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Effect of dedifferentiation on noise propagation in cellular hierarchy
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Many fast renewing tissues have a hierarchical structure. Tissue-specific stem cells are at the root of this
cellular hierarchy, which give rive to a whole range of specialized cells via cellular differentiation. However,
increasing evidence shows that the hierarchical structure can be broken due to cellular dedifferentiation in
which cells at differentiated stages can revert to the stem cell stage. Dedifferentiation has significant impacts on
many aspects of hierarchical tissues. Here we investigate the effect of dedifferentiation on noise propagation by
developing a stochastic model composed of different cell types. The moment equations are derived, via which
we systematically investigate how the noise in the cell number is changed by dedifferentiation. Our results
suggest that dedifferentiation have different effects on the noises in the numbers of stem cells and nonstem
cells. Specifically, the noise in the number of stem cells is significantly reduced by increasing dedifferentiation
probability. Due to the dual effect of dedifferentiation on nonstem cells, however, more complex changes could
happen to the noise in the number of nonstem cells by increasing dedifferentiation probability. Furthermore, it is
found that even though dedifferentiation could turn part of the noise propagation process into a noise-amplifying
step, it is very unlikely to turn the entire process into a noise-amplifying cascade.
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I. INTRODUCTION

In multicellular organisms, many fast renewing tissues
form a hierarchical structure [1,2]. Very few long lived tissue-
specific stem cells are at the root of this cellular hierarchy
[3,4]. They give rise to more specialized and short lived cells
via cellular differentiation. It is argued that many cancers
could also be characterized by this hierarchical structure, in
which cancer stem cells possess very similar functions as
tissue-specific stem cells in normal tissues [5,6]. The hier-
archical architectures of both normal and cancerous tissues
propose an irreversible transition relationship of cells at differ-
ent stages of differentiation. That is, cells at less differentiated
stages can generate more differentiated cells, but not vice
versa.

There is growing evidence that the irreversible relationship
can be broken due to cellular dedifferentiation [7–10]. In the
process of dedifferentiation, cells at more differentiated stages
can, under some circumstances, return to a less differenti-
ated stage, or even the stem cell stage. In recent ten years,
special attention has been paid to the effect of cellular ded-
ifferentiation on different aspects of hierarchical architecture
by using mathematical models [11]. Previous work has, e.g.,
considered the effects of dedifferentiation on the waiting time
to mutation acquisition [12], the mutant fixation [13], the
radiation sensitivity [14], the transient dynamics [15], and the
phenotypic equilibrium [8].
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Due to the stochastic nature of biochemical reactions and
fluctuating environments, the cellular system is inherently
noisy [16,17]. Increasing evidence shows that noise is not
only a major source of phenotypic variation [18], but also
associated with many important biological functions at vari-
ous scales of biological organization [19–21]. In multicellular
tissues, the cell population size of different cell types is the
most important variable for quantifying the multicellular sys-
tems. Even though the cell population size in multicellular
systems is normally large and deterministic models are more
widely used, stochastic cell population models still receive
much attention [22]. First of all, the number of tissue-specific
stem cells could be very small, the fluctuation in the number of
stem cells is thus significant and informative [23–25]. More-
over, the growth and regeneration of tissues are inevitably
affected by various types of noises from biochemical reac-
tions, cell-to-cell interactions, fluctuating microenvironments,
etc. Therefore, stochastic cell population models provide pow-
erful approaches that allow to capture and understand the
role of various fluctuations in the multicellular systems of
interest. In the hierarchical organization of cell populations, a
significant problem is to understand how the noise propagates
from tissue specific stem cells to terminally differentiated
cells. Previous work has considered this issue via devel-
oping a noise decomposition method [26,27], in which the
fluctuation of a given cell type is decomposed into intrin-
sic noise, transmitted noise, and conversion noise. Here we
are interested in the role of dedifferentiation in multicellular
tissues. Note that it has been reported that dedifferentiation
influences many different aspects of hierarchical structure,
so it is interesting to see how dedifferentiation affects the
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fluctuations in the number of different types of cells in multi-
cellular tissues.

To address this issue, we develop a multi-compartment
model of a stage-structured cell population. Each compart-
ment represents a certain level of cellular differentiation,
ranging from stem cells to fully differentiated cells. Given
the hierarchically structured cell population, we are concerned
about how the noises in the numbers of cells at different
stages of cellular differentiation are changed by taking ded-
ifferentiation into account. For the number of each cell type,
the square of the coefficient of variation [see Eq. (2)] is
used for describing the total noise in the cell number. By
using noise decomposition method [26], we can extract the
propagated noise from the total noise. Our results show that
the effect of dedifferentiation on the noise in the number of
stem cells compartment is straightforward. As the dediffer-
entiation probability increases, the noise in the number of
stem cells significantly decreases. For nonstem cells compart-
ments, however, the change of the noise is not as predictable
as that of stem cells compartment. Specifically, increasing
dedifferentiation probability does not necessarily increase or
decrease the noise in the number of nonstem cells. It heavily
depends on another parameter which is called reshaping fac-
tor characterizing how dedifferentiation reshapes the division
pattern of transient amplifying cells. Moreover, we explore
the relation of the noises in the number of different cell types
via calculating the noise ratios between compartments. We
found that, due to the opposite effect of reshaping factor on
the noises in the number of transient amplifying cells and fully
differentiated cells, a tradeoff phenomenon arises: If the noise
is amplified from stem cells to transient amplifying cells, then
the noise is more likely to be reduced from transient ampli-
fying cells to fully differentiated cells. In other words, even
though dedifferentiation could significantly alter the propa-
gation pattern of noise, it is very unlikely to make the noise
progressively amplified along cellular hierarchy. We hope that
our work could contribute to the theoretical understanding of
the impact of dedifferentiation on hierarchical tissues.

The paper is organized as follows. The model is presented
in Sec. II. In Sec. III the moment equations for different cell
compartments are derived by using master equation [28] and
moment closure approximation [29]. The main results are
shown in Sec. IV. The conclusions are included in Sec. V.

II. MODEL

Consider a cell population composed of three compart-
ments. Each compartment represents a certain level of cellular
differentiation (see Fig. 1). Specifically, compartment 1 rep-
resents stem cells (SCs), compartment 2 represents transient
amplifying cells (TACs), and compartment 3 represents ter-
minally differentiated cells (TDCs). Even though the number
of cell compartments could be diverse for different tissues, the
three-compartment assumption has been widely accepted for
abstracting the salient features of hierarchical tissues [27,30].

For compartment 1, we assume that each stem cell divides
at rate r1, i.e., the waiting time for each cell division event fol-
lows exponential distribution with parameter r1. It can either
undergo self-renewal via symmetric division with probability
p1, or differentiate into two transient amplifying cells via

FIG. 1. Representation of our model. Each compartment repre-
sents a certain level of cellular differentiation. From left to right, it
represents stem cell (SC), transient amplifying cell (TAC), and ter-
minally differentiated cells (TDC), respectively. For each stem cell,
it can either give birth to two identical stem cells with probability p1

or two identical daughter transient amplifying cells with probability
q1. When cell competition happens, one of the two competing stem
cells dies at equal chance, in which α1 is the competition death rate
controlling the competition strength. Similar cell division and com-
petition pattern can also happen to transient amplifying cells. Due to
dedifferentiation, each transient amplifying cell can also give birth
to two daughter stem cells with probability δ2. For each terminally
differentiated cell, it cannot divide and is removed from the tissue at
rate d .

symmetric differentiation with probability q1 (p1 + q1 = 1).
For compartment 2, similarly, each transient amplifying cell
is assumed to divide at rate r2. Either the symmetric division
happens with probability p2, or the symmetric differentiation
(giving rise to two terminally differentiated cells) happens
with probability q2 (p2 + q2 = 1). For compartment 3, the
terminally differentiated cells cannot divide and are removed
from the population at rate d .

Given the above hierarchically structured cell population,
let us now introduce cellular dedifferentiation. Since it is not
very clear how a non dedifferentiating cell acquires the ability
of dedifferentiation, we regard dedifferentiation as a pertur-
bation to the hierarchical model as used in Ref. [31]. More
specifically, besides the symmetric division and symmetric
differentiation, each transient amplifying cell can undergo
symmetric dedifferentiation with probability δ2 via which
two stem cells are generated. It should be pointed out that
dedifferentiation is not allowed to happen to terminally dif-
ferentiated cells as in Ref. [31]. Note that p2 + q2 = 1, i.e.,
the sum of the symmetric division and symmetric differen-
tiation probabilities of each transient amplifying cell equals
to 1 when dedifferentiation is not taken into account. Due
to the introduction of dedifferentiation, however, the sum of
these two probabilities is reduced from 1 to 1 − δ2. Current
knowledge regarding the effect of dedifferentiation on these
two probabilities is still very lacking. Biologically it is poorly
understood how much these two probabilities change individ-
ually. In view of this, we introduce a parameter κ ∈ (0, 1)
to represent how the dedifferentiation reshapes the division
pattern of transient amplifying cells, which is thus called re-
shaping factor [31]. As κ increases, symmetric differentiation
is preferred over symmetric division. In this way, the sym-
metric division probability of each transient amplifying cell
is given by p′

2 = p2 − κδ2, and its symmetric differentiation
probability is given by q′

2 = q2 − (1 − κ )δ2. Both dediffer-
entiation probability δ2 and reshaping factor κ are the key
parameters relating to dedifferentiation. A major task in this
work is to explore how the noises in the numbers of different
cell types relate to both δ2 and κ .
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The schematic representation of cell processes summarize
the above model assumptions as follows:

(1) SC
r1 p1−→ SC + SC,

(2) SC
r1q1−→ TAC + TAC,

(3) TAC
r2 p′

2−→ TAC + TAC,

(4) TAC
r2q′

2−→ TDC + TDC,

(5) TAC
r2δ2−→ SC + SC,

(6) TDC
d−→ ∅.

It should be noted that, asymmetric cell division is not
accounted for in this model. In Appendix A we discuss
the effect of asymmetric cell division on the model and
derive the moment equations accordingly. Moreover, cell
competitions are also taken into account in our model.

Instead of using nonlinear feedback regulation to main-
tain the population equilibrium [27,32,33], we consider a
very simple mode of intra-compartment cell competition as
follows:

(7) SC + SC
α1−→ SC,

(8) TAC + TAC
α2−→ TAC,

(9) TDC + TDC
α3−→ TDC.

That is, each cell competition event causes one of the
two competing cells in the same compartment to die at
equal chance. αi (i = 1, 2, 3) is the competition death rate
controlling the competition strength and thus regulating the
population size [34].

Let Xt , Yt , and Zt be the cell numbers of SCs, TACs, and
TDCs at time t , respectively. Their stochastic dynamics are
captured by the following master equation:

∂ϕ(i, j,k)

∂t
= ϕ(i−1, j,k)(i − 1)r1 p1 + ϕ(i+1, j−2,k)(i + 1)r1q1 + ϕ(i+1, j,k)(i + 1)iα1

+ ϕ(i−2, j+1,k)( j + 1)r2δ2 + ϕ(i, j−1,k)( j − 1)r2 p′
2 + ϕ(i, j+1,k−2)( j + 1)r2q′

2 + ϕ(i, j+1,k)( j + 1) jα2

+ ϕ(i, j,k+1)(k + 1)d + ϕ(i, j,k+1)(k + 1)kα3

− ϕ(i, j,k)[ir1 + i(i − 1)α1 + jr2 + j( j − 1)α2 + kd + k(k − 1)α3], (1)

where ϕ(i, j,k) := P(Xt = i,Yt = j, Zt = k), representing the
joint probability distribution of (Xt ,Yt , Zt ). In what follows
we will use (X,Y, Z ) short for (Xt ,Yt , Zt ). Let 〈·〉 be the
expectation or the moment of random variable. For example,
〈X 〉 means the first moment of X , 〈X 2〉 means the second
moment of X , and 〈(X − 〈X 〉)2〉 = 〈X 2〉 − 〈X 〉2 defines the
variance characterizing the stochastic fluctuation of X around
average value. To nondimensionalize variance, the coefficient
of variation (CV) is often used to quantify the noise in various
biological systems [17,26]. Here we define the square of CV,
i.e.,

CX := 〈X 2〉 − 〈X 〉2

〈X 〉2
, (2)

to be the noise in the number of SCs. That is, CX is the
dimensionless quantity that describes the fluctuation in the
number of stem cells. Similarly, CY and CZ quantify the noises
in the numbers of TACs and TDCs, respectively.

Note that C characterizes the total noise in the number of
given cell type, which can be conceptually divided into two
components. The first is purely generated from the the given
cell type in the absence of the propagation from other cell
types (intrinsic noise). The second is the component of prop-
agated noise transmitted from other cell types. By using the
noise decomposition method (see Appendix B), we can extract
the propagated noise from the total noise [see Eqs. (B6), (B7),
and (B8)]. In what follows, Adjusted CX , Adjusted CY , and
Adjusted CZ represent the noises of X , Y , and Z by remov-
ing the effect of intrinsic components, respectively. In other
words, compared to C, Adjusted C emphasizes more on prop-
agated effect due to cell differentiation and dedifferentiation.

Stochastic simulation (e.g., Gillespie algorithm [35]) is
frequently used in continuous-time stochastic processes, but it
is time-consuming when investigating the statistical properties

of the model. Instead, we will derive the moment equations,
with which it is more convenient to calculate the noises in the
numbers of different cell types.

III. THE MOMENT EQUATIONS

Note that the coefficient of variation depends on the first
and second moments of X , Y , or Z . To explore the effect
of cellular dedifferentiation on the noise in the cell num-
ber of each cell compartment, it is very useful to obtain
the mathematical equations governing the dynamics of the
first moments 〈X 〉, 〈Y 〉, 〈Z〉, and the second moments 〈X 2〉,
〈Y 2〉, 〈Z2〉. In this section, we make use of the master equa-
tion Eq. (1) and moment closure approximation method [29]
to obtain the moment equations for our model.

For the first moment, noticing that 〈X 〉 = ∑
i, j,k iϕ(i, j,k),

〈Y 〉 = ∑
i, j,k jϕ(i, j,k), 〈Z〉 = ∑

i, j,k kϕ(i, j,k), based on Eq. (1),
we obtain the ordinary differential equations (ODEs) as fol-
lows (see Appendix C):

d〈X 〉
dt

= 〈X 〉(r1 p1 − r1q1 + α1) − 〈X 2〉α1 + 2〈Y 〉r2δ2,

d〈Y 〉
dt

= 2〈X 〉r1q1+〈Y 〉(r2 p′
2−r2q′

2 − r2δ2 + α2) − 〈Y 2〉α2,

d〈Z〉
dt

= 2〈Y 〉r2q′
2 + 〈Z〉(−d + α3) − 〈Z2〉α3. (3)

We can see that the main challenge of analyzing the above
ODEs lies in the presence of the second moments 〈X 2〉, 〈Y 2〉,
and 〈Z2〉. In other words, Eq. (3) is not closed. When the
population size is sufficiently large, the stochastic fluctua-
tion is negligible, and then approximately we can overcome
this issue directly replacing 〈X 2〉, 〈Y 2〉, 〈Z2〉 with 〈X 〉2,
〈Y 〉2, 〈Z〉2. However, this method is invalid when the noise
is nonnegligible. In our case, we should take into account
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both the first and second moments together. For the second
moments 〈X 2〉 = ∑

i, j,k i2ϕ(i, j,k), 〈Y 2〉 = ∑
i, j,k j2ϕ(i, j,k), and

〈Z2〉 = ∑
i, j,k k2ϕ(i, j,k), based on Eq. (1) we have the ODEs

as follows (see Appendix C):

d〈X 2〉
dt

= 〈X 2〉(2r1 p1−2r1q1+3α1)+〈X 〉(r1 p1 + r1q1 − α1)

− 2〈X 3〉α1 + 4〈XY 〉r2δ2 + 4〈Y 〉r2δ2,

d〈Y 2〉
dt

= 〈Y 2〉(2r2 p′
2 − 2r2q′

2 + 3α2 − 2r2δ2)

+ 〈Y 〉(r2 p′
2 + r2q′

2 + r2δ2 − α2) − 2〈Y 3〉α2

+ 4〈XY 〉r1q1 + 4〈X 〉r1q1,

d〈Z2〉
dt

= 〈Z2〉(3α3 − 2d ) + 〈Z〉(d − α3) − 2〈Z3〉α3

+ 4〈Y Z〉r2q′
2 + 4〈Y 〉r2q′

2. (4)

Here 〈XY 〉 = ∑
i, j,k i jϕ(i, j,k), 〈Y Z〉 = ∑

i, j,k jkϕ(i, j,k), and
〈XZ〉 = ∑

i, j,k ikϕ(i, j,k) are the mixed moments whose dynam-
ics is captured by (see Appendix C)

d〈XY 〉
dt

= 〈XY 〉(r1 p1−r1q1 + α1+r2 p′
2 − r2q′

2 − r2δ2 + α2)

+ 2〈X 2〉r1q1 − 2〈X 〉r1q1 − 〈X 2Y 〉α1 − 〈XY 2〉α2

+ 2〈Y 2〉r2δ2 − 2〈Y 〉r2δ2,

d〈Y Z〉
dt

= 〈Y Z〉(r2 p′
2−r2q′

2−r2δ2+α2−d+α3) + 2〈XZ〉r1q1

+ 2〈Y 2〉r2q′
2 − 2〈Y 〉r2q′

2 − 〈Y 2Z〉α2 − 〈Y Z2〉α3,

d〈XZ〉
dt

= 〈XZ〉(r1 p1 − r1q1 + α1 − d + α3) + 2〈Y Z〉r2δ2

− 〈X 2Z〉α1 − 〈XZ2〉α3 + 2〈XY 〉r2q′
2. (5)

We can see that Eqs. (3), (4), and (5) are coupled together,
and even the coupled equations are not closed due to the
presence of the third moment items. To overcome the “not
closed” issue, the moment closure approximation methods are
often used to reduce the higher order moments into lower ones
[29,36]. Here we adopt the cumulant-neglect moment closure
approximation [29] to replace all the third moment items by
the functions of the first and second moments as follows:

〈X 3〉 ≈ 3〈X 2〉〈X 〉 − 2〈X 〉3,

〈Y 3〉 ≈ 3〈Y 2〉〈Y 〉 − 2〈Y 〉3,

〈Z3〉 ≈ 3〈Z2〉〈Z〉 − 2〈Z〉3,

〈X 2Y 〉 ≈ 〈X 2〉〈Y 〉 + 2〈XY 〉〈X 〉 − 2〈X 〉2〈Y 〉,
〈XY 2〉 ≈ 〈Y 2〉〈X 〉 + 2〈XY 〉〈Y 〉 − 2〈Y 〉2〈X 〉, (6)

〈Y 2Z〉 ≈ 〈Y 2〉〈Z〉 + 2〈Y Z〉〈Y 〉 − 2〈Y 〉2〈Z〉,
〈Y Z2〉 ≈ 〈Z2〉〈Y 〉 + 2〈Y Z〉〈Z〉 − 2〈Z〉2〈Y 〉,
〈X 2Z〉 ≈ 〈X 2〉〈Z〉 + 2〈XZ〉〈X 〉 − 2〈X 〉2〈Z〉,
〈XZ2〉 ≈ 〈Z2〉〈X 〉 + 2〈XZ〉〈Z〉 − 2〈Z〉2〈X 〉.

In this way, we can obtain the closed system of ordinary
differential equations for all the second moments as follows:

d〈X 2〉
dt

= 〈X 2〉(2r1 p1−2r1q1+3α1)+〈X 〉(r1 p1+r1q1 − α1)

− 2[3〈X 2〉〈X 〉−2(〈X 〉)3]α1+4〈XY 〉r2δ2+4〈Y 〉r2δ2,

d〈Y 2〉
dt

= 〈Y 2〉(2r2 p′
2 − 2r2q′

2 + 3α2 − 2r2δ2)

+ 〈Y 〉(r2 p′
2 + r2q′

2 + r2δ2 − α2) − 2[3〈Y 2〉〈Y 〉
− 2(〈Y 〉)3]α2 + 4〈XY 〉r1q1 + 4〈X 〉r1q1,

d〈Z2〉
dt

= 〈Z2〉(3α3 − 2d ) + 〈Z〉(d − α3) − 2[3〈Z2〉〈Z〉
− 2(〈Z〉)3]α3 + 4〈Y Z〉r2q′

2 + 4〈Y 〉r2q2. (7)

d〈XY 〉
dt

= 〈XY 〉(r1 p1 − r1q1 + α1 + r2 p′
2−r2q′

2−r2δ2 + α2)

+ 2〈X 2〉r1q1 − [〈X 2〉〈Y 〉 + 2〈XY 〉〈X 〉
− 2(〈X 〉)2〈Y 〉]α1 − [〈Y 2〉〈X 〉 + 2〈XY 〉〈Y 〉
− 2(〈Y 〉)2〈X 〉]α2 + 2〈Y 2〉r2δ2

− 2〈Y 〉r2δ2 − 2〈X 〉r1q1,

d〈Y Z〉
dt

= 〈Y Z〉(r2 p′
2 − r2q′

2 − r2δ2+α2−d+α3)+2〈XZ〉r1q1

− [〈Z2〉〈Y 〉 + 2〈Y Z〉〈Z〉 − 2(〈Z〉)2〈Y 〉]α3

− [〈Y 2〉〈Z〉 + 2〈Y Z〉〈Y 〉 − 2(〈Y 〉)2〈Z〉]α2

+ 2〈Y 2〉r2q′
2 − 2〈Y 〉r2q′

2,

d〈XZ〉
dt

= 〈XZ〉(r1 p1 − r1q1 + α1 − d + α3) + 2〈Y Z〉r2δ2

− [〈Z2〉〈X 〉 + 2〈XZ〉〈Z〉 − 2(〈Z〉)2〈X 〉]α3

− [〈X 2〉〈Z〉 + 2〈XZ〉〈X 〉 − 2(〈X 〉)2〈Z〉]α1

+ 2〈XY 〉r2q′
2. (8)

It should be noted that, the cumulant-neglect moment closure
approximation applies to Gaussian-like random variables.
That is, the more the random variable is normal-distributed,
the better the effectiveness of the approximation is. Figure 2
illustrates the effectiveness of the cumulant-neglect moment
closure approximation in our model. Figures 2(a) and 2(b)
show the comparison between the approximated moment
equations and agent-based stochastic simulations using Gille-
spie algorithm. Specifically, the equilibrium states predicted
by the approximated moment equations are in good agree-
ment with stochastic simulations. Besides, Fig. 2(c) shows
that X , Y, and Z all follow approximately normal distributions
when they approach the steady states. Therefore, the moment
Eqs. (3), (7), and (8) provide high-quality approximation to
the original model in the equilibrium regime.

IV. RESULTS

In this section, we make use of the moment equations at
equilibrium regime to investigate how the noises in the
numbers of different cell types are changed by taking dediffer-
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FIG. 2. Validation of the cumulant-neglect moment closure approximation. Panels (a) and (b) illustrate the comparison between the moment
equations and the stochastic simulations. In both panels, the continuous lines represent the moment equations from Eqs. (3) and (4) by using
the moment closure approximation method and the discrete dots represent stochastic simulations, which agree very well with each other in the
equilibrium regime. Panel (c) illustrates the empirical distributions of X , Y, and Z in the equilibrium regime, and they all approximately follow
normal distributions. Parameters: (δ2, κ, p1, q1, p2, q2, r1, r2, α1, α2, α3, d ) = (0.35, 0.5, 0.7, 0.3, 0.6, 0.4, 0.7, 0.7, 0.01, 0.001, 0.001, 0.01).

entiation into account. There are two fundamental parameters
relating to dedifferentiation. One is δ2 representing the proba-
bility that each transient amplifying cell undergoes symmetric
dedifferentiation. It has been reported that the happening of
dedifferentiation is generally not very often [8], we thus as-
sume that δ2 is less than a half. The other parameter is the
reshaping factor κ , representing how the introduction of ded-
ifferentiation redistributes the probabilities for self-renewal
and differentiation of each transient amplifying cell, namely,
p2 → p2 − κδ2, q2 → q2 − (1 − κ )δ2. In what follows, we
focus our attention to δ2 and κ , while regard all the other
parameters as background and keep them fixed. We discuss
the background parameters in Appendix D.

The main results are illustrated in Figs. 3 and 4. In Fig. 3,
C and Adjusted C are shown as functions of dedifferentiation
probability δ2. From Figs. 3(a) to 3(d), the value of reshaping
factor κ is increasing in turn. For the stem cells compartment,
we can see that CX is significantly decreasing as δ2 increases.
The decreasing trend is quite robust to the reshaping factor
κ . This is actually in line with our intuition. Dedifferentiation
contributes to the increase of X because the stem cells com-
partment receives the influx from transient amplifying cells
by symmetric dedifferentiation. Note that X can be approxi-
mately regarded as a birth-and-death Markov process. As the
population size increases, diffusion approximation (such as �

expansion) shows that the noise is approximately proportional
to the inverse of the mean population size [17,26,28] (see
Fig. 7 in Appendix E). Thus, enlarging the dedifferentiation
probability δ2 increases the number of stem cells, and then
reduce the noise in the number of stem cells. Furthermore, we
can also see that the trend of Adjusted CX is quite similar to
CX . That is, Adjusted CX is also significantly decreasing as δ2

increases. Noticing that Adjusted CX equals to CX minus the
intrinsic noise generated by X , it implies that the decreasing
trend of CX is not only due to the increase of X but also to
noise transmission.

However, the effect of dedifferentiation on the nonstem
cells compartments is not as straightforward as on the stem
cells compartment. From Fig. 3 we can see that dedifferen-
tiation does not necessarily increase or decrease the noises
in the numbers of transient amplifying cells and terminally
differentiated cells. For example, when κ is small, CY is
gradually decreasing with δ2. When κ becomes larger, it is
no longer monotonically decreasing but a convex function
of δ2. In other words, compared to stem cells, the noise
in the number of nonstem cells is quite sensitive to the
dedifferentiation parameters. This complexity actually arises
from the dual effect of dedifferentiation on nonstem cells.
Let us take transient amplifying cells as an example. The
number of transient amplifying cells depends on both the
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FIG. 3. The effect of dedifferentiation probability δ2 on C and Adjusted C of different cell types at different levels of reshaping factor. From
panels (a) to (d), the values of reshaping factor κ are 0.13, 0.33, 0.53, and 0.73, respectively. The noises (C and Adjusted C) in the numbers of
stem cells, transient amplifying cells and terminally differentiated cells are represented by blue, red, and black curves, respectively. The values
of the background parameters are the same as those in Fig. 2.

self-renewal and differentiation from stem cells. Even though
the introduction of dedifferentiation slows down the self-
renewal rate of each transient amplifying cell, dedifferentia-
tion increases the number of stem cells whose differentiation

would consequently contribute to the growth of transient am-
plifying cells. Therefore, the dual role of dedifferentiation in
nonstem cells makes CY and CZ much more unpredictable
than CX .

(a)

(b)

FIG. 4. The effect of dedifferentiation on the noise propagation in cellular hierarchy. Compartments 1, 2, and 3 represent stem cells,
transient amplifying cells, and terminally differentiated cells, respectively. In panel (a) κ = 0.155, and in panel (b) κ = 0.555. The values of
the background parameters are the same as those in Fig. 2. The 2D version of this figure is shown in Fig. 8.
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FIG. 5. The effect of dedifferentiation on the noise ratios. From panels (a) to (c), the noise ratios are shown as functions of dedifferentiation
probability δ2 at different levels of reshaping factor κ . The panels in the first row are about RXY , RY Z , and RX Z , while the panels in the second
row are about Adjusted RXY , Adjusted RY Z , and Adjusted RX Z . The values of the background parameters are the same as those in Fig. 2.

Besides the effect of dedifferentiation on each cell com-
partment, an even more interesting question is how the noise
propagates along the cellular hierarchy, i.e., the relation of CX ,
CY , and CZ , and the relation of Adjusted CX , Adjusted CY ,
and Adjusted CZ . In the absence of dedifferentiation, from
stem cells to terminally differentiated cells, C is decreasing
in sequence (see Fig. 4 for 3D plot and Fig. 8 for 2D plot),i.e.,
CX > CY > CZ . However, the order of Adjusted C is differ-
ent. In other words, by removing the effect of intrinsic noise,
Adjusted CX > Adjusted CZ > Adjusted CY . We are particu-
larly interested in how the orders of C and Adjusted C would
be changed by dedifferentiation. Figure 4 (see also Fig. 8)
illustrates two different scenarios. When κ is small [panel (a)],
as the increase of δ2, CZ will gradually become the largest
among the three compartments. When κ is large [panel (b)],
CY will gradually become the largest as δ2 increases. Similar
behavior happens to Adjusted CZ and Adjusted CY . Note that
reshaping factor κ is used for coordinating the self-renewal
and differentiation probabilities of transient amplifying cells.
Increasing κ reduces the self-renewal rate and meanwhile en-
hance the differentiation rate. It tends to produce the opposite
effect on transient amplifying cells and terminally differenti-
ated cells.

To further investigate this issue, let us consider the noise
ratio defined as follows [27,37,38]:

RXY := CY

CX
, RY Z := CZ

CY
, RXZ := CZ

CX
. (9)

Adjusted RXY := Adjusted CY

Adjusted CX
,

Adjusted RY Z := Adjusted CZ

Adjusted CY
,

Adjusted RXZ := Adjusted CZ

Adjusted CX
. (10)

They are all the ratios of downstream compartments to
upstream compartments. For example, RXY characterizes

the relation between transient amplifying cells and stem
cells. When RXY > 1, the noise is amplified from stem
cells to transient amplifying cells, and vice versa. Hence,
the comparison of the noises in different compartments
is equivalent to the comparison between the noise ratios
and 1.

Let us first consider the noise ratios RXY , RY Z , and RXZ .
Noticing that in the absence of dedifferentiation, all the noise
ratios are smaller than 1, we are concerned about whether
the noise ratios could become larger than 1 by changing the
values of δ2 and κ . The result is illustrated in Fig. 5. For RXY ,
it is a monotonically increasing function of δ2 for different
levels of κ . Besides, it is found that RXY is also an increasing
function of κ . In other words, RXY is more likely to exceed to
1 provided larger values of dedifferentiation probability and
reshaping factor. For RY Z , it is a monotonically increasing
function of δ2 only for small κ . RY Z is very unlikely to exceed
to 1 for large κ . For RXZ , it is again monotonically increasing
as δ2 increases. However, the relation between RXZ and κ is
opposite to the relation between RXY and κ . Namely, RXZ is a
decreasing function of κ , and then it is more likely to exceed
to 1 provided larger dedifferentiation probability and smaller
reshaping factor. The opposite effect of reshaping factor κ on
RXY and RXZ leads to an interesting tradeoff phenomenon.
For large κ , it is more likely for RXY to exceed to 1, but less
likely for RXZ to exceed to 1. On the contrary, for small κ , it
is less likely for RXY to exceed to 1, but more likely for RXZ

to exceed to 1. The tradeoff phenomenon implies that even
though dedifferentiation could significantly alter the order of
CX , CY , and CZ (the original order is CX > CY > CZ when
dedifferentiation is absent), it is quite difficult to continuously
amplify the noise along cellular hierarchy for a large range
of parameter values. Similar argument can be used in the
adjusted noise ratios between compartments. However, note
that in the absence of dedifferentiation Adjusted RY Z is al-
ready larger than 1, whereas RY Z is smaller than 1. Even so, it
is still very unlikely to realize Adjusted CZ > Adjusted CY >

Adjusted CX .
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V. CONCLUSIONS

In this study, we have explored the effect of cellular ded-
ifferentiation on the noise propagation in cellular hierarchy
using a stochastic model composed of different cell pheno-
types. By performing noise decomposition and solving the
moment equations of our model, we have systematically in-
vestigated how the noises in the numbers of different cell
types are changed with dedifferentiation parameters.

According to our results, dedifferentiation works quite
differently on the noises in the numbers of stem cells and
nonstem cells. For stem cells, the result is very straightfor-
ward that the noise is significantly reduced by introducing
dedifferentiation. The larger the dedifferentiation probability
is, the more significant the noise is reduced. This relation
is quite robust to other parameters such as reshaping factor.
However, the effect of dedifferentiation on nonstem cells is
not as straightforward as on stem cells. The complexity lies
in two aspects. The first is the dual role of dedifferenti-
ation, namely, dedifferentiation could decrease the number
of transient amplifying cells via lowering their self-renewal
rate as well as increase their number via enhancing the in-
flux from stem cells. Hence, it is quite difficult to predict
how the noise in the number of nonstem cells is changed
with dedifferentiation. The second is the combined effect
of dedifferentiation probability and reshaping factor on the
propagation of noise in number of nonstem cells. Specifi-
cally, the reshaping factor tend to give the opposite effect
to transient amplifying cells and terminally differentiated
cells. Noticing that the non dedifferentiating cellular hierarchy

generates a noise decreasing cascade from stem cells to ter-
minally differentiated cells, our result suggests that it is very
difficult for dedifferentiation to simultaneously amplify both
the stem-cells-to-transient-amplifying-cells noise propagation
and the transient-amplifying-cells-to-fully-differentiated-cells
noise propagation. Even though dedifferentiation could turn
part of the noise propagation process into noise-amplifying
step, it is very unlikely to turn the entire process into a noise-
amplifying cascade.

It should be noted that, in this study we have not related
our theoretical results with real experimental data. To do this,
both mean population size and the fluctuation around the mean
population size should be measured in biological experiments.
In future, it would be interesting to validate our model with ex-
perimental data and develop statistical methods for inferring
dedifferentiation.
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APPENDIX A: ASYMMETRIC CELL DIVISION

Let us take asymmetric cell division into account. The schematic representation of cell processes summarize is shown as
follows:

(1) SC
r1 p1−→ SC + SC,

(2) SC
r1q1−→ TAC + TAC,

(3) SC
r1o1−→ SC + TAC,

(4) TAC
r2 p′

2−→ TAC + TAC,

(5) TAC
r2q′

2−→ TDC + TDC,

(6) TAC
r2o′

2−→ TAC + TDC,

(7) TAC
r2δ2−→ SC + SC,

(8) TAC
r2δ1−→ TAC + SC,

(9) TDC
d−→ ∅,

(10) SC + SC
α1−→ SC,

(11) TAC + TAC
α2−→ TAC,

(12) TDC + TDC
α3−→ TDC.

Here (3), (6), and (8) are asymmetric cell divisions. The master equation is obtained as follows:

∂ϕ(i, j,k)

∂t
= ϕ(i−1, j,k)(i − 1)r1 p1 + ϕ(i+1, j−2,k)(i + 1)r1q1 + ϕ(i, j−1,k)ir1o1 + ϕ(i+1, j,k)(i + 1)iα1

+ ϕ(i−2, j+1,k)( j + 1)r2δ2 + ϕ(i−1, j,k) jr2δ1 + ϕ(i, j−1,k)( j − 1)r2 p′
2 + ϕ(i, j+1,k−2)( j + 1)r2q′

2

+ ϕ(i, j,k−1) jr2o′
2 + ϕ(i, j+1,k)( j + 1) jα2 + ϕ(i, j,k+1)(k + 1)d + ϕ(i, j,k+1)(k + 1)kα3

− ϕ(i, j,k)[ir1 + i(i − 1)α1 + jr2 + j( j − 1)α2 + kd + k(k − 1)α3]. (A1)
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Based on Eq. (A1), we can all the moment equations as follows:

d〈X 〉
dt

= 〈X 〉(r1 p1 − r1q1 + α1) − 〈X 2〉α1 + 〈Y 〉(r2δ1 + 2r2δ2),

d〈Y 〉
dt

= 〈X 〉(2r1q1 + r1o1) + 〈Y 〉(r2 p′
2 − r2q′

2 − r2δ2 + α2) − 〈Y 2〉α2,

d〈Z〉
dt

= 〈Y 〉(2r2q′
2 + r2o′

2) + 〈Z〉(−d + α3) − 〈Z2〉α3, (A2)

d〈X 2〉
dt

= 〈X 2〉(2r1 p1 − 2r1q1 + 3α1) + 〈X 〉(r1 p1 + r1q1 − α1) − 2〈X 3〉α1

+ 〈XY 〉(4r2δ2 + 2r2δ1) + 〈Y 〉(4r2δ2 + r2δ1),

d〈Y 2〉
dt

= 〈Y 2〉(2r2 p′
2 − 2r2q′

2 + 3α2 − 2r2δ2) + 〈XY 〉(4r1q1 + 2r1o1)

+ 〈X 〉(4r1q1 + r1o1) + 〈Y 〉(r2 p′
2 + r2q′

2 + r2δ2 − α2) − 2〈Y 3〉α2,

d〈Z2〉
dt

= 〈Z2〉(3α3 − 2d ) + 〈Z〉(d − α3) − 2〈Z3〉α3 + 〈Y Z〉(4r2q′
2 + 2r2o′

2) + 〈Y 〉(4r2q′
2 + r2o′

2), (A3)

d〈XY 〉
dt

= 〈XY 〉(r1 p1 − r1q1 + α1 + r2 p′
2 − r2q′

2 − r2δ2 + α2) + 〈X 2〉(2r1q1

+ r1o1) − 2〈X 〉r1q1 − 〈X 2Y 〉α1 − 〈XY 2〉α2

+ 〈Y 2〉(2r2δ2 + r2δ1) − 2〈Y 〉r2δ2,

d〈Y Z〉
dt

= 〈Y Z〉(r2 p′
2 − r2q′

2 − r2δ2 + α2 − d + α3) + 〈XZ〉(2r1q1 + r1o1)

+ 〈Y 2〉(2r2q′
2 + r2o′

2) − 2〈Y 〉r2q′
2 − 〈Y 2Z〉α2 − 〈Y Z2〉α3,

d〈XZ〉
dt

= 〈XZ〉(r1 p1 − r1q1 + α1 − d + α3) + 〈Y Z〉(2r2δ2 + r2δ1)

+ 〈XY 〉(2r2q′
2 + r2o′

2) − 〈X 2Z〉α1 − 〈XZ2〉α3. (A4)

By comparing the moment Eqs. (3), (4), and (5) and Eqs. (A2), (A3), and (A4), we can see that the introduction of asymmetric
division shifts the values of coefficients, without changing the structure of the moment equations.

APPENDIX B: NOISE DECOMPOSITION

The noise in the number of a given cell type can be conceptually divided into two parts. The first part is generated from the
population of the given cell type in the absence of the propagation from other cell populations. This part is often called intrinsic
noise [26]. The second part of noise is from other cell populations, i.e., the component of propagated noise from adjacent cell
compartments. By applying the noise decomposition method proposed in Refs. [17,26], here we decompose CX , CY , and CZ as
follows:

CX = 1

〈X 〉HXX
+ HY X

HXX

HXY

τ2
ε

1

〈X 〉HXX
+ HY X

HXX

HY X

τ1
ε

1

〈Y 〉HYY
+ HY X

HXX
ε

(
p1

〈Y 〉 + δ2

〈X 〉
)

, (B1)

CY = 1

〈Y 〉HYY
+ HXY

HYY

HY X

τ1
ε

1

〈Y 〉HYY
+ HXY

HYY

HXY

τ2
ε

1

〈X 〉HXX
+ HXY

HYY
ε

(
q1

〈Y 〉 + δ2

〈X 〉
)

, (B2)

CZ = 1

〈Z〉HZZ
+ HY Z

HZZ

HXY

τ2

HY Z

τ3
εη

(
q1

〈Y 〉 + δ2

〈X 〉
)

+ HY Z

HZZ
η
(HYY

τ2
+ HZZ

τ3

) q′
2

〈Z〉

+ HY Z

HZZ
εη

(HXY

τ2

)2 HZZ

τ3

1

〈X 〉HXX
+ HY Z

HZZ
εη

HXY

τ2

HY Z

τ3

HY X

τ1

1

〈Y 〉HYY
+ HY Z

HZZ
η

HY Z

τ3

(HXX

τ1
+ HZZ

τ3

)
CY . (B3)

Here

ε =
(HXX

τ1
+ HYY

τ2
− HY X

τ1

HXY

HYY
− HXY

τ2

HY X

HXX

)−1

,

η =
[(HYY

τ2
+ HZZ

τ3

)(HXX

τ1
+ HZZ

τ3

)
− HY X

τ1

]−1

, (B4)
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and HIJ is the logarithmic gain [26] that measures how the change of cell type J in number is affected by cell type I . In particular,

HXZ = HZX = HZY = 0, HY Z = −1,

HXX = r1q1 + 2(〈X 〉 − 1)α1

r1q1 + (〈X 〉 − 1)α1
− 〈X 〉r1 p1

〈X 〉r1 p1 + 2〈Y 〉r2δ2

= 1 + 〈X 〉α1

r1q1 + (〈X 〉 − 1)α1
− 〈X 〉r1 p1

〈X 〉r1 p1 + 2〈Y 〉r2δ2

= 〈X 〉α1

r1q1 + (〈X 〉 − 1)α1
+ 2〈Y 〉r2δ2

〈X 〉r1 p1 + 2〈Y 〉r2δ2
,

HXY = − 2〈X 〉r1q1

2〈X 〉r1q1 + 〈Y 〉r2 p′
2

, HY X = − 2〈Y 〉r2δ2

〈X 〉r1 p1 + 2〈Y 〉r2δ2
,

HYY = r2q′
2 + r2δ2 + 2(〈Y 〉 − 1)α2

r2q′
2 + r2δ2 + (〈Y 〉 − 1)α2

− 〈Y 〉r2 p′
2

2〈X 〉r1q1 + 〈Y 〉r2 p′
2

= 1 + 〈Y 〉α2

r2q′
2 + r2δ2 + (〈Y 〉 − 1)α2

− 〈Y 〉r2 p′
2

2〈X 〉r1q1 + 〈Y 〉r2 p′
2

= 〈Y 〉α2

r2q′
2 + r2δ2 + (〈Y 〉 − 1)α2

+ 2〈X 〉r1q1

2〈X 〉r1q1 + 〈Y 〉r2 p′
2

.

HZZ = d + 2(〈Z〉 − 1)α3

d + (〈Z〉 − 1)α3
= 1 + 〈Z〉α3

d + (〈Z〉 − 1)α3
. (B5)

Note that 1
〈X 〉HXX

, 1
〈Y 〉HYY

, and 1
〈Z〉HZZ

are the noises purely generated from X , Y, and Z, respectively [17]. To extract the component
of propagated noise from the total noise, we define Adjusted C as follows:

Adjusted CX = CX − 1

〈X 〉HXX
, (B6)

Adjusted CY = CY − 1

〈Y 〉HYY
, (B7)

Adjusted CZ = CZ − 1

〈Z〉HZZ
. (B8)

APPENDIX C: DERIVATION OF MOMENT EQS. (3), (4), AND (5)

Let us consider the first moment 〈X 〉. Noticing that 〈X 〉 = ∑
i, j,k iϕ(i, j,k), we multiply the master equation Eq. (1) by i, and

then sum over i, j, and k. We have

d〈X 〉
dt

= 〈X 2〉r1 p1 + 〈X 〉r1 p1 + 〈X 2〉r1q1 − 〈X 〉r1q1 + 〈X 3〉α1 − 2〈X 2〉α1 + 〈X 〉α1 + 〈XY 〉r2 p′
2

+ 〈XY 〉r2q′
2 + 〈XY 2〉α2 − 〈XY 〉α2 + 〈XZ〉d + 〈XZ2〉α3 − 〈XZ〉α3 + 〈XY 〉r2δ2 + 2〈Y 〉r2δ2

− (〈X 2〉r1 p1 + 〈X 2〉r1q1 + 〈X 3〉α1 − 〈X 2〉α1 + 〈XY 〉r2 p′
2 + 〈XY 〉r2q′

2 + 〈XY 2〉α2

− 〈XY 〉α2 + 〈XY 〉r2δ2 + 〈XZ〉d + 〈XZ2〉α3 − 〈XZ〉α3)

= 〈X 〉r1 p1 − 〈X 〉r1q1 + 〈X 〉α1 − 〈X 2〉α1 + 2〈Y 〉r2δ2. (C1)

Similarly, for 〈Y 〉 and 〈Z〉 we have

d〈Y 〉
dt

= 2〈X 〉r1q1 + 〈Y 〉(r2 p′
2 − r2q′

2 − r2δ2 + α2) − 〈Y 2〉α2 (C2)

and

d〈Z〉
dt

= 2〈Y 〉r2q′
2 + 〈Z〉(−d + α3) − 〈Z2〉α3. (C3)
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For the second moment 〈X 2〉, noticing that 〈X 2〉 = ∑
i, j,k i2ϕ(i, j,k), and based on Eq. (1) we have

d〈X 2〉
dt

= 〈X 3〉r1 p1 + 2〈X 2〉r1 p1 + 〈X 〉r1 p1 + 〈X 3〉r1q1 − 2〈X 2〉r1q1 + 〈X 〉r1q1 + 〈X 4〉α1

− 3〈X 3〉α1 + 3〈X 2〉α1 − 〈X 〉α1 + 〈X 2Y 〉r2 p′
2 + 〈XY 2〉r2q′

2 + 〈X 2Y 2〉α2 − 〈X 2Y 〉α2

+〈X 2Z〉d + 〈X 2Z2〉α3 − 〈X 2Z〉α3 + 〈X 2Y 〉r2δ2 + 4〈XY 〉r2δ2 + 4〈Y 〉r2δ2

− (〈X 3〉r1 p1 + 〈X 3〉r1q1 + 〈X 4〉α1 − 〈X 3〉α1 + 〈X 2Y 〉r2 p′
2 + 〈X 2Y 〉r2q′

2 + 〈X 2Y 2〉α2

−〈X 2Y 〉α2 + 〈X 2Y 〉r2δ2 + 〈X 2Z〉d + 〈X 2Z2〉α3 − 〈X 2Z〉α3) (C4)

= 〈X 2〉(2r1 p1 − 2r1q1 + 3α1) + 〈X 〉(r1q1 + r1q1 − α1) − 2〈X 3〉α1

+ 4〈XY 〉r2δ2 + 4〈Y 〉r2δ2. (C5)

Similarly, for 〈Y 2〉 and 〈Z2〉, we have

d〈Y 2〉
dt

= 〈Y 2〉(2r2 p′
2 − 2r2q′

2 + 3α2 − 2r2δ2) + 〈Y 〉(r2 p′
2 + r2q′

2 + r2δ2 − α2) − 2〈Y 3〉α2 + 4〈XY 〉r1q1 + 4〈X 〉r1q1 (C6)

and

d〈Z2〉
dt

= 〈Z2〉(3α3 − 2d ) + 〈Z〉(d − α3) − 2〈Z3〉α3 + 4〈Y Z〉r2q′
2 + 4〈Y 〉r2q′

2. (C7)

For the mixed moment 〈XY 〉, noticing that 〈XY 〉 = ∑
i, j,k i jϕ(i, j,k), and based on Eq. (1) we have

d〈XY 〉
dt

= 〈X 2Y 〉r1 p1 + 〈XY 〉r1 p1 + 〈X 2Y 〉r1q1 + 2〈X 2〉r1q1 − 〈XY 〉r1q1 − 2〈X 〉r1q1 + 〈X 3Y 〉α1

− 2〈X 2Y 〉α1 + 〈XY 〉α1 + 〈XY 2〉r2 p′
2 + 〈XY 〉r2 p′

2 + 〈XY 2〉r2q′
2 − 〈XY 〉r2q′

2 + 〈XY 3〉α2

− 2〈XY 2〉α2 + 〈XY 〉α2 + 〈XY Z〉d + 〈XY Z2〉α3 − 〈XY Z〉α3 + 〈XY 2〉r2δ2 − 〈XY 〉r2δ2

+ 2〈Y 2〉r2δ2 − 2〈Y 〉r2δ2

− (〈X 2Y 〉r1 p1 + 〈X 2Y 〉r1q1 + 〈X 3Y 〉α1 − 〈X 2Y 〉α1 + 〈XY 2〉r2 p′
2 + 〈XY 2〉r2q′

2 + 〈XY 3〉α2

− 〈XY 2〉α2 + 〈XY 2〉r2δ2 + 〈XY Z〉d + 〈XY Z2〉α3 − 〈XY Z〉α3)

= 〈XY 〉(r1 p1 − r1q1 + α1 + r2 p′
2 − r2q′

2 − r2δ2 + α2) + 2〈X 2〉r1q1 − 2〈X 〉r1q1

+ 2〈Y 2〉r2δ2 − 2〈Y 〉r2δ2 − 〈X 2Y 〉α1 − 〈XY 2〉α2. (C8)

Similarly, for 〈Y Z〉 and 〈XZ〉 we have

d〈Y Z〉
dt

= 〈Y Z〉(r2 p′
2 − r2q′

2 − r2δ2 + α2 − d + α3) + 2〈XZ〉r1q1

+ 2〈Y 2〉r2q′
2 − 2〈Y 〉r2q′

2 − 〈Y 2Z〉α2 − 〈Y Z2〉α3 (C9)

and

d〈XZ〉
dt

= 〈XZ〉(r1 p1 − r1q1 + α1 − d + α3) + 2〈Y Z〉r2δ2

− 〈X 2Z〉α1 − 〈XZ2〉α3 + 2〈XY 〉r2q′
2. (C10)

APPENDIX D: ABOUT THE BACKGROUND PARAMETERS

Noticing that our interest is how dedifferentiation affects the noise in the numbers of different cell types, dedifferentiation
probability δ2 and reshaping factor κ are the focus of this study. We treat all the other parameters as background. These
parameters can be classified as three different types. The first is about cell division mode (e.g., r1 p1 represents symmetric division
rate of each stem cell). The second is about cell death of terminally differentiated cells. The third is about cell competition (e.g.,
α1 represents cell competition strength between stem cells).

Instead of investigating some specific multicellular systems, we are more interested in the conceptual models, so the setup of
all the background parameters are based on a very simple but common biological fact that in the absence of dedifferentiation,
the population size is amplifying from stem cells compartment to terminally differentiated cells compartment [39–41], i.e., it
is required that 0 < 〈X 〉 < 〈Y 〉 < 〈Z〉. Figure 2 illustrates a typical case that realizes the requirement. The main idea is that
the carrying capacity of stem cells compartment is the smallest, while the carrying capacity of terminally differentiated cells
compartment is the largest. In this way, the equilibrium population size of stem cells is smaller than that of transient amplifying
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FIG. 6. Illustration of the robustness of the results in Fig. 3. In the fist row, α1 = 0.01, α2 = 0.001, α3 = 0.001; in the second row,
α1 = 0.015, α2 = 0.002, α3 = 0.002; in the third row, α1 = 0.01, α2 = 0.001, α3 = 0.001; the joint parameters are (p1, q1, p2, q2, r1, r2, d ) =
(0.7, 0.3, 0.6, 0.4, 0.7, 0.7, 0.01).

cells which is also smaller than that of terminally differentiated cells. However, noticing that there are numerous combinations
of parameters that can realizes this requirement, Fig. 6 shows the robustness of our main result on the background parameters by
changing the competition strengths α1, α2, and α3.

APPENDIX E: RELATION BETWEEN C AND MEAN POPULATION SIZE

Figure 7 shows CX (or Adjusted CX ) as a function of the inverse of the mean popoulation size of stem cells. We can see that
CX (or Adjusted CX ) is approximately proportional to the inverse of the mean population size.

FIG. 7. Illustration of the relation between CX (or Adjusted CX ) and the inverse of the mean population size of stem cells. The background
parameters are (κ, p1, q1, p2, q2, r1, r2, α1, α2, α3, d ) = (0.5, 0.7, 0.3, 0.6, 0.4, 0.7, 0.7, 0.01, 0.001, 0.001, 0.01).
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(a)

(b)

FIG. 8. The 2D version of Fig. 4. In panel (a) κ = 0.155, and in panel (b) κ = 0.555. Different colors correspond to different values of
dedifferentiation probability δ2.

APPENDIX F: TWO-DIMENSIONAL PLOT OF FIG. 4

Figure 8 shows the 2D version of Fig. 4.
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