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How noise can generate calcium spike-type oscillations in deterministic equilibrium modes
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Stochastic excitability of spiking oscillatory regimes in the calcium kinetics is studied on the basis of the
Li-Rinzel conceptual model. The probabilistic mechanisms of the noise-induced generation of large-amplitude
oscillations in parametric zones, where the original deterministic model has only stable equilibria, are inves-
tigated numerically and analytically. A parametric statistical description of interspike intervals is curried out
and the phenomenon of coherence resonance is discussed. For the analytical study of the stochastic excitement,
the confidence domain method using a stochastic sensitivity technique is applied. In this analysis, a key role of
mutual arrangement of the confidence ellipses and separatrices detaching the sub- and supercritical regions is
demonstrated. It is shown that in the Li-Rinzel model such separatrices are the stable manifolds of the saddle
equilibria and the transient semiattractors.
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I. INTRODUCTION

In a wide range of intra- and intercellular processes, a
change in calcium concentration plays an important role [1,2].
Regular and irregular calcium oscillations were reported in
many papers on experimental studies [3–6]. Elucidation of
underlying mechanisms of occurrence of calcium oscillations
attracts the attention of researchers, both biophysicists and
mathematicians. In theoretical studies of calcium dynamics,
mathematical models in a form of differential equations are
widely used [7–10].

It has been shown that key experimental observations can
be captured by minimal models consisting of two dynamical
variables such as the Li-Rinzel [11] or the Dupont-Goldbeter
[12] models. In initial papers on mathematical studies of cal-
cium dynamics, an appearance of calcium oscillations was
explained by the existence of limit cycles in deterministic
models. Various types of limit cycles were studied in connec-
tion with analysis of encoding of external stimuli in amplitude
and frequency modulation of intracellular calcium oscillations
[13].

An important step in the study of calcium dynamics is
associated with stochastic aspects. Indeed, cellular processes
are subject to random disturbances of a different nature
[14,15]. It is well known that in nonlinear systems noise can
induce a wide variety of stochastic phenomena, such as noise-
induced transitions [16–18], stochastic resonance [19,20],
noise-induced chaos [21,22], stochastic excitability, and co-
herence resonance [23–26]. Stochastic excitability plays a
special role in understanding the mechanisms of neural ac-
tivity [27–31].

A constructive role of noise in the generation of calcium
oscillations is a subject of many papers (see, e.g., [32–37]).
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Phenomena of stochastic and coherent resonances in models
of calcium oscillations were studied numerically in [38–41].

When clarifying the underlying mechanisms of stochastic
effects in strongly nonlinear dynamical systems, it is impor-
tant to take into account peculiarities of phase portraits of the
initial deterministic model and the sensitivity of attractors to
random forcing [23,42,43].

The present paper aims to study how this interplay of non-
linearity and stochasticity causes noise-induced generation
of calcium oscillations in parameter zones of stable equi-
libria. On the basis of the conceptual model proposed by
Li and Rinzel [11], we demonstrate the effects of stochastic
excitement of spike-type calcium oscillations, and perform
numerical and analytical studies.

In Sec. II, we present the results of the bifurcation analysis
of the equilibrium and oscillatory modes of the deterministic
system and discuss the peculiarities of phase portraits.

In Sec. III, we show how random disturbances in the flux
Jchan can generate spike-type calcium oscillations in the equi-
librium parameter zones of the unforced Li-Rinzel model.
Here, the statistics of interspike intervals makes it possible to
reveal the occurrence of stochastic excitement and to find the
intensity of the noise associated with the coherence resonance.
To clarify mechanisms of these noise-induced phenomena,
we apply an analytical approach which uses the stochastic
sensitivity of equilibria and method of confidence domains
[44,45].

II. DETERMINISTIC MODEL

As a deterministic skeleton of our study, we use the Li-
Rinzel model [11,32] of calcium dynamics:

dc

dt
= Jchan + Jleak − Jpump,

dh

dt
= h∞ − h

τh
,

Jchan = v1m3
∞h3[c0 − (1 + c1) c],
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Jleak = v2[c0 − (1 + c1) c], Jpump = v3c2

K2
3 + c2

,

m∞ = pc

(p + d1)(c + d5)
, h∞ = Q2

Q2 + c
,

τh = 1

a2(Q2 + c)
, Q2 = p + d1

p + d3
d2. (1)

The dynamical variables of the Li-Rinzel model (1) are the
free cytosolic Ca2+ concentration c and the fraction h of the
open inositol trisphosphate IP3 receptor subunits.

The dynamics of the calcium concentration c is governed
by three fluxes: a passive leak of Ca2+ from the endoplasmic
reticulum to the cytosol, Jleak; an active uptake of Ca2+ into
the endoplasmic reticulum due to action of the pumps, Jpump;
and Ca2+ release Jchan that is mutually gated by Ca2+ and
the inositol trisphosphate IP3 concentration p. Because the
IP3 concentration p plays an important role in the variation
of regimes of the model (1), we use p as a control parameter.

Here, we follow [13] in notations and choice of fix values
of parameters as

v1 = 6 s−1, v2 = 0.11 s−1, v3 = 0.9 μM s−1,

c0 = 2 μM, c1 = 0.185, d1 = 0.13 μM,

d2 = 1.049 μM, d3 = 0.9434 μM, d5 = 0.082 34 μM,

a2 = 0.2 μM−1 s−1.

As for the parameter K3, in [13] two cases were compared.
The value K3 = 0.1 μM, as in the initial paper [11], corre-
sponds to the “amplitude modulation” of calcium oscillations
where the frequency is almost constant. Stochastic effects in
the Li-Rinzel model with K3 = 0.1 μM are well studied (see,
e.g., [32,33,37]). The value K3 = 0.051 μM corresponds to
the qualitatively different so-called “frequency modulation”
[13] in the intracellular calcium oscillations with the almost
constant amplitude. This is an excitable version of the Li-
Rinzel model.

In the present paper, we focus on this excitable version
with K3 = 0.051 μM. Note that this value belongs to the
parametric zone of frequency modulation determined in [13].
Moreover, in [13] one can find (c0, K3)-parameter domains
corresponding to “amplitude” and mixed-type modulation.

To find equilibria, we have to solve the system ċ =
0, ḣ = 0. The equation ḣ = 0 gives h(c) = Q2/(Q2 + c).
Substituting this expression to the equation ċ = 0, we get
the equation ϕ(c) = Jchan(c, h(c)) + Jleak(c) − Jpump(c) = 0.
In Fig. 1, plots of the function ϕ(c) are shown for various
values of the parameter p. Roots of the equation ϕ(c) = 0
determine c coordinates of the equilibria of the system (1).

As can be seen, the system (1) can possess three equilibria:
M1(c̄1, h̄1), M2(c̄2, h̄2), and M3(c̄3, h̄3) (c̄1 < c̄2 < c̄3). A de-
scription of dynamical regimes of the system (1) for 0.1 <

p < 1.5 is given by the bifurcation diagram in Fig. 2 with
details in enlarged fragments. Here, six bifurcation points
are marked: p1 = 0.479, p2 = 0.509 228 454 511 9, p3 =
0.5098, p4 = 0.5258, p5 = 0.855, and p6 = 1.1164.

In the interval 0.1 < p < p1, the system (1) has a unique
equilibrium M1. In the interval p1 < p < p4, the system has
three equilibria M1, M2, and M3. In the interval p4<p<1.5,
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FIG. 1. Plots of the function ϕ(c).

the system has the only equilibrium M3. The equilibrium M1

is stable in the interval 0.1 < p < p3. The equilibrium M2 is
always unstable, whereas M3 is stable for p5 < p < 1.5. In
Fig. 2, the stable equilibria are marked by blue solid lines,
and unstable equilibria are shown by red dashed lines.

In the interval p2 < p < p6, the system (1) exhibits the
stable limit cycles. In Fig. 2, extrema of the c coordinates of
these cycles are plotted by green solid lines. Here, p2 and p6

are saddle-node bifurcation points.
So, the system (1) exhibits parameter zones of mono-

and bistability. Intervals 0.1 < p < p2 and p6 < p < 1.5 are
monostability zones with stable equilibria, M1 or M3, cor-
respondingly. The interval p3 < p < p5 is the monostability
zone with the stable limit cycle as a single attractor.

In the intervals p2 < p < p3 and p5 < p < p6, this cycle
coexists with the stable equilibria M1 or M3, correspondingly.
In these bistability intervals, the limit cycle is separated from
the stable equilibrium by the unstable limit cycle (extrema of
c coordinates of the unstable cycles are plotted by red solid
lines).

The variety of dynamical behavior of the deterministic sys-
tem (1) is illustrated by phase portraits in Fig. 3. For p = 0.5
[see Fig. 3(a)], the system (1) has three equilibria. The equi-
librium M1 (filled circle) is stable, and M2, M3 (empty circles)
are unstable. Here, the stable manifold of the saddle point M2

(green dashed) plays an important role of the separatrix in the
transient processes. All trajectories tend to M1 but in different
ways: trajectories starting below the green curve promptly
tend to M1 while trajectories starting above this green curve
exhibit long-amplitude excursion before approaching M1. The
location of this separatrix will be used below in the analysis
of stochastic excitement.

For p = 0.51 [see Fig. 3(b)], all three equilibria are unsta-
ble, and trajectories tend to the orbit of the stable limit cycle
(thick blue curve). For p = 1 [see Fig. 3(c)], the single equi-
librium M3 (filled circle) is stable. Along with this attractor,
the system (1) exhibits a stable limit cycle (thick blue curve).
Basins of these attractors are separated by the orbit of the
unstable cycle (red dashed curve).

For p = 1.12 [see Fig. 3(d)], all trajectories tend to the
unique stable equilibrium M3. Here, two various transient pro-
cesses can be determined. For small deviations of the initial
state from M3, the solution uniformly in a spiral approaches

054404-2



HOW NOISE CAN GENERATE CALCIUM SPIKE-TYPE … PHYSICAL REVIEW E 105, 054404 (2022)

0.2 0.6 1

10
−1

10
0

p

c

p4 p6p5p1

M1

M3

M2

0.48 0.5 0.52

10
−1

10
0

p

c

p2 p4p1 p3

0.509 0.51

10
−1

10
0

c

p
p2 p3

FIG. 2. Bifurcation diagram with the enlarged fragments. Bifurcation values are p1 = 0.479, p2 = 0.509 228 454 511 9, p3 = 0.5098,

p4 = 0.5258, p5 = 0.855, p6 = 1.1164.

the point M3. If the initial deviation is rather large, then the
trajectory has a fragment that looks like a closed curve, similar
to the orbit of the limit cycle [compare with Fig. 3(c)]. This
transient fragment can be specified as a transient semiattractor.

Within the framework of deterministic models, the ex-
perimentally observed calcium oscillations are explained
mathematically by the stable limit cycles. However, the cal-
cium oscillations can appear in the parameter zones where

(a)
0 0.2 0.4 0.6 0.8 1

0.6

0.8

1

c

p = 0.5

M1

M2

M3

h

(b)
0 0.2 0.4 0.6 0.8

0.6

0.8

1

0.04 0.06
0.892

0.896 p = 0.51

c

h

M2

M3

M1

(c)
0 0.5 1

0.5

0.6

0.7

0.8

p = 1

c

h

M3

(d)
0 0.5 1

0.5

0.6

0.7

0.8

c

h
p = 1.12

M3

FIG. 3. Phase portraits of the system (1) for (a) p = 0.5, (b) p = 0.51, (c) p = 1, (d) p = 1.12.
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FIG. 4. Random states of the system (2) solutions starting from the equilibrium M1: (a) for p = 0.42, (b) for p = 0.48, and (c) for p = 0.5.

the deterministic model predicts the stable equilibrium modes
only. The reason for the appearance of large-amplitude
oscillations can be in even weak stochastic disturbances
accompanying any real process. The phenomenon of such
stochastic excitement of calcium oscillations is studied in the
following section.

III. STOCHASTIC MODEL

In the study of noise-induced phenomena in calcium dy-
namics, we will use the following stochastic variant of the
Li-Rinzel model:

dc

dt
= Jnoise

chan + Jleak − Jpump,
dh

dt
= h∞ − h

τh
. (2)

Here, we take into account parametric random disturbances
in the Jchan: v1 → v1[1 + εξ (t )], where ξ (t ) is a white Gaus-
sian noise with parameters 〈ξ (t )〉 = 0, 〈ξ (t )ξ (τ )〉 = δ(t −
τ ), and ε is a scalar parameter of noise intensity. So, in the
system (2) we put

Jnoise
chan = v1[1 + εξ (t )]m3

∞h3[c0 − (1 + c1) c].

In the present paper, we focus on the phenomenon of stochas-
tic excitement in the parameter zones where the deterministic
system exhibits the equilibrium as a single attractor. The
system (1) has two such zones: p < p2 with the stable
equilibrium M1 and p > p6 with the stable equilibrium M3

(see Fig. 2).

A. Stochastic excitement in the parameter zone p < p2

Consider an impact of stochastic disturbances in the
monostability zone 0.1 < p < p2 where the equilibrium M1

is the only attractor of the system (1).

In Fig. 4, random states of the stochastic system (2) so-
lutions starting from the stable equilibrium M1 are plotted
for three values of the parameter p versus noise intensity ε.
Here, we present the results of direct numerical simulation of
random solutions found by the Euler-Maruyama scheme with
the time step 0.001. In Fig. 4, for any ε, we plot states of the
continuous variable c after the transient interval [0,500] in the
Poincaré sections with temporal discretization T = 1.

For weak noise, random solutions of the system (2) slightly
oscillate near M1, but at the certain threshold noise intensity
a behavior of the system abruptly changes, namely, the dis-
persion of random states sharply increases. Such a behavior is
typical for the excitable systems. Note that the corresponding
threshold noise intensity depends on the value of p: the closer
p to the bifurcation point p2, the lower this critical noise
intensity [compare Figs. 4(a), 4(b) and 4(c)].

Phase trajectories and time series of the system (2) solu-
tions illustrate this stochastic excitement in Fig. 5 for p =
0.48 and Fig. 6 for p = 0.5 in detail. In Fig. 5(a), phase trajec-
tories of the system (2) solutions with p = 0.48 starting from
the equilibrium M1 are shown for ε = 0.01 (red), ε = 0.03
(green), and ε = 0.1 (blue). As one can see, at low noise with
ε = 0.01, solutions are localized near the equilibrium M1. For
ε = 0.03, trajectories show large-amplitudes loops and time
series are of a spike nature [see Fig. 5(b)] with alternation
of small-amplitude noisy oscillations and sharp blowouts in
a form of narrow peaks. So, in the Li-Rinzel model, even
small random disturbances can generate calcium oscillations
of large amplitude.

This phenomenon of stochastic excitement is demonstrated
in Fig. 6 for the parameter value p = 0.5 that is closer to the
bifurcation point p2. Note that the system generates spike os-
cillations even for ε = 0.01. Comparing (b) and (c) in Figs. 5

054404-4



HOW NOISE CAN GENERATE CALCIUM SPIKE-TYPE … PHYSICAL REVIEW E 105, 054404 (2022)

FIG. 5. Random trajectories and time series of the system (2) solutions for p = 0.48.

and 6, one can conclude that under increasing noise the inter-
vals between successive spikes decrease.

Details of the statistics of random interspike intervals τ

are presented in Figs. 7(a) and 7(b). In Fig. 7(a), plots of
mean values 〈τ 〉 of interspike intervals for various p are shown
versus noise intensity ε. A sharp descent in these plots marks
the threshold noise intensity corresponding to the onset of

generation of spikes. Here, the aforementioned dependence
of this threshold on the parameter p is clearly seen. Under
increasing noise, after this sharp descent, plots of mean values
〈τ 〉 monotonously decrease and stabilize.

For comparison, we also plot here a dependence of mean
values 〈τ 〉 for the parameter value p = 0.6 (light blue) that
corresponds to the limit cycles zone in the deterministic

FIG. 6. Random trajectories and time series of the system (2) solutions for p = 0.5.
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FIG. 7. Stochastic system (2): (a) mean values 〈τ 〉, (b) coefficient of variation CV of interpike intervals τ , and (c) largest Lyapunov
exponents �(ε). Here, minima of CV in (b) and maxima of � in (c) correspond to coherence resonance.

system (1). It is clearly seen, that for strong noise frequency
of generated spikes in the parameter zone p < p2 of equilibria
is close to the frequency of noisy self-oscillations in the zone
p > p2.

In Fig. 7(b), for the same set of the parameter p, plots of the
coefficient of variation CV of interpike intervals τ are shown
versus noise intensity ε. These curves have a characteristic
feature: for any p, there is a distinct minimum at a certain ε.
Such type of behavior determines the important phenomenon
of coherence resonance [27]. For p from the monostability
zone 0.1 < p < p2, the minimum of CV localizes the value
of ε for which noise-induced spiking oscillations are most
coherent.

Peculiarities of the internal dynamics of stochastic flows
can be characterized by largest Lyapunov exponents � that
specify the average convergence of random trajectories. In
Fig. 7(c), plots of the function �(ε) are shown. We calcu-
lated the largest Lyapunov exponents by the standard Benettin
method [46,47].

For any p, there is an ε zone where increasing noise essen-
tially changes �. It should be noted that this characteristic
is more sensitive to noise for p = 0.5 that is closer to the
bifurcation point p2.

Let us show how the phenomenon of stochastic excitement
can be analyzed parametrically by means of a confidence
domain technique [42,45]. A key role in this technique is
played by the stochastic sensitivity matrix of the equilibrium.
The stochastic sensitivity matrix W of the equilibrium of the
deterministic system (1) is a unique solution of the equation

FW + W F� + S = 0,

where F is a Jacobi matrix of the deterministic system at the
equilibrium and the matrix S characterizes the impact of noise.
For the equilibrium M1(c̄1, h̄1) in the system (2), we have
S = diag[J2

chan(c̄1, h̄1), 0]. Eigenvalues λ1, λ2 of the matrix W
serve as scalar characteristics of sensitivity of the equilibrium
to noise. Plots of λ1(p), λ2(p) for the equilibrium M1 are
shown in Fig. 8. Values of λ1 and λ2 differ in several orders
and unlimitedly increase approaching the bifurcation point p3.

Eigenvalues λ1, λ2 and eigenvectors u1, u2 of the stochastic
sensitivity matrix W give a geometrical description of the
dispersion of random states around the equilibrium in the form
of the confidence ellipse. The equation for such confidence
ellipse is written as

z2
1

λ1
+ z2

2

λ2
= −2ε2 ln(1 − P ),

FIG. 8. Eigenvalues λ1, λ2 of the stochastic sensitivity matrix W
for the equilibrium M1 versus parameter p.
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FIG. 9. Confidence ellipses method in the analysis of stochastic excitement. Here, we show the stable equilibrium M1 (black dot),
deterministic trajectories (black curves), confidence ellipses, and stable manifolds (green dashed) of the saddle equilibrium M2 for (a) p = 0.48
and (b) p = 0.5.

where z1, z2 are coordinates in the basis of u1, u2 with the
deterministic equilibrium as an origin, the parameter ε is the
noise intensity, and P is the fiducial probability.

The mutual arrangement of confidence domains and sepa-
ratrices in phase plane can serve as a useful tool in the analysis
of various noise-induced transitions [42,45]. Consider how
this general approach can be applied to the analysis of noise-
induced excitement in the Li-Rinzel model.

In Fig. 9(a), the confidence ellipses are plotted around the
equilibrium M1 (black dot) of the system (2) with p = 0.48 for
two values of noise intensity: ε = 0.01 (blue dashed) and ε =
0.05 (red dashed). Here, by black we show phase trajectories
of the deterministic system, and by green dashed the stable
manifold of the saddle equilibrium M2, which serves as a
separatrix between two different transient processes, as shown
with a green dashed line. This separatrix detaches sub- and
superthreshold zones in the phase plane. The smaller ellipse
for ε = 0.01 totally belongs to the subthreshold zone. This ar-
rangement predicts that random trajectories are localized near
the equilibrium M1. Under increasing noise, the confidence
ellipse enlarges. The larger ellipse for ε = 0.05 partially occu-
pies the superthreshold zone. Such arrangement predicts that
random trajectories can fall into the superthreshold zone and
exhibit large-amplitude loops. Abilities of such a geometrical
analysis by confidence ellipses are demonstrated in Fig. 9(b)
for p = 0.5.

Comparing Figs. 9(a) and 9(b) with Figs. 4(b) and 4(c), we
see a good agreement of our analytical prognosis and results
of direct numerical simulation.

B. Stochastic excitement in the parameter zone p > p6

Consider now the parameter zone p > p6 where the de-
terministic system has the only equilibrium M3 that is stable.
Here, in contrast to the previous case p < p2, the arrangement
of sub- and superthreshold zones in the phase plane is defined
by another separatrix in the form of the transient semiattractor
[see discussion of Fig. 3(d)].

The noise-induced transformation of small-amplitude fluc-
tuations around M3 into the regime of large-amplitude
oscillations is shown in Fig. 10 for p = 1.12 and p = 1.5.
Comparing with Fig. 4, one can conclude that random dis-
turbances result not only in the sharp growth of the calcium
concentration c but also decrease it.

The results of the analysis of statistics of interspike inter-
vals are presented in Fig. 11. In Fig. 11(a), it is clearly seen
how the threshold noise intensity corresponding to the onset
of spiking oscillations depends on the parameter p. As for
the phenomenon of coherence resonance, in this p-parameter
zone it is not accented [see Fig. 11(b)].

Consider now how the confidence domains method
works in this case to predict noise-induced excitement. The
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FIG. 10. Random states of the system (2) solutions starting from the equilibrium M3.
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FIG. 11. Mean values 〈τ 〉 and coefficient of variation CV of interspike intervals τ versus noise intensity ε in the parameter zone p > p6.

results of direct numerical simulation of random solutions
of the system (2) with p = 1.12 for ε = 0.02 (red) and
ε = 0.08 (green) are presented in Figs. 12(a) and 12(b).
As can be seen, at low noise with ε = 0.02, random solu-
tions are localized near the equilibrium M3. For ε = 0.08,
trajectories leave this equilibrium and show large-amplitude
stochastic loops near the deterministic semiattractor. The
time series [see Fig. 12(b)] show spike-type temporal
excitement.

The confidence domains method for p = 1.12 is illus-
trated in Fig. 12(c). Here, we show the phase trajectory of
the deterministic system by blue solid lines, and confidence
ellipses by dashed lines. The intersection of the confidence
ellipse for ε = 0.08 with the transient semiattractor signals
about the onset of excitement of spiking calcium oscillations.

Comparing Figs. 12(a)–12(c), one can see a good agreement
of our analytical prognosis and results of direct numerical
simulation.

IV. CONCLUSION

This study is devoted to the problem of identification and
analysis of the mechanisms of the genesis of calcium oscilla-
tions on the basis of mathematical models. We focus on the
question of how the inevitably present random disturbances
can generate spike oscillations in parametric zones, where the
original deterministic models demonstrate only stable equilib-
rium regimes. For illustration of the key stochastic phenomena
and methods of their analysis, a two-dimensional randomly
forced conceptual Li-Rinzel model of calcium dynamics was

FIG. 12. Random trajectories and time series of the system (2) for p = 1.12.
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used. When the inositol trisphosphate IP3 concentration p
is varied, the original deterministic model has both self-
oscillation zones and adjacent zones of stable equilibria.
Using direct numerical simulation, it was shown how in the
equilibria p zones, with increasing noise intensity, the system
passes from the mode of low-amplitude random fluctuations
near equilibria to large-amplitude spike-type oscillations. The
statistical analysis of interspike intervals presented here for
this stochastic excitability showed a presence of the phe-
nomenon of coherence resonance in one of the two considered
p-parametric zones. We discussed how the phenomenon of
stochastic excitability is associated with the geometric fea-
tures of the phase portrait of the original deterministic model,
namely, with the presence of sub- and supercritical regions,
the transitions between which generate spike transients. Here,
the location of the separatrix detaching these regions plays
an important role in the parametric analysis of noise-induced
excitement of calcium oscillations. In the Li-Rinzel model
under consideration, the role of such a separatrix is played
by the stable manifold of the nearest saddle equilibrium for

one excitability p zone and the transient semiattractor for
another one. For the analytical study of the noise-induced
transition of the system to the spike excitation mode, it was
proposed to use the method of confidence regions. A prelimi-
nary estimate of the stochastic sensitivity of equilibria allows
one to determine the configuration and size of the confidence
ellipses approximating the dispersion of random states. It
was shown how the demonstrative geometric analysis of the
mutual arrangement of confidence ellipses and separatrices
makes it possible to predict the transition of the system from
the equilibrium regime to the mode of spike oscillations. The
described approach, illustrated in detail by the example of the
Li-Rinzel model, can be applied to the analysis of mechanisms
of stochastic generation of calcium oscillations in other, more
complex models.
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