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Storage capacity of networks with discrete synapses and sparsely encoded memories
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Attractor neural networks are one of the leading theoretical frameworks for the formation and retrieval of
memories in networks of biological neurons. In this framework, a pattern imposed by external inputs to the
network is said to be learned when this pattern becomes a fixed point attractor of the network dynamics. The
storage capacity is the maximum number of patterns that can be learned by the network. In this paper, we study
the storage capacity of fully connected and sparsely connected networks with a binarized Hebbian rule, for
arbitrary coding levels. Our results show that a network with discrete synapses has a similar storage capacity as
the model with continuous synapses, and that this capacity tends asymptotically towards the optimal capacity, in
the space of all possible binary connectivity matrices, in the sparse coding limit. We also derive finite coding level
corrections for the asymptotic solution in the sparse coding limit. The result indicates the capacity of networks
with Hebbian learning rules converges to the optimal capacity extremely slowly when the coding level becomes
small. Our results also show that in networks with sparse binary connectivity matrices, the information capacity
per synapse is larger than in the fully connected case, and thus such networks store information more efficiently.
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I. INTRODUCTION

It is widely believed that memories are stored in the brain
through synaptic modifications in an activity-dependent way.
This idea has been implemented in attractor neural network
(ANN) models, where the connectivity strength between neu-
rons is determined by Hebbian synaptic plasticity rules [1,2].
In this framework, a pattern is said to be learned if it be-
comes a fixed point attractor of the network dynamics. An
extensively studied question is as follows: How many patterns
can be stored in such networks? Classical studies of memory
modeling synapses as continuous variables in networks of
binary neurons have shown that such networks can store a
number of uncorrelated random patterns p that scale linearly
that network size pmax = αcN where αc is of order 1 in the
large N limit [2–4]. However, there is evidence suggesting
that synapses in brain structures involved in memory, such as
the hippocampus and neocortex, are more digital than analog
[5–8].

A number of studies have addressed the question of the
storage capacity of networks with discrete synapses. Krauth
and Mézard showed that networks can potentially have a large
capacity when all synapses are required to be binary [9], using
Gardner’s approach [4], with an upper bound for capacity
αcmax = 0.83 discrete synapses, instead of αcmax = 2 for con-
tinuous synapses. Sompolinsky studied the storage capacity
of a network with a specific binarized Hebbian rule [10,11],
and showed its capacity is remarkably close to the capacity of
the Hopfield network [1], whose synapses are continuous vari-
ables (αc = 0.10 instead of 0.14). However, these authors only
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studied the unbiased case, in which the coding level f (i.e.,
fraction of active neurons in a pattern) is 0.5, while neuronal
activity in areas involved in memory is typically very sparse
(e.g., [12]), for instance, the coding level in the human medial
temporal lobe has been estimated to be around 1% [13]. The
upper bound for capacity in networks with arbitrary coding
levels and discrete synapses was computed by Gutfreund and
Stein [14]. The capacity in networks with Hebbian plasticity
and binary synapses has only been computed in the unbiased
case, and the capacity for arbitrary coding levels remains an
open question. In this paper, we generalized Sompolinsky′s
calculation on the Hopfield model with binary synapses when
coding level f = 0.5, to the model with fully connected or
sparsely connected binary synaptic connectivity with arbitrary
coding levels. Our results show that the network with bina-
rized Hebbian rule has a similar capacity as the model with
continuous synapses for any coding level, and that this capac-
ity tends asymptotically towards the optimal capacity obtained
by Gutfreund and Stein [14], in the space of all possible binary
connectivity matrices. Our results also show that a network
with sparse binary connectivity can have a larger information
capacity per synapse than a fully connected network, and thus
can allow a network to store information more efficiently.

II. RESULTS

A. Storage capacity of fully connected network
with binary synapses

We consider a fully connected neural network with N bi-
nary (0,1) neurons. The activity of neuron i (i = 1, . . . , N)
is described by a binary variable Vi = 0, 1. Each neuron is
connected to other neurons through the connectivity matrix
W . The activity of neuron i at time t is determined by the
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asynchronous update rule (see Appendix 6, for details):

Vi(t + 1) = �[hi(t ) − θ ], (1)

where

hi(t ) =
N∑
j �=i

Wi jVj (t ) (2)

is the local field, defined as the total input of neuron i, where θ

is an activation threshold (constant independent of Vi), and �

is the Heaviside function. We also consider in the Appendix a
more general case of dynamics with stochastic updates char-
acterized by a temperature T , but we focus in the main text in
the zero temperature, deterministic limit.

The storage capacity of the network whose dynamics is
defined by Eqs. (1) and (2) is determined by the connectivity
matrix W . This connectivity matrix W depends on p random
uncorrelated patterns �ημ, μ = 1, . . . , p, that are described by
independent Bernoulli random variables:

P
(
η

μ
i

) = f δ(ημ
i ,1) + (1 − f )δ(ημ

i ,0), (3)

where δ is the Kronecker delta function, and where f is the
coding level (the fraction of active neurons). The storage
capacity α is defined as the maximal number of stored patterns
p divided by the network size N , α = p/N .

In this paper, we construct connectivity matrix W from the
patterns �ημ using a “clipped” learning rule:

Wi j =
√

p

N
F

(
1

f (1 − f )
√

p

p∑
μ=1

(ημ
i − f )

(
η

μ
j − f

))
, (4)

where F is given by

F (x) =
√

π

2
sign(x), (5)

where the prefactor
√

π/2 is used for convenience. Thus,
Wi j is only allowed to take two distinct values. With the
nonlinear function F (x) given by Eq. (5), Wi j can be positive
or negative. In neurobiological networks, synaptic weights
are sign constrained, and their sign depends on whether the
presynaptic neuron is excitatory or inhibitory. The network
with the connectivity matrix given by Eqs. (4) and (5) leads to
local fields of the form

hi =
∑

j

Wi jVj =
√

2π p

N

∑
j

�(xi j )Vj −
√

π p

2

1

N

∑
j

Vj,

(6)
where �(x) is the Heaviside function, and xi j is the argument
of F in Eq. (4). Equation (6) shows that the network is equiv-
alent to a purely excitatory network with binary weights [the
first term in the right-hand side of Eq. (6)] with an instanta-
neous linear inhibition [the second term in the right-hand side
of Eq. (6)].

Notice also that when F (x) = x, Eq. (4) yields the learning
rule in the model of Tsodyks and Feigel’man (TF) [2], where
Wi j is a continuous variable. Therefore, we can interpret the
learning rule of Eq. (4) as first learning patterns �ημ using
the TF learning rule, and then clipping the weight into discrete
values at the end of the learning phase. In the following, we
call this model the clipped Tsodyks-Feigel’man (CTF) model.

The nonlinearity of F (x) in Eq. (5) makes the storage
capacity more difficult to calculate than the one of a network
with a linear learning rule. In 1986, Sompolinsky introduced
a method to compute the storage capacity of Hopfield net-
works with nonlinear learning rules [10,11]. In particular he
showed that in the large N limit, these networks are equiva-
lent to a linear learning rule with an added random Gaussian
noise,

Wi j = J

N f (1 − f )

p∑
μ

(
η

μ
i − f

)(
η

μ
j − f

) + δi j, (7)

where J is an embedding strength, and δi j is a random sym-
metric Gaussian matrix. Both J and the variance of the random
Gaussian matrix �2

0 = N〈δ2
i j〉/(J2α) can be calculated as a

function of F (x) [11]. For F (x) given by Eq. (5), the em-
bedding strength J and �2

0 are given by (see details in the
Appendix)

J = 1, �2
0 = π

2
− 1. (8)

1. Calculation of the storage capacity for arbitrary coding level f

To compute the storage capacity of a network with a
learning rule given by Eq. (7), we use standard methods and
introduce the Hamiltonian

H = 1

2

∑
i �= j

Wi jViVj + θ
∑

i

Vi, (9)

where Wi j is given Eq. (7). The typical free energy of the
system can be derived using the replica method [3,10,15]. The
calculation allows us to derive order parameters characterizing
the system (such as the overlap of network state with stored
patterns), and its storage capacity. Using a replica symmetric
ansatz, the free energy of the system can be characterized by
five order parameters m, Q, q, R, r, where

m = 1

N

∑
i

η̃1
i Vi,

Q = 1

N

∑
i

Vi,

q = 1

N

∑
i

V 2
i ,

(10)

and where R and r are conjugate variables of Q and q, and
are defined by Eqs. (A19) in the Appendix 2. The order pa-
rameter m measures the retrieval quality of a pattern stored in
memory. Solutions with m̃ ≡ m

f (1− f ) ∼ 1 represent “retrieval
states” in which the network goes to a fixed point close to
one of the stored patterns. Solutions with m̃ = 0 correspond
to no retrieval. The order parameters Q and q represent the
average neural activity and square of neural activity of the
network (see Appendix 2, for more details). The mean-field
equations of the system are obtained using a saddle point
method. The full equations are given by Eq. (A24) in Ap-
pendix 2, for arbitrary coding levels and temperature. In the
zero-temperature limit, the equations simplify to the following
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FIG. 1. Overlap as a function of storage load α for the Tsodyks-
Feigel’man model (TF) and the clipped Tsodyks-Feigel’man model
(CTF), for f = 0.02. The solid lines represent the theoretical pre-
diction and squares represent the simulation results with a network
of size N = 4000 (mean and standard deviation computed over five
independent realizations). Dashed lines mark the storage capacity for
CTF and TF. For both models, the neuronal activity threshold θ is
chosen as the one that optimizes capacity. For the parameters chosen
here ( f = 0.02), θ̃ ≡ θ/ f ≈ 0.6.

set of equations:

m̃ = 	(a1) − 	(a2),

r̃ = f 	(a1) + (1 − f )	(a2),

a1 = θ̃ − (1 − f )m̃ − Y√
r̃α

(
1 + �2

0(1 − C)2
) ,

a2 = θ̃ + f m̃ − Y√
r̃α

(
1 + �2

0(1 − C)2
) ,

Y = αC f

2(1 − C)
+ 1

2
αC f �2

0,

C = f

2παr̃

(
f e−a2

1/2 + (1 − f )e−a2
2/2

)
, (11)

where m̃ = m/ f (1 − f ), θ̃ = θ/ f , �2
0 = �2/α, and

	(x) = ∫ ∞
x Dz.

Once f , α, θ are given, Eq. (11) can be solved numerically
to obtain the order parameters, including the rescaled overlap
with the retrieved pattern m̃. Figure 1 shows m̃ as a function of
α for both TF and CTF models for f = 0.02. The figure shows
that analytical results are in good agreement with simulations,
using a network with 4000 neurons. The maximal capacity of
the network αc is given by the largest value of α for which
there exist retrieval states (i.e., states with nonzero m̃), opti-
mized over the threshold θ . Figure 1 shows that the maximal
capacity of the CTF model is lower than the one of the TF
model, as expected, but only by a factor of about 1.5. This
maximal capacity αc is plotted as a function of f in Fig. 2(a).

2. Sparse coding limit

In the biologically relevant sparse coding limit f →
0, the mean-field equation (A25) takes a rather simple

form:

m̃ = 	

⎛
⎝ θ̃ − m̃(1 − f )√

r̃α
(
1 + �2

0

)
⎞
⎠ − 	

⎛
⎝ θ̃ + m̃ f√

r̃α
(
1 + �2

0

)
⎞
⎠,

r̃ = f 	

⎛
⎝ m̃ f√

r̃α
(
1 + �2

0

)
⎞
⎠ + (1 − f )	

⎛
⎝ θ̃√

r̃α
(
1 + �2

0

)
⎞
⎠,

(12)

where θ̃ = θ/ f is a rescaled threshold, r̃ = r/ f 2, and 	(x) =∫ ∞
x Dz is the complementary cumulative distribution function

of the standard Gaussian distribution.
With additional analysis (see details in Appendix 3), we

find that the maximum capacity in this limit is obtained when
θ̃ ∼ 1, and the maximum capacity is

αc  1

π f |ln f | , (13)

which can be compared with the capacity of TF model ob-
tained by [2] αc  1/(2 f | ln f |). Thus, the two capacities
differ by a factor π/2 ∼ 1.57. We next address the ques-
tion of how close this capacity is to an upper bound in the
space of all possible binary connectivity matrices. This up-
per bound was computed by Gutfreund and Stein [14] for
arbitrary coding levels. The f → 0 behavior could not be
determined in a simple form in that paper; however, it was
shown that the upper bound must be smaller or equal than
1/(π f | ln f |). Our asymptotic result, Eq. (13), indicates that
the upper bound for binary connectivity matrices is indeed
asymptotically 1/(π f | ln f |), and thus the clipped TF model
becomes asymptotically optimal in the sparse coding limit.
This is similar to what happens in networks with continuous
synapses, for which it was shown that the storage capacity of
the TF model tends to the upper bound of storage capacity
obtained by Gardner [4], in the space of all continuous synap-
tic matrices in the sparse coding limit. Thus, in spite of their
remarkable simplicity, both TF and CTF models provide close
to optimal learning rules for models with continuous and dis-
crete weights, respectively. For convenience, we summarize
the storage capacity of different models in Table I [1,2,4,9,10].

3. Leading correction to sparse coding limit

We can see that the capacities of networks with Hebbian
rules in the unbiased case ( f = 0.5) are much smaller than
the corresponding upper bounds, while they converge to the
corresponding upper bounds in the sparse coding limit. How-
ever, solving numerically mean-field equation (A25) for finite
coding level f , we find that the capacities of TF and CTF
converge to the upper bounds extremely slowly [see Fig. 2(b)].
As shown in Fig. 2(b), the capacity of Hebbian rules is only
around 1/3 compared to their corresponding upper bounds
when the coding level f = 10−2. This is mainly because the
optimal threshold θ̃ approaches 1 extremely slowly when
f decreases (for instance, for f = 0.02, θ̃ ∼ 0.6). With ad-
ditional analysis (see Appendix 3), we derived the leading
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FIG. 2. Comparison between storage capacity of Hebbian rules and the respective upper bounds. GUBC: Gardner upper bound for networks
with continuous weights [4]. GUBB: Gutfreund and Stein upper bound for networks with binary weights [14]. See more details about capacity
upper bounds in Appendix 4. (a) Storage capacity of TF and CTF models as a function of coding level f . When f → 0, both capacities increase
as 1/ f ln(1/ f ). Cyan and magenta lines represent the storage capacity for a sparsely connected network with continuous weights (STF) and
a network with binary weights (SCTF). The storage capacities of fully connected and sparsely connected networks converge when f → 0.
Notice that for fully connected network, storage capacity is defined as αc = p/N while for the sparsely connected network, storage capacity
is defined as αs = p/cN , where c � 1. (b) Comparison between storage capacity and upper bounds as a function of coding level f . Even at
f = 10−2, for both TF and CTF models, the capacity is only around a third of the respective bounds, and thus the asymptotic solution (12) is
approached very slowly. (c) Comparison between the numerical solution and asymptotic solutions. Solid lines are the numerical solutions of
TF and CTF models, the dotted lines with the same color are the corresponding asymptotic solutions in the sparse coding limit [Eq. (13)], and
dashed lines represent asymptotic solutions with finite coding level corrections [Eqs. (14) and (15)]. (d) Stored information per synapse as a
function of coding level. When the coding level f goes to 0, the information stored in synapses increases but with an extremely slow rate for
both TF and CTF models. Dotted lines represents stored information of asymptotic solutions in the sparse coding limit (i.e., I[α = (2 f |ln f |)−1]
for continuous weights case and I[α = (π f |ln f |)−1] for binary weights case).

correction to the asymptotic solution at the finite coding level:

αc  θ̃2
opt

π f | ln f | , (14)

TABLE I. Comparison between the storage capacity of Hebbian
rules and upper bounds computed using Gardner approach.

Capacity of Hebbian rule Upper bound

f = 0.5, continuous Wi j ∼0.14 2
f = 0.5, binary Wi j ∼0.1 ∼0.83
f → 0, continuous Wi j (2 f | ln f |)−1 (2 f | ln f |)−1

f → 0, binary Wi j (π f | ln f |)−1 (π f | ln f |)−1

where the optimal threshold θ̃opt is obtained by solving the
equation

2θ̃2
opt|ln(1 − θ̃opt )|

(1 − θ̃opt )2
= |ln f |. (15)

Notice that when coding level f → 0, θ̃opt → 1 and Eq. (14)
recovers the asymptotic scaling of Eq. (13). The asymptotic
solutions (13) and (14) are compared in Fig. 2(c), and we can
see that Eq. (14) agrees with the numerical solutions very well
when the coding level f is small. This result indicates that, in
the biological sparse coding limit (i.e., coding level is small
but finite), the capacities of models with Hebbian rules are
still notably smaller than the maximal capacities, in the space
of all possible connectivity matrices.
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FIG. 3. Storage capacity and information capacity for a network with sparse excitatory binary connections. (a) Storage capacity as a
function of connection probability R1 and coding level f . The storage capacity decreases when R1 decreases. (b) Information capacity per
active synapse, as a function of f and R1. The information per synapse Ie increases when f and R1 decrease. This indicates that for learning
rule equations (4) and (20), both sparse coding and sparse connectivity can improve the coding efficiency of the network. This result also
indicates that the network can have an optimal R1 to balance storage capacity and coding efficiency.

While the storage capacity in terms of numbers of patterns
stored per synapse diverges in the sparse coding limit, the
information stored per pattern decreases in that limit since it
is proportional to the binary entropy of f . As a result, the total
information stored per synapse remains finite in the sparse
coding limit, both in the TF model [2] and in the correspond-
ing Gardner bound [4]. Figure 2(d) shows the information
capacity in bits per synapse for different models as a function
of f ,

I = − α

ln 2
[ f ln f + (1 − f ) ln(1 − f )]. (16)

We find that when the coding level f decreases, the infor-
mation capacity of TF and CTF increases quickly, while the
corresponding upper bounds decrease slowly. When f goes to
0, the information capacity I of TM and CTM further increase
and eventually converge to the optimal information capacity,
but the convergence rate is extremely low.

B. Storage capacity of sparsely connected network
with binary synapses

Cortical networks are characterized by low connection
probabilities between neurons (e.g., [16]). In the case we
interpret the low synaptic efficacy state to be zero, the network
we have studied so far has a 50% connection probability, much
higher than observed connection probabilities in cortex, which
are of order 10% for excitatory neurons at short distances
(<100 μm). This motivates the study of networks with sparser
connectivity. Here, we study two cases: one in which sparse
connectivity is uncorrelated with learning, and the other one
where sparse connectivity is an outcome of learning with a
high synaptic threshold.

1. Sparse connectivity uncorrelated with learning

We first consider the case where learning occurs on top of a
sparse random Erdos-Renyi “structural” connectivity matrix,

Wi j = ci j
√

p

Nc
F

(
1

f (1 − f )
√

p

p∑
μ=1

(
η

μ
i − f

)(
η

μ
j − f

))
,

(17)

where F (x) is the same as the clipped function (5) for fully
connected case, and ci j = 1, 0 is a random binary matrix, with

P(ci j ) = cδ(ci j ,1) + (1 − c)δ(ci j ,0), (18)

where 0 < c � 1 is the connection probability. The storage
capacity of learning rule (17) can be calculated similarly as
the model in [17] in the sparse connectivity limit c � 1, and
the mean-field equations for finite coding level f are given as
(see details in the Appendix 5)

m̃ = 	

⎛
⎝ θ̃ − m̃(1 − f )√

αsq
(
1 + �2

0

)
⎞
⎠ − 	

⎛
⎝ θ̃ + m̃ f√

αsq
(
1 + �2

0

)
⎞
⎠,

q = f 	

⎛
⎝ θ̃ − m̃(1 − f )√

αsq
(
1 + �2

0

)
⎞
⎠ + (1 − f )	

⎛
⎝ θ̃ + m̃ f√

αsq
(
1 + �2

0

)
⎞
⎠,

(19)

where αs = p/cN and where other order parameters are de-
fined in Eq. (10). The numerical solution of Eq. (19) is
compared with the fully connected case in Fig. 2(a). In the
sparse coding case, the mean-field (19) coincides with the
mean field (12), as expected [17]. We see that the capacity, in
terms of number of patterns stored divided by number of con-
nections per neuron, is larger in the sparsely connected case
than in the fully connected case, as expected from previous
results in networks with continuous synapses [17,18].

2. Sparse connectivity induced by learning

In this section, we consider the case where sparse connec-
tivity is obtained by adding a threshold to the clipped function.
Here we generalize the clipped function (5) to

FT (x) =
√

2π [�(x − T ) − M], (20)

where M is given by

M = 1√
2π

∫ ∞

−∞
�T (x)e−x2/2dx, (21)
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FIG. 4. Connection probability that optimizes capacity subject to a synapse maintenance cost λ. (a) Cost function C as a function of R1

and λ. (b) Optimal connection probability R∗
1 for different λ. We can see that the more costly synaptic maintenance is, the sparser the resulting

connectivity. In both (a) and (b), coding level is set to be f = 0.01.

where �T (x) = �(x − T ), and T is the threshold that can
be used to increase the sparseness of network connectivity,
interpreting the low synaptic state as a 0 state. With such a
connectivity matrix, the connection probability R1 is given by

R1 = 1

2

[
1 − erf

(
T√

2

)]
. (22)

In this case, the embedding strength J and additional noise
introduced by clipped function (20), �2

0 = N〈δ2
i j〉/J2α, are

J = e−T 2
, �2

0 = π

2
eT 2

[
1 − erf

(
T√

2

)2]
− 1. (23)

Notice that the noise strength �2
0 = N〈δ2

i j〉/J2α is an increas-
ing function of T . The storage capacity of the learning rule
(4,20) is determined by mean field (12) for a given connection
probability R1 and coding level f . As shown in Fig. 3(a), the
storage capacity αc decreases when the threshold increases,
and consequently the connection probability R1 decreases.
Unsurprisingly, the storage capacity decreases as the fraction
of nonzero synapses decreases. However, storing information
with a smaller number of synapses also carries benefits in
terms of efficiency of information storage.

To quantify this efficency, we calculate the information
stored in the network per nonzero synapse Ie:

Ie = − α

R1 ln 2
[ f ln f + (1 − f ) ln(1 − f )]. (24)

The relation between Ie, R1, and f is shown in Fig. 3(b).
We see that the information capacity per synapse increases
when the excitatory connectivity becomes more sparse. This
is mainly because we only keep connections for which the
Hebbian term [i.e.., the argument of the clipping function F in
Eq. (20)] is large. In this way, the network can encode infor-
mation more efficiently when excitatory connections become
sparse. Note that maximizing storage capacity subject to a
constraint of minimizing the fraction of active synapses would
lead to an optimal connection probability R∗

1, whose precise
value would depend on the cost of maintenance of an active
synapse. One can define a cost function C = α − λR1, where
the second term represents the cost of maintenance of active

synapses. For a given λ, we can obtain R∗
1 that maximize C.

As shown in Fig. 4(b), the more costly synaptic maintenance
is, the sparser the resulting connectivity. And the optimal
connection probability R∗

1 ∼ 0.1 when λ ∼ 10.

III. DISCUSSION

We have calculated the storage capacity of an attractor
neural network endowed with binary synaptic weights at ar-
bitrary coding levels. Our results show that a network with a
binarized Hebbian learning rule has a capacity that is close
to the capacity of a network with continuous weights at any
coding level since the decrease in capacity is only about 1.5
compared to continuous weights. Our results generalize the
results obtained by Sompolinsky for a coding level f = 0.5
[11], to arbitrary coding levels. Furthermore, our analysis
shows that the storage capacity of CTF tends in the sparse
coding limit to the upper bound of storage capacity, in the
space of all possible binary connectivity matrices. We also
provide a finite coding level correction for this asymptotic
solution, and the results indicate the capacities of TF and
CTF converge extremely slowly to the optimal capacity when
the coding level decreases since the corrections are of order
1/

√
ln(1/ f ). In particular, for f = 0.01 [13], the capacity of

the clipped model is only about a third of the upper bound.
Our results also show that sparse connectivity matrices can
allow these networks to have a larger information capacity per
synapse and thus encode information more efficiently.

The binary connectivity matrices used in this paper were
constructed using a clipped function whose argument is an
analog variable containing information about all stored pat-
terns. This assumes that the synapse can store continuous
information during the learning phase, before binarizing this
information. An alternative scenario is that the synapse is
required to be discrete during all learning phases. Tsodyks,
Amit, and Fusi studied models with discrete synapses un-
der an online learning setting in which synapses only have
information about the currently shown pattern to make a tran-
sition between states. They showed that this leads to a drastic
decrease in storage capacity when the coding level is f = 0.5
[19–21] since in that case the total number of stored patterns
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can scale at most as
√

N , implying a vanishing amount of
information stored per synapse in the large N limit. Later
work found that a storage capacity of order 1 bit/synapse can
be recovered in the sparse coding limit [ f ∼ ln(N )/N], even
when synapses are required to be discrete during all phases of
learning [21,22].

Another scenario studied by multiple authors consists in
synapses with binary weights with multiple hidden states (de-
scribing, e.g., different configurations of protein interaction
networks on the post-synaptic side) [23–26]. With appropriate
structure of hidden states, such synapses can greatly extend
the time for which synaptic connectivity can remain corre-
lated with a pattern shown at a particular time. This scenario
has been primarily studied using a signal-to-noise analysis
quantifying the degree of correlation of the synaptic matrix
with patterns presented to the network. To our knowledge,
this scenario has never been implemented in attractor network
models, and thus the storage capacity in these multistate mod-
els is still an open question. More experimental data will be
necessary to understand which class of models best captures
synaptic plasticity in neurobiological synapses.
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APPENDIX

1. Calculation of J and �0

To compute J and �0 in Eq. (8) we use the same strategy
as Sompolinsky [10,11]. We first calculate the average overlap
between a given pattern and the local field when the network
is retrieving that pattern. Let us denote η̃

μ
i = η

μ
i − f . For the

learning rule given by Eq. (7), we have〈
η̃1

i

∑
j

η̃1
jWi j

〉
= J f (1 − f ). (A1)

Similarly, the average overlap for clipped learning rule (4) is〈
η̃1

i

∑
j

η̃1
jWi j

〉
=

√
p

N

〈∑
j

η̃1
i η̃

1
j F

( ∑p
μ η̃

μ
i η̃

μ
j√

p f (1 − f )

)〉

= f (1 − f )〈xF (x)〉, (A2)

where

x =
∑p

μ η̃
μ
i η̃

μ
j√

p f (1 − f )
. (A3)

In the large p limit, x becomes a random variable drawn from
a standard Gaussian distribution x ∼ N (0, 1) according to the
central limit theorem. Thus, from Eqs. (A1) and (A2), we
obtain the embedding strength J as

J = 〈xF (x)〉. (A4)

In order to obtain the variance δi j of Eq. (7), we calculate
the variance of synaptic weights for both linear and clipped
learning rules. In the linear case, we have

N2
〈
W 2

i j

〉 = N2 J2

f 2(1 − f )2N2

〈(
p∑
μ

η̃
μ
i η̃

μ
j

)2〉

= pJ2

〈(
p∑
μ

η̃
μ
i η̃

μ
j

f (1 − f )
√

p

)2〉

= NαJ2. (A5)

The 〈. . . 〉 in Eq. (A5) goes to 1 when p → ∞. For the clipped
F (x), the variance of the weights is

N2
〈
W 2

i j

〉 = N2 1

N2
p

〈
F 2

(
p∑
μ

η̃
μ
i η̃

μ
j

f (1 − f )
√

p

)〉

= p〈F 2(x)〉
= NαJ̃2, (A6)

where we denote 〈F 2(x)〉 as J̃2. From Eqs. (A5) and (A6), we
can see the additional noise introduced by a nonlinear F (x) is

〈
δ2

i j

〉 = α

N
(J̃2 − J2). (A7)

Let �2
0 denote N〈δ2

i j〉/J2α, we have

�2
0 =

(
J̃2

J2
− 1

)
. (A8)

For F (x) given by Eq. (5), we obtain the embedding strength
and noise parameter as

J = 1, �2
0 = π/2 − 1. (A9)

2. Storage capacity of the fully connected CTF model

The Hamiltonian for the learning rule (7) is

H = 1

2

∑
i �= j

Wi jViVj + θ
∑

i

Vi, (A10)

where Wi j is determined from Eqs. (7) and (A9). We can
calculate the corresponding free energy by using the replica
method (see, e.g., [2,3]). To compute the average logarithm
of the partition function over the distribution of all random
binary patterns 〈ln Z〉 directly, we can use the relation

〈ln Z〉 = lim
n→0

〈Zn〉 − 1

n
. (A11)

For the Hamiltonian in Eq. (A10), we have

〈〈Zn〉〉 ∝
〈〈

TrV a exp

[
βJ

f (1 − f )2N

∑
μa

(∑
i

η̃
μ
i V a

i

)2

+ β

2

∑
i ja

δi jV
a

i V a
j − βθ

∑
ia

V a
i

]〉〉
, (A12)

where a = 1, . . . , n is the replica index and the double angular
brackets mean the average over both V a

i and η
μ
i . We are

interested in the overlaps between the network state and the
patterns stored in memory. We assume that the network has a
macroscopic overlap with a single stored pattern (μ = 1 the
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one currently being retrieved by the network) and define the following order parameters:

ma ≡ 1

N

∑
i

η̃1
i V a

i , mμa ≡ 1√
N

∑
i

η̃
μ
i V a

i . (A13)

The partition function can be rewritten in terms of these order parameters as

〈〈Zn〉〉 ∝
〈〈

TrV a

∫ (∏
μa

dmμ
a

βN

2π

)
exp

(
− βJN

2 f (1 − f )

∑
a

m2
a + βJ

f (1 − f )

∑
a

ma

∑
i

η̃1
i V a

i

− βJ

2 f (1 − f )

∑
μa

(mμ
a )2 + βJ√

N f (1 − f )

∑
μa

mμ
a

∑
i

η̃
μ
i V a

i + β

2

∑
i ja

V a
i V a

j δi j − βθ
∑

ia

V a
i

)〉〉
. (A14)

The terms including η
μ
i and δi j in Eq. (A14) can be averaged:〈

exp

(
βJ√

N f (1 − f )

∑
μa

mμ
a

∑
i

η̃
μ
i V a

i

)〉
∝ exp

(
β2J2

2N f (1 − f )

∑
iμab

V a
i V a

j mμ
a mμ

b

)
, (A15)

〈
exp

(
β

2

∑
i ja

V a
i V a

j δi j

)〉
∝ exp

[
Nβ2J2�2

∑
ab

(
1

N

∑
i

V a
i V b

i

)(
1

N

∑
i

V a
i V b

i

)]
, (A16)

where �2 = N〈δ2
i j〉/J2. We then introduce the order parameters

Qa = 1

N

∑
i

V a
i , qab = 1

N

∑
i

V a
i V b

i , (A17)

and use the integral representation of the δ function:

δ

(
NQa −

∑
i

V a
i

)
=

∫
dRa

2π
e−Ra (NQa−

∑
i V a

i ), δ

(
Nqab −

∑
i

V a
i V b

i

)
=

∫
drab

2π
e−rab(Nqab−

∑
i V a

i V b
i ). (A18)

Combining Eqs. (A14)–(A18), the partition function can be written as

〈〈Zn〉〉 ∝
∫ (∏

a

dQadRa

)(∏
a〈b

qabrab

)
e−Nβg(β,m,Q,q,R,r), (A19)

where

g = J

2 f (1 − f )

∑
a

m2
a + θ

∑
a

Qa − 1

β

∑
a

RaQa − βJ2�2
∑

ab

q2
ab − 1

β

∑
a〈b

rabqab

− 1

β
ln Tra

V exp

(
βJ

f (1 − f )

∑
a

η̃1maV
a −

∑
a

RaV
a −

∑
a〈b

rabV
aV b

)

− α

β
ln

∫ (∏
a

dma

)
exp

(
− βJ

2 f (1 − f )

∑
a

m2
a + β2J2

2 f (1 − f )

∑
a �=b

mambqab

)
. (A20)

The free energy per neuron is given as

G/N = lim
n→0

1

n
min g(β, m, Q, q, R, r). (A21)

In the large N limit, min g(β, m, Q, q, R, r) is dominated by its value at saddle points. Next we will give the saddle point
equations using replica symmetric ansatz. We assume that saddle point values of the order parameters are not dependent on their
replica index:

ma = m, Qa = Q, Ra = R, qab = q, rab = r (a �= b). (A22)

Now the free energy per neuron is simplified to

G/N = m2

2 f (1 − f )
+ α

2β

{
ln [1 − βJ (Q − q)] − βJq

1 − βJ (Q − q)

}
− rq

2β
+ RQ

β
+ θQ − 1

4
βJ2�2(q2 − Q2)

− 1

β

∫
Dz ln

[
1 + exp

(
βJ

f (1 − f )
mη̃ + R − r

2
+ √

rz

)]
. (A23)
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The saddle point equations are obtained by setting the derivatives of G/N to 0:

m

f (1 − f )
=

∫
Dz

〈〈
η̃K

{
β

[
Jmη̃

f (1 − f )
+ 1

β

(
R − αβ2r̃ + β2J2�2q

2

)
+

√
αr̃ + J2�2qz

]}〉〉
,

R − αβ2r̃ + β2J2�2q

2
= α

2

β(Q − q)J

1 − βJ (Q − q)
− βθ + 1

2
β2(Q − q)J2�2,

r̃ = J2q

[p1 − Jβ(Q − q)]2 , (A24)

Q =
∫

Dz

〈〈
K

{
β

[
Jmη̃

f (1 − f )
+ 1

β

(
R − αβ2r̃ + β2q

2

)
+

√
αr̃ + J2�2qz

]}〉〉
,

q =
∫

Dz

〈〈
K2

{
β

[
Jmη̃

f (1 − f )
+ 1

β

(
R − αβ2r̃ + β2q

2

)
+

√
αr̃ + J2�2qz

]}〉〉
,

where r̃ = 1
β2α

(r − β2J2�2q), K (x) = [1 + exp(−x)]−1, and

Dz = dz exp(−x2/2)√
2π

. In the zero-temperature limit β → ∞,
these saddle point equations can be simplified to

m̃ = 	(a1) − 	(a2),

r̃ = f 	(a1) + (1 − f )	(a2),

a1 = θ̃ − (1 − f )m̃ − Y√
r̃α

[
1 + �2

0(1 − C)2
] ,

a2 = θ̃ + f m̃ − Y√
r̃α

[
1 + �2

0(1 − C)2
] ,

Y = αC f

2(1 − C)
+ 1

2
αC f �2

0,

C = f

2παr̃

[
f e−a2

1/2 + (1 − f )e−a2
2/2

]
, (A25)

where m̃ = m/ f (1 − f ), θ̃ = θ/ f , �2
0 = �2/α, and

	(x) = ∫ ∞
x Dz.

3. Sparse coding limit

In the sparse coding limit f → 0, C goes to zero and Y
goes to zero. Equations (A25) become

m̃ = 	

⎛
⎝ θ̃ − m̃(1 − f )√

r̃α
(
1 + �2

0

)
⎞
⎠ − 	

⎛
⎝ θ̃ + f m̃√

r̃α
(
1 + �2

0

)
⎞
⎠,

r̃ = f 	

⎛
⎝ θ̃ − f m̃√

r̃α
(
1 + �2

0

)
⎞
⎠ + 	

⎛
⎝ θ̃√

r̃α
(
1 + �2

0

)
⎞
⎠. (A26)

In the small f limit, m̃ ∼ 1 requires

	

(
θ̃ − m̃(1 − f )√

α f π/2

)
∼ 1, 	

(
θ̃ + m̃ f√
α f π/2

)
� 1. (A27)

Furthermore, α is maximized when r̃ is minimized, which
requires the stronger condition

	

(
θ̃ + m̃ f√
α f π/2

)
� f , (A28)

which leads to r̃ ∼ f . Using limx→+∞ 	(x)  1
x
√

2π
exp( −x2

2 ),
in the small f limit, Eq. (A28) gives√

α f

2θ̃2
exp

(
− θ̃2

π f α

)
� f . (A29)

Rewriting α = k/ f ln( f −1), we find that Eq. (A29) is
satisfied provided k < θ2/π . Thus, the maximum storage ca-
pacity α increases with θ̃2 as

αc  θ̃2

π f | ln f | . (A30)

In the sparse coding limit, the optimal threshold is obtained at
θ̃ = 1 (the maximum value of θ̃ ), and thus

αc = 1

π f | ln f | . (A31)

This storage capacity coincides with the optimal capacity
obtained by Gutfreund for the Ising interaction case (see Ap-
pendix 4, for details).

We next ask the question of how close the threshold can be
to 1, when the coding level f is small but finite. The threshold
needs to be sufficiently far from one, so that the argument of
the function 	 in the first condition in Eq. (A27) is large and
negative. We find that for thresholds that are close to 1, the
maximal capacity is

α = (1 − θ̃ )2

π f |ln(1 − θ̃ )|) . (A32)

Equations (A30) and (A32) give the optimal threshold θopt

(i.e., the optimal value of θ̃ ) as a solution to the equation

2θ2
opt|ln(1 − θopt )|

(1 − θopt )2
= |ln f |. (A33)
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The maximum storage capacity is

αc  θ2
opt

π f | ln f | , (A34)

where θopt is given as a function of f by Eq. (A33). When f →
0, θopt → 1 and Eq. (A34) becomes the Gutfreund bound
(A31). However, this convergence is extremely slow, as shown
in Fig. 2.

4. Bounds for capacity

Gardner upper bound for networks with continuous weights
(GUBC). This bound was calculated by Gardner in 1987
for networks with continuous weights. The upper bound is
obtained when the volume of the space of solutions for the
weights {Ji j} vanishes (see details in [4]). By solving Eqs. (37)
and (38) in [4], one can obtain the GUBC for arbitrary coding
levels. This result is shown by the red curve in Fig. 2.

In the sparse coding limit, the asymptotic solution is given
in Eq. (40) in [4], where

αcmax = 1

2 f |ln f | . (A35)

Gutfreund and Stein upper bound for networks with binary
weights (GUBB). This bound was calculated by Gutfreund and
Stein in 1990 [14]. They extended Gardner’s formalism to the
case of networks with binary weights. Using a replica sym-
metric ansatz, the solution space of binary weights vanishes
when capacity reaches

αcmax = 2

π
GUBC. (A36)

In the sparse coding limit, Eqs. (A35) and (A36) give

αcmax = 1

π f |ln f | . (A37)

However, it can be shown that replica symmetry is broken,
and Eq. (A36) is an overestimate. A better estimate of the
upper bound for networks with binary weights is given by zero
entropy condition (see [14] for details), obtained by solving
Eqs. (20)–(24) and (29)–(34) in [14]. This zero entropy line is
shown by the blue curve in Fig. 2.

By numerically solving Eqs. (20)–(24) and (29)–(34) in
[14] and Eqs. (37) and (38) in [4], one can see that the zero en-
tropy line is getting close to the Gardner line [Eq. (A36)] when
the coding level decreases. This numerical result indicates that
Eq. (A37) is also a good estimate for the zero entropy line in
the sparse coding limit.

5. Storage capacity of the sparsely connected CTF model

Using similar calculations as in Appendix 1, one can obtain
that the nonlinear learning rule (17) can be transformed to a
linear learning rule:

Wi j = ci j

cN f (1 − f )

p∑
μ

(
η

μ
i − f

)(
η

μ
j − f

) + δi j, (A38)

where the variance of δi j = α�2
0

N = α
N (1 + π

2 ), and where the
connection probability c � 1. In this case, the local field hi

can be written as

hi =
N∑

i �= j

Wi jVj = 1

c f (1 − f )N
η̃1

i

N∑
j

ci j η̃
1
jVj

+ 1

c f (1 − f )N

∑
μ>1

N∑
j

ci j η̃
μ
i η̃

μ
j Vj +

N∑
j

δi jVj, (A39)

where η̃1
i denote the pattern that is currently being retrieved

by the network. When N and p are large, the second and
third terms in the right-hand side of Eq. (A39) Y1 and fol-
low a Gaussian distribution with zero mean. Introducing
order parameters m̃ = m/ f (1 − f ) and q defined in Eq. (19),
Eq. (A39) can be simplified to

hi = η̃1
i m̃ + Y, (A40)

where the variance of Y is

var(Y ) = αs
(
�2

0 + 1
)
q (A41)

and αs = p/cN :

m̃ = 1

N f (1 − f )

N∑
j

η̃1
j�

(
η̃1

j m̃ + Y − θ
)
, (A42)

q = 1

N

N∑
j

�2
(
η̃1

j m̃ + Y − θ
)
. (A43)

Averaging Eqs. (A42) and (A43) over η and the Gaussian
noise Y , the mean-field equations for order parameters m̃ and
q are

m̃ = 	

⎛
⎝ θ̃ − m̃(1 − f )√

αsq
(
1 + �2

0

)
⎞
⎠ − 	

⎛
⎝ θ̃ + m̃ f√

αsq
(
1 + �2

0

)
⎞
⎠,

q = f 	

⎛
⎝ θ̃ − m̃(1 − f )√

αsq
(
1 + �2

0

)
⎞
⎠ + (1 − f )	

⎛
⎝ θ̃ + m̃ f√

αsq
(
1 + �2

0

)
⎞
⎠.

(A44)

Note that these equations coincide with the fully connected
case in the sparse coding limit, as in the case of continuous
weights [2,17].

6. Numerical simulations

The simulations in Fig. 1 used a network with 4000 neu-
rons and coding level f = 0.02. The overlaps m̃ are averaged
over five independent realizations. Simulations consist in a
learning phase in which the connectivity matrix Wi j is built,
and a retrieval phase in which network dynamics run until it
reaches a fixed point. For each input pattern μ, we choose
as initial conditions {Vi = η

μ
i }. Overlaps m are obtained by

averaging over all mμ.
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