of both effects [see Fig. 5(c)] can further modify
MscL gating, with a complex dependence of τ̄ on the lipid bi-
layer properties. For instance, Fig. 5(a) suggests that, if MscL

shows an affinity for a particular lipid species in its closed
state but not in its open state, the gating tension of MscL
is generally lowered, and vice versa. This can be understood
intuitively by noting that a lipid-protein affinity increases the
constraints on the lipid-protein system, and thus generally
increases the energy of protein-induced lipid bilayer thickness
deformations. An exception to this rule occurs if the fixed-
value boundary condition on c at the bilayer-protein interface
is chosen so as to coincide with the value of c implied by the
corresponding natural boundary condition on c. Interestingly,
Fig. 5(a) shows that, for certain types of lipid-protein affin-
ity, MscL gating is effectively suppressed in the physically
relevant tension range 0 � τ � τr , thus stabilizing MscL in
its closed conformational state. This behavior can arise if the
chemical affinity of open-state MscL for a particular lipid
species yields a lipid composition in the vicinity of MscL that,
due to MscL-induced lipid bilayer thickness deformations, is
highly unfavorable from an energetic perspective.

In addition to a chemical affinity between MscL and
particular lipid species, a nonzero chemical potential can
also substantially affect MscL gating [Fig. 5(b)]. In par-
ticular, for the parameter values used for Fig. 5(b), μ > 0
tends to increase τ̄ while μ < 0 tends to decrease τ̄ . This
can be understood intuitively by noting that H (c) > H (o) for
MscL [13,14,22,44,54], while lipid species A has a smaller
unperturbed hydrophobic thickness than lipid species B. As
a result, a bias of the lipid bilayer composition towards lipid
species B over lipid species A favors the closed state of MscL
over the open state of MscL, and vice versa. Note, however,
that the predicted shifts in τ̄ are not symmetric about μ = 0,
because the thickness deformation energy in Eq. (1) explicitly
depends on a(c). Combining a chemical affinity of MscL for a
particular lipid species with a nonzero chemical potential we
obtain an intricate dependence of τ̄ on the values of c0 and μ

[see Fig. 5(c)]. For instance, with μ > 0 we find substantial
differences in τ̄ for scenarios in which MscL has an affinity
for lipid species A in both its open and closed states [green
curve in Fig. 5(c)], and in which MscL has an affinity for lipid
species A in its open state and an affinity for lipid species B
in its closed state [indigo curve in Fig. 5(c)]. In contrast, the
MscL gating curves corresponding to these two scenarios are
almost identical if the sign of μ is flipped so that μ < 0 [blue
and red curves in Fig. 5(c)]. Collectively, we find in Fig. 5 that
heterogeneity in the lipid composition of bilayer membranes
can, through protein-induced bilayer thickness deformations,
lipid-protein chemical affinity, and the local lipid chemical
potential, strongly affect the competition between distinct
conformational states of membrane proteins.

IV. LIPID-PROTEIN DOMAINS IN CROWDED
MEMBRANES

An overlap in the bilayer thickness deformations induced
by neighboring membrane proteins gives rise to bilayer-
thickness-mediated protein interactions, which can yield
self-assembly of supramolecular membrane protein assem-
blies [16,24–36]. Interestingly, it follows from the mechanics
of bilayer thickness deformations [15–17,22,24–28,44,54]
that protein-induced bilayer thickness deformations are local-
ized over a scale of approximately 4 nm about each membrane
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FIG. 6. Schematic of the mean-field model of bilayer-mediated
protein interactions in crowded membranes [24,38,70,78–80]. The
membrane protein at the center of the membrane patch has radius
R and is surrounded by a lipid bilayer annulus of thickness L.
The boundary conditions at the outer rim of the bilayer annulus at
r = R + L are taken to be axisymmetric about the membrane patch
center, and are chosen so as to model a uniform array of membrane
proteins (see Sec. II B).

protein, which corresponds to roughly one-half the typical
protein-protein separation in cell membranes [4,18]. The in-
teraction of membrane proteins through bilayer thickness
deformations may therefore have a broad impact on the lo-
cal organization and cooperative function of cell membranes.
To ascertain the role of bilayer-thickness-mediated protein
interactions in cell membrane organization and function, it
is important to understand how such protein interactions
are modified by the heterogeneous lipid bilayer composi-
tions typically found in cell membranes [1–3,12]. We have
previously explored the influence of lipid heterogeneity on
membrane protein interactions mediated by bilayer thick-
ness deformations for natural boundary conditions on c at
the bilayer-protein interface and zero chemical potential in
Eq. (2) [38].

This section focuses on the effects of a nonzero chemical
potential in Eq. (2) and a chemical affinity between particular
lipid and protein species on bilayer-thickness-mediated pro-
tein interactions in heterogeneous lipid bilayers. We employ a
mean-field approach [24,38,70,78–80], and consider a mem-
brane protein at the center of a membrane patch surrounded by
a uniform array of identical proteins (see Fig. 6). This mean-
field approach cannot capture the roles of protein shape and
multibody effects in bilayer-thickness-mediated protein inter-
actions [26–28,35] but, based on previous work on membrane
protein interactions mediated through thickness deformations
in homogeneous bilayers [24], is expected to correctly cap-
ture the sign, approximate range, and order of magnitude
of bilayer-mediated protein interactions in heterogeneous bi-
layers. We first consider bilayer-thickness-mediated protein
interactions for an array of membrane proteins with a hy-
drophobic thickness that is identical to (see Sec. IV A) or
distinct from (see Sec. IV B) the hydrophobic thickness of the

protein at the center of the membrane patch. On this basis, we
then investigate protein cooperativity in heterogeneous bilayer
membranes (see Sec. IV C). We find that heterogeneity in
the lipid chain length can expand the repertoire and range of
membrane protein interactions mediated by bilayer thickness
deformations, can yield colocalization of lipids and membrane
proteins according to their preferred hydrophobic thickness,
and can have a pronounced effect on bilayer-mediated protein
cooperativity.

A. Proteins with identical hydrophobic thickness

In this section we explore scenarios in which the protein
at the center of the membrane patch has a hydrophobic thick-
ness H0 that is identical to the hydrophobic thickness of the
surrounding membrane proteins, HL = H0 (see Fig. 7). We
set here H0 = HL = 2.0 nm, which lies in between the un-
perturbed bilayer leaflet thicknesses a = 1.7 nm and a = 2.2
nm associated with lipids of species A and B, respectively.
We first consider situations in which the protein at the
center of the membrane patch and its neighboring mem-
brane proteins have chemical affinities for the same [see
Fig. 7(a)] or distinct [see Fig. 7(b)] lipid species with zero
chemical potential in Eq. (2). Subsequently, we consider
bilayer-thickness-mediated protein interactions for situations
in which the protein at the center of the membrane patch
and its neighboring membrane proteins have natural boundary
conditions on c at the bilayer-protein interfaces but μ �= 0
with, again, HL = H0 [see Fig. 7(c)]. Comparison of the re-
sults in Figs. 7(a), 7(b), and 7(c) with the corresponding
results obtained for natural boundary conditions on c at the
bilayer-protein interfaces with μ = 0 [38] shows that a chem-
ical preference of the membrane proteins for a particular lipid
species or a nonzero chemical potential can produce substan-
tial shifts in bilayer-thickness-mediated protein interactions.

For c0 = cL = 0, μ = 0, and large L, we find that lipid
domains with c ≈ 0 form near the protein boundaries at r = R
and r = R + L [left panel in Fig. 7(a)]. As L is decreased,
these domains merge, as also found for membrane proteins
with natural boundary conditions on c [38], but the resulting
bilayer-thickness-mediated protein interactions Gint (L) are
not as favorable as in the case of natural boundary condi-
tions on c [right panel in Fig. 7(a)]. This can be understood
intuitively by noting that H0 = HL = 2.0 nm and c0 = cL =
0 produce substantial bilayer thickness deformations in the
vicinity of the proteins, which incurs an energy penalty and
produces less favorable interactions at small L. As expected,
we find similar, but less pronounced, effects of lipid-protein
chemical affinity on lipid organization and bilayer-thickness-
mediated protein interactions with H0 = HL = 2.0 nm and
c0 = cL = 1, for which the bilayer thickness is deformed less
strongly in the vicinity of the proteins than for c0 = cL = 0
[middle and right panels in Fig. 7(a)]. For situations with
c0 �= cL and μ = 0, lipid-protein chemical affinity can further
reduce the strength of energetically favorable interactions, and
even render bilayer-thickness-mediated protein interactions
unfavorable for all protein separations considered in Fig. 7(b).
This can be understood intuitively by noting that, in this
case, distinct lipid-protein affinities at r = R and r = R + L
induce distinct lipid environments at r = R and r = R + L,
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FIG. 7. Bilayer-thickness-mediated protein interactions in heterogeneous bilayers for membrane proteins with identical hydrophobic
thickness, H0 = HL , using H0 = HL = 2.0 nm. Bilayer leaflet thickness profile h (left axes), lipid composition c (color bars), and energy
density g in Eq. (6) (right axes) for L = 3 nm and L = 12 nm vs (r − R)/L with R = Rc (left and middle panels) and corresponding
bilayer-thickness-mediated protein interaction potentials Gint(L) (right panels) for (a) fixed-value boundary conditions on c with c0 = cL and
μ = 0, (b) fixed-value boundary conditions on c with c0 �= cL and μ = 0, and (c) natural boundary conditions on c and μ = ±10−2 kBT/nm2

(μ ≷ 0). In the right panels we show, for reference, also the Gint(L) obtained for natural boundary conditions on c and μ = 0 in heterogeneous
bilayers composed of lipid species A and B (AB), as well as the Gint(L) obtained for homogeneous bilayers composed solely of lipid species A
or B [38]. To calculate Gint (L), we subtracted from the total bilayer energy G in Eq. (4) the value of G obtained in the large-L, noninteracting
regime (see Appendix E). We set τ = 0 for all panels.

which prevents a merging of lipid domains at small L [left
and middle panels in Fig. 7(b)]. Furthermore, we find that,
compared to situations with natural boundary conditions on
c, fixed-value boundary conditions on c at the bilayer-protein
interfaces can substantially increase the range of (unfavorable)
bilayer-thickness-mediated protein interactions [right panels
in Figs. 7(a) and 7(b)].

In Fig. 7(c) we explore bilayer-thickness-mediated protein
interactions for situations in which μ < 0 or μ > 0 in Eq. (2),
with H0 = HL and natural boundary conditions on c. A pos-
itive chemical potential tends to bias the lipid composition
of the membrane patch towards lipids of species B, while a
negative chemical potential tends to bias the lipid composition
of the membrane patch towards lipids of species A. We find
that, depending on the interplay of protein hydrophobic thick-
ness, the sign and magnitude of the chemical potential, and the
unperturbed bilayer thicknesses associated with the particular
lipid species under consideration, a nonzero chemical po-
tential can strongly affect bilayer-thickness-mediated protein
interactions [Fig. 7(c)]. For instance, with H0 = HL = 2.0 nm
we find that μ = 0 and μ > 0 give similar interaction poten-
tials, but that μ < 0 gives bilayer-thickness-mediated protein
interactions that are much more favorable at intermediate L,
and have a somewhat greater range, than obtained with μ = 0
or μ > 0 [Fig. 7(c)]. Note that μ < 0 and μ > 0 (or μ = 0)
yield a similar lipid-protein organization at small L, but dras-
tically different lipid bilayer compositions at large L that are
dominated by lipid species A and B, respectively [Fig. 7(c)].

B. Proteins with distinct hydrophobic thickness

We consider in this section scenarios in which the protein
at the center of the membrane patch has a hydrophobic thick-
ness H0 that is different from the hydrophobic thickness of
the surrounding membrane proteins, HL �= H0 (see Fig. 8).
In particular, we set H0 = 2.2 nm and HL = 1.3 nm. These
values of H0 and HL should be contrasted with the unperturbed
bilayer leaflet thicknesses a = 1.7 nm and a = 2.2 nm associ-
ated with lipid species A and B, respectively. We thus have
perfect hydrophobic matching for the protein at r = R and
lipid species B, and a preference of the proteins at r = R + L
for lipid species A over lipid species B.

Focusing first on situations with μ = 0 we find that, if cL =
1 so that that lipids at r = R + L are substantially expanded
in hydrophobic thickness, bilayer-thickness-mediated protein
interactions are more unfavorable and longer in range than
in the case of natural boundary conditions on c, irrespective
of whether c0 = 0 or c0 = 1 [see Fig. 8(a)]. This can be
understood intuitively by noting that, to reduce the energy
cost of bilayer thickness deformations, the bilayer composi-
tion (rapidly) changes here from lipid species B towards lipid
species A as r is decreased from r = R + L for both c0 = 0
and c0 = 1 [see the left and middle panels in Fig. 8(a)], which
results in lipid-protein configurations that are increasingly
unfavorable as L is decreased. Conversely, if cL = 0 the lipids
at r = R + L are not as expanded in hydrophobic thickness
as for cL = 1, and we find bilayer-thickness-mediated protein
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FIG. 8. Bilayer-thickness-mediated protein interactions in heterogeneous bilayers for membrane proteins with distinct hydrophobic
thickness, H0 �= HL , using H0 = 2.2 nm and HL = 1.3 nm. Bilayer leaflet thickness profile h (left axes), lipid composition c (color bars),
and energy density g in Eq. (6) (right axes) for L = 3 nm and L = 12 nm vs (r − R)/L with R = Rc (left and middle panels) and corresponding
bilayer-thickness-mediated protein interaction potentials Gint(L) (right panels) for (a) fixed-value boundary conditions on c with c0 = 0 or
c0 = 1 and cL = 1 at μ = 0, (b) fixed-value boundary conditions on c with c0 = 0 or c0 = 1 and cL = 0 at μ = 0, and (c) natural boundary
conditions on c at μ = ±10−2 kBT/nm2 (μ ≷ 0). In the right panels we show, for reference, also the Gint(L) obtained for natural boundary
conditions on c and μ = 0 in heterogeneous bilayers composed of lipid species A and B (AB), as well as the Gint(L) obtained for homogeneous
bilayers composed solely of lipid species A or B [38]. To calculate Gint (L), we subtracted from the total bilayer energy G in Eq. (4) the value
of G obtained in the large-L, noninteracting regime (see Appendix E). We set τ = 0 for all panels.

interactions that are similar to those obtained with natural
boundary conditions on c, irrespective of whether c0 = 0 or
c0 = 1 [see Fig. 8(b)].

In Fig. 8(c) we consider bilayer-thickness-mediated pro-
tein interactions for H0 = 2.2 nm and HL = 1.3 nm with
natural boundary conditions on c for μ < 0 and μ > 0 in
Eq. (2). Similarly as in Fig. 7(c), we find that a nonzero
chemical potential can have a pronounced effect on bilayer-
mediated protein interactions. In particular, μ < 0 can result,
at intermediate L, in a regime with strongly favorable bilayer-
mediated protein interactions [right panel in Fig. 8(c)]. In
contrast, μ = 0 and μ > 0 both yield unfavorable bilayer-
mediated protein interactions for all L in Fig. 8(c). This can be
understood intuitively by noting that homogeneous bilayers
composed solely of lipid species A yield an energetically
favorable interaction regime in Fig. 8(c). Since a negative
lipid chemical potential biases the lipid bilayer composition
towards lipids of species A, μ < 0 can therefore also yield an
energetically favorable interaction regime. Interestingly, for
μ < 0 the energetically favorable regime of bilayer-thickness-
mediated protein interactions in Fig. 8(c) has a longer range
than for homogeneous bilayers composed solely of lipid
species A.

C. Protein cooperativity in heterogeneous bilayers

The results in Figs. 7 and 8 show that lipid heterogeneity
can have a pronounced effect on bilayer-thickness-mediated

protein interactions. This, in turn, suggests that lipid het-
erogeneity modifies protein cooperativity in the crowded
protein environments provided by cell membranes [1–5,18].
In analogy to Sec. III C, we explore here the effect of lipid
heterogeneity on protein cooperativity using MscL as a model
system. For MscL embedded in lipid bilayers with homo-
geneous lipid composition, it has been predicted [25] and
observed experimentally [32] that MscL gating is affected by
protein crowding. As for Figs. 7 and 8, we use the mean-field
model in Fig. 6 to explore protein cooperativity in heteroge-
neous bilayers. Specifically, we take the protein at the center
of the membrane patch to correspond to the closed or open
state of MscL, and take the neighboring proteins to impose bi-
layer boundary conditions corresponding to open-state MscL
proteins. Employing Eq. (9) with different L we then calcu-
late, as a function of membrane tension, the probability that
the MscL protein at the center of the membrane patch is in
its open conformational state, Po, and thus quantify protein
cooperativity (see Fig. 9). We denote the protein edge-to-edge
separations in the far-field (weakly interacting) and closed-
packed (strongly interacting) regimes by L = L f and L = Lc,
respectively. We use here L f = 12 nm and Lc = 3 nm. We
denote the corresponding MscL gating tensions by τ̄ f and τ̄c,
respectively, which are the smallest values of the membrane
tension for which Po � 1/2.

We first consider how a lipid-MscL chemical affinity af-
fects cooperative gating of MscL in heterogeneous bilayers,
at zero chemical potential and assuming that MscL shows the
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FIG. 9. Cooperativity in the tension-dependent gating of MscL
in heterogeneous bilayers. Probability that the MscL protein at the
center of the membrane patch is in its open state, Po in Eq. (9), vs
membrane tension τ for (a) identical fixed-value boundary conditions
on c at all bilayer-protein interfaces with μ = 0, (b) the indicated
fixed-value boundary conditions on c at r = R and r = R + L in
the closed (cc

0) and open (co
0,L) conformational states of MscL with

μ = 0, and (c) natural boundary conditions on c at all bilayer-protein
interfaces with μ = ±10−2 kBT/nm2 (μ ≷ 0). For reference, we
also show in all three panels the corresponding MscL gating curves
obtained with natural boundary conditions on c at all bilayer-protein
interfaces with μ = 0, as well as the corresponding MscL gating
curves obtained for homogeneous bilayers composed solely of lipid
species A or B [38]. We use H0 = Hc and H0 = Ho for the closed
and open conformational states of the MscL protein at the center
of the membrane patch, and HL = Ho for the proteins at the outer
membrane patch boundary. The edge-to-edge protein separations
considered here, L = Lc = 3 nm and L = Lf = 12 nm, correspond to
regimes with strong and weak bilayer-mediated protein interactions
(see also Figs. 7 and 8).

same lipid affinity in its closed and open states [see Fig. 9(a)].
We first note [38] that, for heterogeneous bilayers with natural
boundary conditions on c at the bilayer-protein interfaces, the
MscL gating tension decreases as L is decreased, τ̄c < τ̄ f ,
with amplified MscL cooperativity as compared to homoge-
neous bilayers. Figure 9(a) shows that a lipid-MscL chemical
affinity can also yield amplified MscL cooperativity with τ̄c <

τ̄ f , resulting in substantial shifts in the MscL gating tension

as L is decreased. Interestingly, we find in Fig. 9(a) that, if
MscL has an affinity for lipid species B in its closed and open
states, the (hypothetical) MscL gating tension is greater than
the approximate bilayer rupture tension τr ≈ 3 kBT/nm2 [54]
for L = L f , τ̄ f > τr , but τ̄c < τr for L = Lc. Thus, for these
boundary conditions on c, MscL gating relies on coopera-
tive effects. Allowing for distinct lipid-MscL affinities in the
closed and open conformational states of MscL further broad-
ens the cooperative response of MscL to changes in membrane
tension [see Fig. 9(b)], and can further amplify cooperative
shifts in the MscL gating tension.

In addition to lipid-protein chemical affinity, a nonzero
chemical potential can also substantially affect protein co-
operativity in heterogeneous bilayers [see Fig. 9(c)]. For
instance, using natural boundary conditions on c in the closed
and open states of MscL, cooperativity in MscL gating is
markedly amplified for μ > 0 in Fig. 9(c) as compared to
μ = 0. This can be understood intuitively by noting that μ >

0 biases the lipid bilayer composition towards lipid species
B, which tends to produce a strongly increased bilayer thick-
ness deformation energy for the open state of MscL, thus
increasing the significance of cooperative effects with respect
to scenarios with μ = 0. In contrast, μ < 0 in Fig. 9(c) pro-
duces only comparatively modest shifts in the MscL gating
cooperativity with respect to μ = 0. Similarly as in Figs. 9(a)
and 9(b), cooperative effects are needed in Fig. 9(c) for μ > 0
to shift the MscL gating tension to values smaller than the
bilayer rupture tension τr . Taken together, the results in Fig. 9
thus show that a lipid-protein chemical affinity or a nonzero
lipid chemical potential can substantially affect protein co-
operativity in heterogeneous lipid bilayers and, in particular,
amplify cooperative effects.

V. SUMMARY AND CONCLUSIONS

Cell membranes are composed of a great variety of pro-
tein and lipid species with distinct unperturbed hydrophobic
thicknesses, and show an intricate submicron organization
of lipids and proteins into domains with defined compo-
sition [1–4,17,18]. A wide range of experiments suggest
that membrane hydrophobic thickness provides a key con-
trol parameter for cell membrane organization [1–3,55–57].
To achieve hydrophobic matching, the lipid bilayer tends to
deform around membrane proteins so as to match the protein
hydrophobic thickness at bilayer-protein interfaces [15–18].
Such protein-induced distortions of the lipid bilayer hy-
drophobic thickness incur a substantial energy cost that
depends critically on the hydrophobic mismatch between
the membrane protein and the lipids localized around the
membrane protein. We have combined here the membrane
elasticity theory of protein-induced lipid bilayer thickness
deformations with the LG theory of lipid domain formation
to systematically explore the mechanochemical coupling of
lipid organization and protein function through membrane
thickness deformations.

Protein-induced lipid bilayer thickness deformations are
localized over a scale of approximately 4 nm about mem-
brane proteins [15–17,22,24–28,44,54], which corresponds to
roughly one-half the typical protein-protein separation in cell
membranes [4,18]. The resulting overlap in protein-induced
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bilayer thickness deformations gives rise to bilayer-thickness-
mediated protein interactions that, at small enough protein
separations, tend to be strongly favorable for proteins
with identical hydrophobic thickness [16,24–28,33,35] and
have been observed to yield protein aggregation in mem-
branes [29–32,34,36]. Furthermore, protein-induced lipid
bilayer thickness deformations induce a coupling of protein
conformational state and lipid bilayer thickness, which pro-
vides a general mechanism for protein regulation through lipid
bilayer mechanics [15,17–23,44]. For membrane proteins
at close enough separations, the combination of bilayer-
thickness-mediated protein interactions and the coupling of
protein conformational state to lipid bilayer thickness is
expected to produce cooperativity in membrane protein func-
tion [18,25–27,32,33,35,36]. We have extended here the
classic theory of bilayer-thickness-mediated protein interac-
tions and protein cooperativity [16,24–28,33,35] to account
for heterogeneous lipid bilayers composed of two lipid species
with distinct unperturbed hydrophobic thicknesses. We find
that lipid heterogeneity can yield colocalization of lipids and
membrane proteins according to their preferred hydrophobic
thickness, and can have intricate effects on membrane protein
regulation, protein clustering, and protein cooperativity driven
by bilayer thickness deformations.

For small membrane gradients in homogeneous lipid bi-
layers, bilayer thickness and bilayer midplane deformations
decouple to leading order [44,70]. But, similarly as for thick-
ness deformations, midplane deformations in heterogeneous
lipid bilayers couple to the lipid bilayer composition [41–43].
Interestingly this means that, even for small membrane gra-
dients, heterogeneity in lipid composition couples bilayer
thickness and bilayer midplane deformations. Depending on
the specific scenario considered, bilayer thickness and bi-
layer midplane deformations may thus be competing with
each other in driving lipid organization. For MscL, experi-
ments and theory suggest that bilayer thickness deformations
are dominant with only weak bilayer midplane deforma-
tions [21,22,44]. We therefore expect that, in general, the
bilayer midplane deformations induced by MscL would not
alter the behavior described here. A caveat is that, for lipid
bilayers with large intrinsic curvature, even an approximately
flat bilayer-protein interface may produce pronounced mem-
brane curvature deformations. In this case, bilayer midplane
deformations could have a substantial effect on membrane or-
ganization even if the protein has an approximately cylindrical
shape.

Building on a previous short communication [38], we con-
sidered here a purely mechanical coupling of lipid and protein
composition through the energetics of protein-induced lipid
bilayer thickness deformations as well as a chemical coupling
driven by preferential interactions between particular lipid and
protein species [58–65]. In general, both types of lipid-protein
coupling are expected to occur in cell membranes. A chemical
affinity between particular lipid and protein species could
also be engineered synthetically. Our results show how the
local lipid composition around membrane proteins depends on
the protein hydrophobic thickness, the lipid-protein chemical
affinity, and the local lipid chemical potential. Employing
MscL as a model system [9,21,22,54], we find that the re-
sultant lipid-protein organization can induce transitions in the

protein conformational state. We thereby focused on lipid
bilayer configurations that correspond to global energy min-
ima of the bilayer energy. In addition to these global energy
minima, we also found numerically local energy minima that
correspond to metastable states of the bilayer-protein sys-
tem. Interestingly, when considering transitions in the protein
conformational state, such metastable states may give rise,
in addition to internal protein degrees of freedom [22], to
short-lived substates of the bilayer-protein system.

Our calculations show that lipid heterogeneity can yield
substantial modifications of bilayer-thickness-mediated pro-
tein interactions. Notably, we find that lipid heterogeneity can
expand the range of attractive protein interactions and amplify
membrane protein cooperativity. In the case of MscL, for
instance, this amplification of protein cooperativity manifests
itself as pronounced shifts in the MscL gating tension. The
predicted effects of lipid heterogeneity on MscL gating could,
perhaps, be tested most directly in experiments by measuring
MscL gating curves for bilayer vesicles with heterogeneous,
rather than homogeneous, lipid compositions [21]. The pre-
dicted effects of bilayer thickness deformations on lipid and
protein organization, and on bilayer-mediated protein in-
teractions, could be tested experimentally by, for instance,
measuring the spatial distributions of lipids and proteins in
heterogeneous bilayers [29–32,34,36]. Taken together, our re-
sults suggest that membrane thickness deformations provide a
physical mechanism for the formation of membrane domains
with controlled mechanical properties that, in turn, can affect
the membrane protein conformational state. The coupling of
protein-induced bilayer thickness deformations [15–17,24–
28,44] and lipid domain formation [41,45–53] may pro-
vide a general physical mechanism underlying the observed
supramolecular organization of cell membranes [1–4].
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APPENDIX A: ONE-DIMENSIONAL MODEL

Previous work [16,24–28] has shown that generic prop-
erties of bilayer-thickness-mediated protein interactions in
homogeneous lipid bilayers—such as the order of magni-
tude, sign, and approximate range of bilayer-mediated protein
interactions—are already captured by a highly simplified
model in which the membrane is described as an effectively
one-dimensional (1D) system. Such a 1D approach also suc-
cessfully captures basic properties of the tension-dependent
gating of MscL [22,54]. In this Appendix we generalize
this approach to protein-induced bilayer thickness deforma-
tions in heterogeneous lipid bilayers composed of two lipid
species with distinct unperturbed hydrophobic thicknesses,
and thereby complement the axisymmetric, two-dimensional
(2D) model developed in Sec. II.
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In analogy to the 2D system in Sec. II, we take our 1D
system to have a lateral extent L, as measured from the edge
of the protein to the system boundary. We approximate the
total bilayer energy by the integral over the 1D energy density
g(1D)(x) multiplied by the circumference of the protein at the
center of the membrane patch, 2πR:

G(1D) = 2πR
∫ L

0
g(1D)(x) dx, (A1)

where the 1D energy density is given by

g(1D)(x) = Kb

2

(
d2h

dx2

)2

+ Kt

2

(
h − a(c)

a(c)

)2

+ τ

2

(
dh

dx

)2

+ τ

(
h − a(c)

a(c)

)
+ τ 2

2Kt
+ ε

2

(
dc

dx

)2

+ b0 − b1

2

(
c − 1

2

)2

+ b2

4

(
c − 1

2

)4

− μc + μ0, (A2)

with the 1D scalar functions h(x) and c(x). As in Eq. (4)
in Sec. II, we assume that the unperturbed bilayer leaflet
thickness, a(c), is a linear function of the lipid composition
[see Eq. (5)], while Kb and Kt are constants. Similarly as in
Sec. II, we minimize the energy functional in Eq. (A1) subject
to natural (free) or fixed-value boundary conditions on h(x),
dh/dx, and c(x) [75,76], using the L-BFGS-B solver [73,74].
In particular, the 1D natural boundary conditions are given by[

d

dx

(
τh − Kb

d2h

dx2

)]
x=xb

= 0, (A3a)

d2h

dx2

∣∣∣∣
x=xb

= 0, (A3b)

dc

dx

∣∣∣∣
x=xb

= 0 (A3c)

with xb = 0 or xb = L. The corresponding 1D fixed-value
boundary conditions are given by

h(xb) = Hb, (A4a)

dh

dx

∣∣∣∣
x=xb

= sb, (A4b)

c(xb) = cb (A4c)

with xb = 0 or xb = L, where Hb, sb, and cb take given, fixed
values (see Sec. II). Similarly as for the 2D model developed
in Sec. II, we use here Eq. (A4b) with sb = 0 throughout.

The 1D model in Eqs. (A1) and (A2) is not expected to
yield precise estimates of the numerical values of the bilayer
energy G. For instance, the magnitude of G as a function
of protein hydrophobic thickness tends to be larger for the
2D model than for the 1D model [see Fig. 10(a)]. Similarly,
we also find shifts in the predicted bilayer-mediated pro-
tein interactions [see Fig. 10(b)] as well as in the predicted
MscL gating tensions in the noninteracting and interacting
regimes [see Fig. 10(c)]. But, consistent with previous work
on protein-induced bilayer thickness deformations in homoge-
neous bilayers [16,22,24,54], we find that Eqs. (A1) and (A2)

FIG. 10. Comparing 1D and 2D model results. (a) Total 1D
bilayer energy G(1D) in Eq. (A1) and total 2D bilayer energy G in
Eq. (4) as a function of H0 with R = Rc for a heterogeneous bilayer
containing lipid species A and B (AB) at τ = 0 and τ = 1 kBT/nm2,
and for homogeneous bilayers composed solely of lipid species A
or B at τ = 0. The dashed vertical lines indicate H0 = H∗

0 , where
the dominant lipid composition in the bilayer patch changes from
lipid species A to lipid species B, for τ = 0 and τ = 1 kBT/nm2

(right to left). The 1D and 2D values of H∗
0 are identical within

numerical accuracy. We set L = 20 nm. (b) Bilayer-mediated pro-
tein interactions Gint as a function of L at τ = 0 for proteins with
identical hydrophobic thickness H0 = HL = 2.0 nm (left panel) and
distinct hydrophobic thicknesses H0 = 2.2 nm and HL = Ho (right
panel) obtained from the 1D and 2D models for heterogeneous and
homogeneous lipid bilayers. To calculate Gint (L), we subtracted from
the total 1D bilayer energy G(1D) in Eq. (A1) and the total 2D bilayer
energy G in Eq. (4) the respective values of G(1D) and G obtained in
the large-L, noninteracting regimes (see also Appendix E). (c) MscL
gating probability Po in Eq. (9) as a function of τ with natural
boundary conditions on h at the outer membrane patch boundary for
L = 20 nm (left panel), and with the fixed-value boundary condition
HL = Ho at the outer membrane patch boundary for L = Lf = 12 nm
and L = Lc = 3 nm (right panel). We used Eq. (A4b) with sb = 0 and
μ = 0 throughout. Unless indicated otherwise, we employed natural
boundary conditions for h and c.

do capture important generic features of lipid-protein inter-
actions in heterogeneous bilayers. In particular, we find that
most of the conclusions we arrived at in this article based
on the 2D model in Eqs. (1) and (2), which do not rely
on the precise numerical values of G, remain unchanged if
Eqs. (1) and (2) are replaced by Eqs. (A1) and (A2). Broadly
speaking, the main difference between our 1D and 2D results
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is that the predicted effects of lipid bilayer heterogeneity on
lipid-protein organization and regulation through membrane
thickness deformations tend to be more pronounced in the 2D
model than in the (less accurate) 1D model.

APPENDIX B: ANALYTIC SOLUTION FROM A
VARIATIONAL APPROACH

In this Appendix we adapt the variational approach de-
scribed in Ref. [54] to find approximate, analytic solutions
for the leaflet thickness field h and the bilayer composition
field c. For simplicity, we thereby focus on the 1D model
described in Appendix A. Specifically, we consider the 1D
bilayer energy given by Eqs. (A1) with (A2) at zero membrane
tension, τ = 0, and zero chemical potential, μ = 0. For h(x),
we use the fixed-value boundary conditions in Eqs. (A4a)
and (A4b) with sb = 0 at the bilayer-protein interface, x = 0,
and the natural boundary conditions in Eqs. (A3b) and (A3a)
at the outer edge of the membrane patch, x = L. For c(x),
we use the natural boundary condition in Eq. (A3c) at both
domain boundaries. We focus on the limit of an infinitely
large membrane patch, L → ∞. This scenario corresponds to
bilayer-protein interactions for dilute protein concentrations
in the membrane with no specific lipid-protein affinities, but
an analogous variational approach could be developed for
membranes crowded with proteins or if there are preferen-
tial chemical interactions between particular lipid and protein
species.

For our variational ansatz, we consider trial functions of
the form

h(x) = hd

(
1 + x

λd

)
e−x/λd + h∞, (B1)

c(x) =
{

cd
(
1 + x

λd

)
e−x/λd + c∞ if a(0) � H0 � a(1),

c∞ otherwise,

(B2)

where λd is the decay length of the thickness and composi-
tion profiles, and hd = H0 − h∞ and cd = c(0) − c∞ are the
differences between the respective values of h and c at x = 0
and x → ∞. Based on the results in the main text, we assume
in Eq. (B2) that the lipid composition of the membrane patch
under consideration is homogeneous for values of H0 outside
the range a(0) � H0 � a(1). For the bilayer energy G(1D) in
Eq. (A1) to be finite we must have g(1D)(x) → 0 in Eq. (A2)
as x → ∞. We thus assume that either c∞ = 0 or c∞ = 1,
and h∞ = α1c∞ + α0. We focus here on bilayers composed
of lipid species A and B, in which case α1 = 0.5 nm and
α0 = 1.7 nm [see Eq. (5)].

We regard the parameters λd , cd , and c∞ = 0, 1 in the
ansatz solutions in Eqs. (B1) and (B2) as free parameters with
respect to which the bilayer energy in Eq. (A1) with Eq. (A2)
must be minimized [54]. To this end, we substitute the trial
functions in Eqs. (B1) and (B2) into Eq. (A2). Assuming
small hd and cd such that |hd/h∞| 	 1 and |cd | 	 1, we
then expand Eq. (A2) up to second order in hd and cd to
obtain the following approximate form of the bilayer energy in

Eq. (A1):

G(1D)(λd , cd ) ≈ πR

4λ3
d

[(
5Kt

h2∞
(hd − α1cd )2 + 10b1c2

d

)
λ4

d

+ εc2
dλ

2
d + Kbh2

d

]
, (B3)

which depends on c∞ through h∞ and hd . Note that, upon
setting cd = 0, we recover from Eq. (B3) the variational
expression for the 1D energy of a homogeneous bilayer at
τ = 0 in Ref. [54], which is also equivalent to Eq. (A1) with
Eqs. (A2), (B1), and (B2) for H0 � a(0) or H0 � a(1). We
allow for both c∞ = 0 and c∞ = 1, and choose the value
of c∞ yielding the smaller value of G(1D) in Eq. (B3). To
minimize Eq. (B3) with respect to λd and cd we solve

∂G(1D)

∂λd
= 0, (B4)

∂G(1D)

∂cd
= 0. (B5)

In particular, from Eq. (B5) it follows that

cd = 5α1Ktλ
2
d hd

(5α2
1Kt + 10b1h2∞)λ2

d + εh2∞
. (B6)

By combining Eq. (B4) with Eq. (B6) and setting 
 = λ2
d , we

arrive at the quartic equation,


4+ε

5

(
1 − 15α2

1Kt

2W0

)

3 + ε2h2

∞
10W0

(
1 − 3W 2

0 Kb

5h3∞Kt

)

2

− 3εh2
∞Kb

25Kt

 − 3ε2h4

∞Kb

50W0Kt
= 0, (B7)

where W0 = 5(2b1h2
∞ + α2

1Kt ), which we solve analytically
for λd .

Note from Eq. (B6) that cd is directly proportional to hd ,
and from Eq. (B7) that λd only depends on the constants Kb,
Kt , ε, b1, α1 and h∞. Upon substitution of cd in Eq. (B6) into
Eq. (B3) we thus find G(1D) ∼ h2

d for |hd/h∞| 	 1. Hence,
the bilayer energy shows a quadratic dependence on protein
hydrophobic thickness around H0 = h∞, with h∞ = 1.7 nm or
h∞ = 2.2 nm for a bilayer at τ = 0 composed of lipid species
A and B. As illustrated in Fig. 11(a), this scaling behavior
is consistent with the numerically calculated G(1D)(H0). Note
that, near the minima of G(1D)(H0), G(1D) ∼ h2

d on both the left
and right sides of the minima but with, in general, different
prefactors [see also Eq. (B2)]. Figures 11(b) and 11(c) illus-
trate that, for a(0) � H0 � a(1) with |hd/h∞| 	 1 and |cd | 	
1, the ansatz solutions in Eqs. (B1) and (B2) yield quite good
agreement with the corresponding numerical solutions for the
1D leaflet thickness and bilayer composition fields, as well as
for the bilayer energies. In particular, if h∞ = 2.2 nm, c∞ =
1, and |hd | � 0.1 nm, the percentage differences between the
ansatz and numerical solutions for h(x) and c(x) are less than
2%, and the bilayer energies agree to within approximately
10%. More accurate variational results could be obtained by
including higher-order terms in Eq. (B3) and by allowing for
different, more complicated, forms of the ansatz solutions.
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FIG. 11. Comparing ansatz and numerical solutions. (a) Bilayer
energy G(1D) as a function of H0 for the ansatz solution in Eq. (B3)
and corresponding numerical solutions, and absolute percentage dif-
ference between the ansatz and numerical solutions, δG(1D). The
brown and black dashed vertical lines indicate the points at which
the dominant lipid composition in the bilayer changes for the ansatz
and numerical solutions, respectively, while the gray dashed vertical
lines indicate the (identical) minima of the ansatz and numerical
solutions. (b) 1D leaflet thickness fields h for the ansatz solution in
Eq. (B1) with the corresponding numerical solutions (top panels), 1D
bilayer composition fields c for the ansatz solution in Eq. (B2) with
the corresponding numerical solutions (middle panels), and absolute
percentage differences δh and δc between the ansatz and numerical
solutions (bottom panels) as a function of x. We have c∞ = 1 and
h∞ = 2.2 nm, with H0 = 2.15 nm so that hd = −0.05 nm (left pan-
els) and with H0 = 2.10 nm so that hd = −0.1 nm (right panels).
Analytic solution of Eqs. (B4) and (B5) yields λd ≈ 1.21 nm and the
indicated values of cd . For all panels, we used for h the fixed-value
boundary conditions in Eqs. (A4a) and (A4b) at x = 0 and the natural
boundary conditions in Eqs. (A3b) and (A3a) at x = L, with the
natural boundary condition in Eq. (A3c) for c at x = 0 and x = L.
We set R = 2.5 nm, τ = 0, and μ = 0 for all panels. We obtained the
numerical solutions as described in Appendix A with L = 20 nm.

APPENDIX C: DEPENDENCE OF BILAYER BENDING
RIGIDITY AND THICKNESS DEFORMATION MODULUS

ON LIPID COMPOSITION

The purpose of this Appendix is to examine the relative
importance of the dependence of Kb, Kt , and a in Eq. (1) on
lipid composition [12,17,18,44] for lipid-protein organization
and regulation through membrane thickness deformations. In
analogy to a(c) in Eq. (5) we assume, based on the data in
Ref. [12], that Kb(c) and Kt (c) can be approximated by linear
functions of c,

Kb(c) ≈ β1c + β0, (C1)

where β1 = 15 kBT and β0 = 14 kBT such that Kb(0) ≈
14 kBT and Kb(1) ≈ 29 kBT [12,44], and

Kt (c) ≈ γ1c + γ0, (C2)

where γ1 = 5 kBT/nm2 and γ0 = 58 kBT/nm2 such that
Kt (0) ≈ 58 kBT/nm2 and Kt (1) ≈ 63 kBT/nm2 [12,44].

In Fig. 12(a) we illustrate the effect of the dependence of Kb

and Kt on c in Eqs. (C1) and (C2) on the total bilayer energy in
Eq. (4) for a single-membrane protein. Figure 12(a) suggests
that variations in Kb(c) or Kt (c) only produce minor shifts in
the energy landscape of bilayer-protein interactions in hetero-
geneous bilayers. To further quantify the ramifications of a
dependence of Kb or Kt on c we consider the percentage differ-
ence between the total bilayer energy obtained with constant
Kb and Kt as described in Sec. II, G, and the corresponding
total bilayer energy obtained with the expressions for Kb(c)
and Kt (c) in Eqs. (C1) and (C2), Ḡ,

δ = 100 ×
∣∣∣∣G − Ḡ

G

∣∣∣∣. (C3)

Figures 12(b) and 12(c) show Eq. (C3) for selected scenarios
corresponding to noninteracting and interacting membrane
proteins in heterogeneous bilayers. We find δ < 20% in
Figs. 12(b) and 12(c), with δ < 10% for many of the scenarios
considered here.

APPENDIX D: ENERGY MINIMIZATION

We employ [38] the L-BFGS-B solver [74]—a low mem-
ory (L) version of the Broyden-Fletcher-Goldfarb-Shanno
(BFGS) algorithm [73] with bounded (B) constraints—to
directly minimize the functional G in Eq. (4) and thus to
numerically find h(r) and c(r). Numerical minimization meth-
ods that implement this solver were also used in previous work
on bilayer-thickness-mediated protein interactions [28]. The
L-BFGS-B solver aims to find a local minimum of a given
functional G[v] with respect to a function v(t ). We discretize
the energy functional in Eq. (6) with coordinates r → r − R
using finite differences [81]. The discretized function v(ti ) →
vi thereby becomes the ith entry of the input vector 
v. Since
we have two functions h(r) and c(r) in the model in Sec. II,
we consider a vector 
v of length N partitioned into two
domains of length n = N/2, (v0, . . . , vn−1, vn, . . . , vN−1) =
(h0, .., hn−1, c0, . . . , cn−1). We discretize the integral in
Eq. (6) as a sum over grid points with lattice spacing �r =
L/(n − 1). Starting from a given initial value of the in-
put vector 
v0, the L-BFGS-B solver iteratively finds better
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FIG. 12. Total bilayer energy with c-dependent Kb or Kt . (a) Bi-
layer energy G in Eq. (4) for a single-membrane protein as a function
of protein hydrophobic thickness H0 with the expressions for Kb(c)
and Kt (c) in Eqs. (C1) and (C2), as well as the constant Kb = 20 kBT
and Kt = 60 kBT/nm2 [12,18] considered in the remainder of this
article. The dashed vertical lines show H0 = H∗

0 , where the dominant
lipid composition in the membrane patch changes from lipid species
A to lipid species B. For constant Kb and Kt we have H∗

0 ≈ 1.950 nm
(black dashed line), and with the c-dependent Kb and Kt in Eqs. (C1)
and (C2) we find H∗

0 ≈ 1.954 nm (red dashed line). We set L = 20
nm. (b, c) Percentage difference between the total bilayer energy G in
Eq. (4) obtained with constant Kb and Kt as described in Sec. II, and
the corresponding total bilayer energy obtained with the expressions
for Kb(c) or Kt (c) in Eqs. (C1) and (C2), δ in Eq. (C3), for nonin-
teracting [panel (b)] and interacting [panel (c)] membrane proteins
in heterogeneous bilayers. In panel (b) we used μ = 10−2 kBT/nm2

for μ > 0 and set L = 20 nm. In panel (c) we used H0 = HL = 2.0
nm for H0 = HL , and H0 = 2.2 nm and HL = 1.3 nm for H0 �= HL . In
all panels we set, unless specified otherwise, μ = 0 and used natural
boundary conditions on h, ∇h, and c. We set τ = 0 and employed
a(c) in Eq. (5).

estimates of 
v so as to minimize G. To this end, the L-BFGS-B
solver employs a steepest-decent method based on the dis-
cretized energy functional 
∇G with entries given by ∇Gi =
∂G/∂vi [73,74]. Unless mandated by fixed-value boundary
conditions, we do not restrict the hi variables in 
v. We always
restrict the ci variables in 
v to the range 0 � ci � 1.

A complication arises here in that the derivatives in Eq. (4)
can yield exterior “ghost” points lying outside the grid used

for the numerical minimization procedure. We determine the
values of vi at these exterior points from the boundary con-
ditions on the h and c fields. For instance, employing the
forward and central discretizations [81] for the first and sec-
ond derivatives of h with respect to r, we obtain the following
expression for the discretized Laplacian of h:

(∇2h)i = (1 + wi)hi+1 − (2 + wi )hi + hi−1

(�r)2
, (D1)

where wi = �r/(R + i�r). Evaluating Eq. (D1) at the bound-
aries with i = 0 and i = n − 1, gives two undefined exterior
values, h−1 and hn. If, for instance, natural boundary condi-
tions are imposed on h at the system boundaries, h−1 and hn

are specified by Eq. (7a), which gives

(1 + w0)h1 − (2 + w0)h0 + h−1 = 0, (D2a)

(1 + wn−1)hn − (2 + wn−1)hn−1 + hn−2 = 0. (D2b)

Similarly, if fixed-value boundary conditions are imposed
on h at the system boundaries, h−1 and hn are specified by
Eq. (8a), which gives

h0 − h−1 = 0, (D3a)

hn − hn−1 = 0. (D3b)

Analogous considerations apply to all combinations of
boundary conditions considered here.

The L-BFGS-B solver employed here gives a local en-
ergy minimum near the initial values of the input vector 
v
that, in principle, may not correspond to the global energy
minimum of the system. We address this issue through the
multistart method [83,84], which provides a simple approach
for determining a global minimum within a bounded range
through a local-minimum solver. We thereby test different
initial values for 
v corresponding to 0 � c � 1 using incre-
ments of 0.1, with h = a(c). For the boundary conditions
and system sizes considered here, we generally find distinct
local energy minima with the initial trial values c = 0 and
c = 1. We also find that, for protein hydrophobic thicknesses
H0 ≈ 1.95 nm, a third local energy minimum may appear for
the initial trial value c = 0.5. From the sets of local energy
minima determined through the L-BFGS-B solver with the
multistart method, we take the solutions with the smallest
energy to correspond to the global energy minima.

It is instructive to compare the results obtained through
direct numerical minimization of Eq. (4) with the correspond-
ing solutions of the Euler-Lagrange equations associated with
Eq. (4), which follow from the calculus of variations [75,76]:

Kb∇4h − τ∇2h + Kt

a(c)2
[h − a(c)] + τ

a(c)
= 0, (D4)

μ − ε∇2c − b1(c − c0) + b2(c − c0)3

− Kt

a(c)3
h[h − a(c)]a′(c) − τ

a(c)2
a′(c)h = 0. (D5)

For the parameter values used here, Eqs. (D4) and (D5)
can be conveniently solved using the NDSolve-command
in Mathematica [82] subject to the boundary conditions in
Eqs. (7a)–(7c) or Eqs. (8a)–(8c), provided that L is small
enough with L � 5 nm and that ε in Eq. (2) is increased
from the value ε = 1 kBT , employed in the remainder of this
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FIG. 13. Convergence tests for the total bilayer energy G in
Eq. (4) for membrane proteins in heterogeneous bilayers. We con-
sider here (a) single proteins with H0 = 2.0 nm at τ = 0 (left panel)
and τ = 1 kBT/nm2 (right panel) and (b) interacting proteins with
identical hydrophobic thickness (H0 = HL = 2.0 nm; left panel) and
distinct hydrophobic thickness (H0 = 2.2 nm and HL = 1.3 nm; right
panel) with c0 = 1 and cL = 0. Results obtained using the L-BFGS-B
solver with the multistart method are indicated by red data points
and plotted as a function of the logarithm (base 10) of the number of
grid points used in the L-BFGS-B solver, log10(N ). For comparison,
we also show the corresponding results obtained by numerically
solving the Euler-Lagrange equations in Eqs. (D4) and (D5) using
the NDSolve command in Mathematica [82] (dashed blue horizontal
lines). We set here ε = 100 kBT , μ = 0, R = 3 nm, and L = 5 nm
for all panels and used, unless specified otherwise, natural boundary
conditions on h, ∇h, and c.

article, to ε � 100 kBT . As illustrated in Fig. 13, the results
obtained through direct numerical minimization of Eq. (4) via
the L-BFGS-B solver with the multistart method agree with
the corresponding results obtained by numerically solving
Eqs. (D4) and (D5), provided that the number of grid points
used for the L-BFGS-B solver, N , is large enough. Unless
specified otherwise we used, throughout this article, N ≈ 500
in the L-BFGS-B solver with the multistart method and tested,
as N is increased, for convergence of the bilayer energy in
Eq. (4).

APPENDIX E: CALCULATION OF PROTEIN
INTERACTION POTENTIALS

IN HETEROGENEOUS BILAYERS

In this Appendix we elaborate on the method by which
we obtain the protein interaction potentials Gint(L) in Sec. IV

FIG. 14. Total bilayer energy G in Eq. (4), protein interaction
potential in Eq. (E1) and far-field bilayer energy Gf in Eq. (E2) as a
function of protein separation L for membrane proteins with identical
hydrophobic thickness H0 = HL = 2.0 nm (left panel) and distinct
hydrophobic thicknesses H0 = 2.2 nm and HL = 1.3 nm (right panel)
in heterogeneous bilayers. For both panels we used natural boundary
conditions on c at all bilayer-protein interfaces, and set μ = 0 and
τ = 0.

for heterogeneous lipid bilayers (Figs. 7 and 8). To calculate
Gint(L), we subtract from the total bilayer energy G in Eq. (4)
the value of G obtained in the large-L, noninteracting regime.
With the mean-field model in Fig. 6, a complication arises
here in that G tends to increase linearly with L as L → ∞ (see
Fig. 14) because, for large L, the bilayer energy associated
with the bilayer-protein interactions at the outer membrane
patch boundary is approximately proportional to the circum-
ference of the outer membrane patch boundary. We thus set

Gint(L) = G(L) − G f (L), (E1)

where we take the far-field bilayer energy G f to be of the form

G f (L) = A L + B, (E2)

where A and B are constants. Equation (E1) ensures that
Gint(L) → 0 as L → ∞. For each Gint(L) considered in
Figs. 7 and 8, we determine the values of A and B by fitting
Eq. (E2) to G(L) in the range 15 nm � L � 20 nm, sampling
G(L) at increments of 0.5 nm. For instance, for μ = 0 and
τ = 0, we have A ≈ 1.2 kBT/nm and B ≈ 6.0 kBT in Eq. (E2)
for membrane proteins with natural boundary conditions on
c and identical hydrophobic thickness H0 = HL = 2.0 nm
(left panel in Fig. 14), while for membrane proteins with
natural boundary conditions on c and distinct hydrophobic
thicknesses H0 = 2.2 nm and HL = 1.3 nm we have A ≈
15.8 kBT/nm and B ≈ 22.5 kBT in Eq. (E2) (right panel in
Fig. 14). We do not subtract G f from G for any calculations
in the main text of this article other than those connected
to Figs. 7 and 8. In particular, we consider the total bilayer
energy G in Eq. (4) for the cooperative gating curves in Fig. 9.
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