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Dynamic stability in hovering flight of insects with different sizes
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Previous works on the flight dynamic stability of insects have focused on relatively large insects. Here,
the longitudinal flight dynamic stability of two hovering miniature insects was computed. With the stability
properties of the miniature insects from the present work and those of large insects from previous works, we
studied the effects of insect size on the stability properties in the full range of insect sizes. The following results
were obtained. Although the insects considered have a 30 000-fold difference in mass, their modal structure
of flight stability is the same: an unstable oscillatory mode, a stable fast subsidence mode, and a stable slow
subsidence mode; because of the unstable mode, the flight is unstable. An approximate analytical expression
on the growth rate of the unstable mode as a function of insect mass (m) was derived. It shows that the time to
double the initial values of disturbances (td ) is proportional to the 0.17 power of the insect mass (m). That is, as
m becomes smaller, td decreases (i.e., the instability becomes faster). This means that miniature insects need a
faster nervous system to control the instability than larger insects. For example, the response time (represented
by td ) of a miniature insect, the gall midge (m ≈ 0.05 mg), needs to be faster by about 7 times than that of a
larger insect, the hawk moth (m ≈ 1600 mg).
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I. INTRODUCTION

The size and mass of flying insects change greatly among
different species [1]. The mass difference between the largest
and the smallest insects is as large as five orders of magnitude
(e.g., the mass of a large insect, the hawk moth Manduca
sexta, is more than 1.6 g, whereas that of a miniature insect,
the small wasp Encarsia formosa, is less than 0.016 mg) [2–6].
With such a wide range of mass difference, exploring the
effect of insect size on the flight dynamic stability must be
very interesting.

Flight dynamic stability and stabilization control are of
great importance in the study of biomechanics of insect flight.
Much work has been done in those areas (e.g., Refs. [7–15]).
Taylor and Thomas [7] did the first quantitative analysis on
the stability of an insect (desert locust). They used the av-
eraged model and linear analysis. Because they determined
the stability derivatives by experiments using real insects,
and the results inevitably included some control effects, the
inherent stability properties of the insect were not obtained.
Other researchers avoided this problem by using insect mod-
els for computing or measuring the stability derivatives. Sun
and Xiong [8] and Faruque and Humbert [10,11] studied
the dynamic stability problem of a bumblebee. Cheng and
Deng [13] studied the same problem for a number of in-
sects, including hawk moth, bumblebee, stalk-eyed fly, and
fruit fly. The stability properties of several other insects, in-
cluding hover fly, drone fly, crane fly and mosquito, were
also obtained [16–20]. Dickson et al. [21], Sun and Wang
[22], Ristroph et al. [23,24] and Cheng et al. [25] added the
control terms into the linearized averaged model, and studied
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the stabilization control problem of several insects. Wu and
Sun [26] and Noest and Wang [27] extended the analysis
based on the averaged model to the Floquet analysis, so that
problems with large effect of wing-body coupling could be
treated. Chang and Wang [28] developed a model in which the
dynamics is governed by full nonlinear equations, and studied
the fruit fly’s flight stabilization problems; since there is not
linearization, large disturbance motion can be treated by their
model.

The mass of the above insects studied in the above works,
for which the stability properties are available, ranges from
about 1.6 g ( hawk moths) to about 1 mg (mosquitoes and fruit
flies). This covers the mass range of many winged insects,
except that of the miniature insects whose mass is more than
one order of magnitude smaller. One reason for the absence
of the stability analysis of miniature insects is that their wing
flapping kinematics data were not available. Recently, the
wing kinematics parameters for a number of miniature in-
sects were measured [29–31]. Now the stability properties of
miniature insects can be calculated. If this is done, the effect
of insect size on the flight dynamic stability can be analyzed
in the full range of insect size.

In the present study, as a first step, we will consider the
longitudinal flight stability problem of hovering insects. First,
we will compute the stability properties of some miniature
insects, i.e., vegetable leaf miner (Liriomyza sativae) and gall
midge (Anbremia sp.); the mass of the vegetable leaf miner is
0.25 mg and that of the gall midge is 0.05 mg. Then, based
on the computed results of the miniature insects and those of
larger insects previously computed by our and other research
groups, we will analyze the size effect on the flight dynamic
stability. By making some reasonable simplifications, we will
try to obtain some simple equations showing the effect of size
(mass) on the stability properties.
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FIG. 1. The state variables and the reference frames: (a) Side
view; (b) back view.

II. MATERIALS AND METHODS

A. Methods for the stability analysis of the miniature insects

The averaged-model theory [7,8] is used in the analysis.
In the model, the insect is represented by a rigid body that
has six degrees of freedom; the action of the back-and-forth
beating wings is represented by the wingbeat-cycle-average
forces and moments. As a result, the equations of motion of
the insect become the same form as those of airplanes. For
studying the stability study, we use the linear-analysis method:
The equations of motion are linearized by approximating the
body’s motion as small disturbances from a reference (equi-
librium) condition.

Let oxyz be a noninertial right-handed coordinate system
fixed to the body. The origin o is at the center of mass of the
insect and the axes are aligned so that at equilibrium flight,
the x and y axes are horizontal, the x axis points forward,
and the y axis points to the right of the insect (Fig. 1). The
variables that define the longitudinal disturbance motion are
as follows: the components of velocity of the center of mass
along the x axis (denoted as u) and the z axis (denoted as w)
(Fig. 1), the components of the body angular velocity around
the y axis (denoted as q, called pitch velocity) (Fig. 1), and
the pitch angle (denoted as θ ) (Fig. 1). Let m denote the mass
of the insect, g denote the gravitational acceleration, and Iy

denote the moment of inertia about the y axis. The x and z
components of the mean aerodynamic force are represented
by X and Z , respectively; the mean aerodynamic moment
around the y axis is represented by My. When the insect is
hovering, at reference flight, u, w, and q are all zero, and the
force and moment components are also zero except that Z
balances the insect weight. The small-disturbance equations
of motion are as follows [32]:⎡

⎢⎢⎣
δu̇+
δẇ+
δq̇+

δθ̇

⎤
⎥⎥⎦ = A+

⎡
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⎥⎦, (1)
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⎥⎥⎥⎥⎥⎦. (2)

The superscript “+” represents a dimensionless quantity.
The symbol δ denotes a small-disturbance quantity and the
overdot represents the time derivative; Xu, Zu, etc., are the
stability derivatives representing partial derivatives of the
forces and moments with respect to the motion variables.
When nondimensionalizing the equations, for the variables,
the mean chord length of the wing c is the length scale, the
period of the wingbeat cycle T = 1/n is the timescale, and the
mean wingbeat velocity U = 2�nr2 is the velocity scale (here
� is the wingbeat amplitude, n is the wingbeat frequency, and
r2 is the radius of gyration of the wing). A force, e.g., X , is
nondimensionalized by ρU 2S/2, where ρ is the air density
and S the area of the wing pair, and a moment, e.g., M,
is nondimensionalized by ρU 2Sc/2. In addition, an inertia
moment is nondimensionalized by ρU 2ScT 2/2, time by T ,
mass by ρUST/2, and gravitational acceleration (g) by U /T .
The matrix A is called the system of matrix. To solve Eq. (1),
the elements in A need to be known. That is, m, Iy and Xu, Zu,
etc., need to be known. How these quantities are determined
is discussed in Appendixes A and B.

Once A is specified, Eq. (1) can be solved to yield in-
sights into the dynamic flight stability of the hovering insect.
The central elements of the solutions for the dynamic sta-
bility problem are the eigenvalues and eigenvectors of A
(Ref. [32]). Here A has four eigenvalues (λ1, λ2, λ3, λ4) and
four corresponding eigenvectors. A real eigenvalue and the
corresponding eigenvector, or a conjugate pair of complex
eigenvalues and the corresponding eigenvector pair, represent
a natural mode of the system. The motion of the flying body
after an initial deviation from its reference flight is a linear
combination of the natural modes. In a natural mode, the real
part of the eigenvalue determines the time rate of growth of
the disturbance quantities and the eigenvector determines the
magnitudes and phases of the disturbance quantities relative
to each other. A positive real eigenvalue will result in expo-
nential growth of each of the disturbance quantities, so the
corresponding natural mode is dynamically unstable (termed
unstable divergent mode). The time to double the starting
value (td ) is given by td = 0.693/λ (λ > 0). A pair of com-
plex conjugate eigenvalues, e.g., λ1,2 = s ± ωi, will result in
oscillatory time variation of the disturbance quantities with
ω as its angular frequency. The motion decays when s is
negative (dynamical stable, termed stable oscillatory mode)
but grows when s is positive (dynamical unstable, termed
unstable oscillatory mode). The time to double the oscillatory
amplitude is td = 0.693/s.

It should be noted that in the above analysis method, the
equation of motion and the aerodynamic forces and moments
are linearized about the reference point (equilibrium flight).
This means that our results are valid only for the cases in
which the disturbance motions are small.

B. Method for studying the effects of insect size (mass)

As mentioned above (see Sec. II A), the stability properties
(the mode structure, a mode being stable or unstable, the
growth or decay rate of a mode, etc.) are determined by the
eigenvalues of the system matrices A. The eigenvalues are the
roots of the characteristic equation of A. The characteristic

054403-2



DYNAMIC STABILITY IN HOVERING FLIGHT OF … PHYSICAL REVIEW E 105, 054403 (2022)

equation of A can be written as⎡
⎢⎢⎢⎢⎢⎣
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− λ+ 0

0 0 1 0

⎤
⎥⎥⎥⎥⎥⎦ = 0, (3)

which is an algebraic equation of fourth order. Its roots have
very complex expressions, and from their expressions, it is
virtually impossible to see the effects of insect size (mass)
on the roots. But this problem might be overcome in the
following way.

From the results of previous studies on many insects, we
found that some stability derivatives are much smaller than
others, for example, X +

w is much smaller than X +
u and X +

q . This
means that dropping the terms with these small derivatives
could give simpler characteristic equations and simpler ex-
pressions of the roots (eigenvalues), without losing too much
of the accuracy of the roots. With the simplified expressions
of the roots, it is easier to see the effects of insect size (mass).

In the present study, we will use the above approach and
try to obtain simple expressions for the eigenvalues, so that
the effects of insect size can be clearly seen. Furthermore,
we try to give a simple formula that can show how the insect
size (mass) affects the growth rate of the unstable mode; this
quantity is of great importance to the study of the control
system of an insect.

III. RESULTS ON THE TWO MINIATURE INSECTS

A. Computed stability derivatives

As discussed in the calculation of stability derivatives in
Appendix B, forces and moment for each of u, w, etc., varying
independently from their equilibrium value are calculated and
the corresponding nondimensional aerodynamic forces and
moments on the wings X +, M+, etc., are obtained, giving
�X +, �M+, etc. As an example, the u-series, w-series, and
q-series results of �X +, �Z+, and �M+ of the gall midge
are plotted in Fig. 2. The variations of �X +, �Z+, and �M+
have good linearity, showing that for small-disturbance mo-
tion, linearization of the aerodynamic forces and moments
is justified. The curves in the figure are fitted separately by
straight lines, which give the stability derivatives X +

u , Z+
u , etc.

The estimated stability derivatives of the two small insects are
shown in Table I.

As seen in Table I, the derivatives of the two insects are
generally similar: The magnitudes of X +

u , M+
u , and Z+

w are
larger than those of the other derivatives. The value of X +

u
is negative and that of M+

u is positive; this means that the
horizontal translation produces a horizontal damping force
(negative X +

u ; the force is opposing the motion) and a pitching

FIG. 2. The u-series, w-series, and w-series force and moment
data for the gall midge.

moment that tilts the insect in the opposite direction of the
translation motion. The value of Z+

w is negative, indicating that
vertical motion produces a vertical force opposing the motion.
There are also some differences in the derivatives between the
two insects: the magnitudes of X +

u , Z+
u , Z+

w , and M+
w of the gall

midge are larger than those of their counterparts of the veg-
etable leaf miner. These differences are due to the difference
in wing motion pattern between the two insects: the vegetable
leaf miner has a shallow U-shape upstroke, while the gall
midge uses a deep U-shape upstroke [29]. As will be seen
in a later section (Sec. IV A), the nondimensional longitudinal
derivatives of the two insects (especially the vegetable leaf
miner) are very similar to those of larger insects.

TABLE I. Stability derivatives of the miniature insects.

Species X +
u Z+

u M+
u X +

w Z+
w M+

w X +
q Z+

q M+
q

Vegetable leaf miner (Liriomyza sativae) −1.55 −0.43 4.37 0.26 −0.90 0.00 −0.18 0.11 −0.33
Gall midge (Anbremia sp.) −2.25 −1.19 2.89 0.26 −2.60 −1.14 0.04 0.08 −0.57
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TABLE II. Eigenvalues of the miniature insects.

Mode 1 Mode 2 Mode 3
Species λ+

1 , λ+
2 λ+

3 λ+
4

Vegetable leaf miner (Liriomyza sativae) 0.11 ± 0.24i −0.30 −0.014
Gall midge (Anbremia sp.) 0.12 ± 0.28i −0.46 −0.13

B. Dynamic stability properties

With the stability derivatives calculated in the previous
section (Sec. III A) and the insect mass and the moments and
product of inertia determined in Appendix A, elements in
A of the equations of motion, Eq. (1), are now known. We
are ready to compute the eigenvalues and eigenvectors of A
and obtain the stability properties of the two small insects.
The computed results are given in Table II (eigenvalues) and
Table III (eigenvectors).

As seen from the eigenvalues in Table II, for the distur-
bance motion, there is a pair of complex eigenvalues, λ+

1
and λ+

2 , which have a positive real part, and there are two
negative real eigenvalues (λ+

3 and λ+
4 ; the magnitude of λ+

3
is relatively large and that of λ+

4 is relatively small), one
with a large magnitude and the other with a small magnitude.
Therefore, the longitudinal motion has three natural modes:
an unstable oscillatory mode (referred to as mode 1), a stable
fast subsidence mode (referred to as mode 2) and a stable slow
subsidence mode (referred to as mode 3). From the eigenvec-
tors (Table II), it is seen that mode 1 and mode 2 contain the
horizontal (δu) and vertical (δw) motions and pitching (δq)
rotation, and mode 2 mainly has horizontal (δu) and vertical
(δw) motions (δq is about one order of magnitude smaller than
δu and δw). Owing to the unstable mode 1, the longitudinal
motion of the gall midge is unstable.

The modal structures of the two small insects (gall midge
and vegetable leaf miner) are similar to those of other larger
insects studied in many previous works (e.g., Refs. [8–20]),
having an unstable oscillatory mode (mode 1), a stable fast
subsidence mode (mode 2) and a stable slow subsidence mode
(mode 3). The longitudinal motion is unstable due to the
existence of the unstable mode 1.

IV. SIZE EFFECTS ON THE STABILITY PROPERTIES
OF INSECTS

The stability properties of some miniature insects have
been obtained in the above section (Sec. III); those of many

larger insects are available from the literature [8–20]. Now we
have stability properties for the approximately full-size range
of insects, m ranging from about 0.05 mg to about 1600 mg,
a difference of five orders of magnitude, and we can examine
the effect of size (mass) on the dynamic stability of insects for
the full-size range.

A. Stability derivatives of insects of various size

The nondimensional stability derivatives of the insects of
various size (mass) are listed in Table IV; for the two small
insects, the values are from our calculations and for the large
insects, the values are from various references (Manduca sexta
1 [13], Manduca sexta 2 [26], Bombus terrestris 1 [8], Bombus
terrestris 2 [13], Eristalis tenax [26], Episyrphus baltea-
tus [16], Tipula obsolete [16], Cyrtodiopsis dalmanni [13],
Drosophila virilis [19], Aedes aegypti [20], and Drosophila
melanogaster [13]). The largest insect, a hawk moth (Mand-
uca sexta), has a mass of 1620 mg and the smallest insect,
a gall midge (Anbremia sp.), has a mass of 0.047 mg, a more
than 30 000-fold mass difference. In the above cited works, for
the calculation of the stability derivatives (and the eigenval-
ues), measured wing motion and morphology for each insect
were used for the same insect. For example, for the hawk
moths in Refs. [13,26], data measured by Ellington [2,33]
were used; for the bumblebees in Refs. [8,13], data measured
by Dudley and Ellington [34] were used.

First, let us look at the longitudinal stability derivatives
in Table IV. The following observations can be made. The
first is that for each of the insects here, large or small, the
magnitudes of the derivatives X +

u , M+
u , and Z+

w are much
larger than those of the other longitudinal derivatives. The
second observation is that although the mass difference of the
insects is very large (different by five orders of magnitudes),
the magnitudes of the nondimensional derivatives do not vary
greatly. For example, the magnitude of X +

u of all the insects
considered is about 1–2; even the insects have more than
30 000-fold mass difference. The third observation is that for
all insects listed, M+

u , which represents the pitching moment

TABLE III. Eigenvectors of the miniature insects.

Species Mode 1 Mode 2 Mode 3

Vegetable leaf miner δu+ 0.098 (120.4°) 0.093(0°) 0.235(180°)
δw+ 0.002(−79.5°) 0.004(0°) 6.024(0°)

(Liriomyza sativae) δq+ 0.264(65.6°) 0.303(180°) 0.014(180°)
δθ 1(0°) 1(0°) 1(0°)

Gall midge δu+ 0.153(88.8°) 0.285(0°) 1.103(0°)
δw+ 0.154(12.0°) 0.290(0°) 2.810 (0°)

(Anbremia sp.) δq+ 0.308(66.8°) 0.464(180°) 0.162(180°)
δθ 1(0°) 1(0°) 1(0°)
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TABLE IV. Stability derivatives of the insects of various sizes.

Species m (mg) X +
u Z+

u M+
u X +

w Z+
w M+

w X +
q Z+

q M+
q

Manduca sexta 1 1620 −1.97 0 1.13 0 −1.51 0 0 0 −0.13
Manduca sexta 2 1579 −2.16 −0.10 1.61 0.10 −1.33 −0.22 −0.27 0.06 −0.05
Bombus terrestris 1 175 −0.79 −0.03 2.39 0.05 −1.03 −0.19 −0.09 −0.03 −0.88
Bombus terrestris 2 175 −1.79 0 1.74 0 −1.56 0 0 0 −0.19
Eristalis tenax 88.3 −1.25 0.01 1.59 0.02 −1.36 0.08 −0.18 0.04 −0.13
Episyrphus balteatus 27.3 −1.28 −0.04 2.32 0.01 −1.26 0.05 −0.16 0.00 −0.02
Tipula obsolete 11.4 −1.09 −0.06 3.87 −0.01 −1.03 0.13 −0.09 0.01 −0.05
Cyrtodiopsis dalmanni 7.00 −1.52 0 2.52 0 −1.62 0 0 0 −0.31
Drosophila virilis 1.79 −1.48 −0.03 2.54 0.02 −1.64 −0.52 −0.06 0.14 −0.36
Aedes aegypti (female) 1.78 −1.43 −0.15 2.92 0.03 −1.63 0.31 −0.30 0.18 −0.41
Drosophila melanogaster 0.96 −1.48 0 0.92 0 −1.58 0 0 0 −0.19
Aedes aegypti (male) 0.82 −1.63 0.09 3.30 0.09 −1.85 −0.11 −0.45 0.51 −0.21
Liriomyza sativae 0.25 −1.55 −0.43 4.37 0.26 −0.90 0.00 −0.18 0.11 −0.33
Anbremia sp. 0.05 −2.25 −1.19 2.89 0.26 −2.60 −1.14 0.04 0.08 −0.57

produced by forward and backward motion, is positive; i.e.,
forward motion produces a pitching-up moment and backward
motion produces a pitching-down moment. As discussed in
our previous work [8], the sign of M+

u is very important in
determining the natural modes.

B. Natural modes of motions (eigenvalues) of the insects

The eigenvalues of the insects are shown in Table V; again,
for the two small insects, the values are from our calculations
and for the large insects, the values are from various refer-
ences (Manduca sexta 1 [13], Manduca sexta 2 [26], Bombus
terrestris 1 [8], Bombus terrestris 2 [13], Eristalis tenax [26],
Episyrphus balteatus [16], Tipula obsolete [16], Cyrtodiopsis
dalmanni [13], Drosophila virilis [19], Aedes aegypti [20], and
Drosophila melanogaster [13]).

It is seen from Table V that the model structure of the dis-
turbance motion is the same for all the insects considered: An
unstable oscillatory mode (mode 1), given by a pair of com-
plex eigenvalues, λ+

1 and λ+
2 ; two stable subsidence modes

(mode 2 and mode 3) given by two negative, real eigenvalues

TABLE V. Eigenvalues of the insects of various sizes.

Mode 1 Mode 2 Mode 3
Species λ+

1 , λ+
2 λ+

3 λ+
4

Manduca sexta 1 0.17 ± 0.40i −0.53 −0.09
Manduca sexta 2 0.25 ± 0.59i −0.72 −0.094
Bombus terrestris 1 0.045 ± 0.13i −0.20 −0.012
Bombus terrestris 2 0.06 ± 0.12i −0.15 −0.02
Eristalis tenax 0.047 ± 0.094i −0.11 −0.015
Episyrphus balteatus 0.074 ± 0.14i −0.17 −0.020
Tipula obsolete 0.33 ± 0.73i −0.87 −0.11
Cyrtodiopsis dalmanni 0.05 ± 0.11i −0.13 −0.02
Drosophila virilis 0.082 ± 0.19i −0.24 −0.027
Aedes aegypti (female) 0.023 ± 0.045i −0.54 −0.008
Drosophila melanogaster 0.067 ± 0.14i −0.18 −0.024
Aedes aegypti (male) 0.018 ± 0.036i −0.044 −0.008
Liriomyza sativae 0.11 ± 0.24i −0.30 −0.014
Anbremia sp. 0.12 ± 0.28i −0.46 −0.13

λ+
3 and λ+

4 , respectively, one (mode 2) having a relatively fast
decreasing rate (|λ3| is relatively large) and the other (mode
3) having a relatively slow decreasing rate (|λ3| is relatively
small).

Because of the unstable mode 1, the hovering flight of
insects of all sizes considered here is intrinsically unstable.
The flight must be actively controlled to be stable. That is,
the insects need to constantly react to their surroundings and
adjust their wing motion to control their body and keep from
tumbling. The response time of the nervous system needs to
be fast enough to react and keep the unstable mode from
growing too large. Therefore, the growth rate of the unstable
mode (mode 1) is of great interest. As previously mentioned
(Sec. II A), td , the time to double the initial values of distur-
bances, represents the growth rate of instability. Therefore, let
us examine size effect on this quantity.

From Sec. II A, td = 0.693/s; here the quantities are di-
mensional values (it is better to see the response time in real
time). The values of td for the insects are plotted in Fig. 3. The
following observations can be made from the data in Fig. 3. In
general, td decreases when insect mass (m) decreases; as m

FIG. 3. The values of td for the insects of various size.
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changes from about 1600 mg to about 0.05 mg, td changes
from about 140 ms to about 20 ms. This means that for
stable flight, smaller insects need faster nervous systems; the
response time of a miniature insect (m ≈ 0.05 mg) needs to
be faster by about 7 times than that of the largest insect
(m ≈ 1600 mg).

C. Approximate expression for the td -mass relation

In the previous section (Sec. IV B), we have seen that td
generally decreases when m decreases. It is desirable to have
an analytical expression for td varying as a function of m.
This could be achieved if we have analytical expressions for
the eigenvalues. In a previous study performed by our group
[16], it was shown that approximate analytical expressions
for the eigenvalues could be obtained by introducing certain
appropriate simplifications. Here we use the same method to
obtain the expressions of the eigenvalues.

The characteristic equation of the system matrix A has been
given in Eq. (3) in Sec. II, which is a fourth-order algebraic
equation. From Table IV, we see that for each of the insects,
|X +

w | is much smaller than |X +
u | and that |M+

w | is much smaller
than |M+

u |. Neglecting |X +
w | and |M+

w |, Eq. (3) becomes⎡
⎢⎢⎢⎢⎢⎣

X +
u

m+ − λ+ 0
X +

q

m+ −g+

Z+
u

m+
Z+

w

m+ − λ+ Z+
q

m+ 0

M+
u

I+
y

0
M+

q

I+
y

− λ+ 0

0 0 1 0

⎤
⎥⎥⎥⎥⎥⎦ = 0, (4)

i.e., (
Z+

w

m+ − λ+
)[

− λ+3 +
(

X +
u

m+ + M+
q

I+
y

)
λ+2

+
(

X +
q M+

u

m+I+
y

− X +
u M+

q

m+I+
y

)
λ+ − g+M+

u

I+
y

]
=0. (5)

Equation (5) can be written as

−λ+3 +
(

X +
u

m+ + M+
q

I+
y

)
λ+2

+
(

X +
q M+

u

m+I+
y

− X +
u M+

q

m+I+
y

)
λ+ − g+M+

u

I+
y

= 0, (6)

and

Z+
w

m+ − λ+ = 0. (7)

That is, the fourth-order equation becomes a third-order
equation, Eq. (6), and a first-order equation, Eq. (7). The exact
expressions of the roots of Eq. (6) can be easily obtained, but
the expressions are very complex and it is not easily to see how
a parameter, for example, |M+

u |, affects the roots. By using the
expansion of binomial series (see Ref. [16]) and neglecting
small terms of higher order (the higher-order small terms are
due to the multiplication of some small derivatives), relatively

simple approximate expressions of the roots of Eq. (6) can be
obtained as

λ+
1,2 = 1

2
3

√
M+

u g+

I+
y

(1 − 2 j) ± i

√
3

2
3

√
g+M+

u

I+
y

, (8)

λ+
3 = − 3

√
g+M+

u

I+
y

(1 + j), (9)

where

j = −1

3

(
X +

u

m+ + M+
q

I+
y

)/
3

√
g+M+

u

I+
y

. (10)

The root of Eq. (7) is simply

λ+
4 = Z+

w

m+ . (11)

Values of λ+
1,2, λ+

3 , and λ+
4 computed by the above ap-

proximate expressions, Eqs. (8)–(11), are shown in Table VI,
compared with the exact values taken from Table V (the exact
values are given in parentheses in Table VI). It is seen that
the approximate values are almost equal to the corresponding
exact values, showing that Eqs. (8)–(11) are very good ap-
proximations to the eigenvalues. Note that in the real part of
λ+

1,2 in Eq. (8) (the real part represents the growth rate of the
instability), there are contributions from Mq and Xu; they are
in the expression of j, Eq. (10). They are damping derivatives:
Mq is the rotational damping of pitching rotation (rotational
damping in flapping flight has been discussed in detail by
Hedrick et al. [9]); Xu is damping of horizontal translational
motion. Since Mq and Xu are negative, j will be positive; we
see from Eq. (8) that the damping derivatives have the effect
of decreasing the growth rate of the instability; i.e., they make
instability slower.

Now, using the real part of Eq. (8), we can derive an ana-
lytical expression for td varying as a function of m as follows.
Let ξ+ be the real part of λ+

1 (or λ+
2 ) and ξ = ξ+/T = ξ+n,

and from Eq. (8) we have

ξ = 1

2
3

√
M+

u g+

I+
y

(1 − 2 j)n. (12)

Introducing g+ = gT/U , m+ = m/0.5ρUSt T , and I+
y =

Iy/0.5ρU 2St cT 2, Eq. (12) becomes

ξ = 1

2
3

√
2M+

u gρ�r2c2Rn

ml2
2

(1 − 2 j). (13)

Letting l2 and lb represent the radius of gyration of insect
mass about the y axes and the body length of the insect,
respectively, Eq. (13) can be written as

ξ = 1

2
3

√
M+

u gρ�
r2

R

(
l2
lb

lb
R

)−2( c

R

)2
3

√
R2 f

m
(1 − 2 j). (14)

In general, M+
u , �, r2

R , l2
lb

, lb
R , and c

R do not vary greatly
among the insects and we can assume that

ξ ∝ 3

√
R2 f

m
(1 − 2 j). (15)

054403-6



DYNAMIC STABILITY IN HOVERING FLIGHT OF … PHYSICAL REVIEW E 105, 054403 (2022)

TABLE VI. Eigenvalues computed by approximate expressions (the exact values are given in parentheses).

Mode 1 Mode 2 Mode 3
Species λ1, λ2 (s–1) λ3 (s–1) λ4 (s–1)

Manduca sexta 1 0.17 ± 0.40i (0.17 ± 0.40i) −0.53 (−0.53) −0.09 (−0.09)
Manduca sexta 2 0.25 ± 0.59i (0.26 ± 0.57i) −0.72 (−0.73) −0.094 (−0.095)
Bombus terrestris 1 0.045 ± 0.13i (0.042 ± 0.13i) −0.20 (−0.19) −0.012 (−0.011)
Bombus terrestris 2 0.06 ± 0.12i (0.06 ± 0.12i) −0.15 (−0.15) −0.02 (−0.02)
Eristalis tenax 0.047 ± 0.094i (0.047 ± 0.093i) −0.11 (−0.11) −0.015 (−0.015)
Episyrphus balteatus 0.074 ± 0.14i (0.076 ± 0.14i) −0.17 (−0.17) −0.020 (−0.020)
Tipula obsolete 0.33 ± 0.73i (0.36 ± 0.72i) −0.87 (−0.88) −0.11 (−0.11)
Cyrtodiopsis dalmanni 0.05 ± 0.11i (0.05 ± 0.11i) −0.13 (−0.13) −0.02 (−0.02)
Drosophila virilis 0.082 ± 0.19i (0.081 ± 0.19i) −0.24 (−0.24) −0.027 (−0.27)
Aedes aegypti (female) 0.023 ± 0.045i (0.023 ± 0.045i) −0.54 (−0.55) −0.008 (−0.008)
Drosophila melanogaster 0.067 ± 0.14i (0.067 ± 0.14i) −0.18 (−0.18) −0.024 (−0.024)
Aedes aegypti (male) 0.018 ± 0.036i (0.018 ± 0.034i) −0.044 (−0.42) −0.007 (−0.007)
Liriomyza sativae 0.11 ± 0.24i (0.11 ± 0.24i) −0.30 (−0.30) −0.014 (−0.014)
Anbremia sp. 0.12 ± 0.28i (0.10 ± 0.31i) −0.46 (−0.44) −0.13 (−0.10)

It has been found that for many insects, R is proportional
to m0.36 and n is proportional to m0.24 [1]; therefore Eq. (15)
can be written as

ξ ∝ m0.17(1 − 2 j). (16)

The expression of j was given in Eq. (10). It can be written
as

j = −1

3

(
2X +

u ρ�r2cR

m
+ 4M+

q ρ�2r2
2c2R

ml2
2

)/

3

√
2M+

u gρ�r2c2R

ml2
2 f 2

= −
[

2

3
3

√
X +

u
3ρ2�2

2M+
u g

(
r2

R

)2 c

R

(
l2
lb

lb
R

)2

+ 4

3
3

√
M+

q
3ρ2�5

2M+
u g

(
r2

R

)5( c

R

)4( l2
lb

lb
R

)−4]
3

√
R7 f 2

m2
. (17)

Again assuming X +
u , M+

u , �, r2
R , l2

lb
, lb

R , and c
R do not change

greatly among the insects, Eq. (17) becomes

j ∝ 3

√
R7 f 2

m2
; (18)

i.e.,

j ∝ m0.01. (19)

With Eq. (19), Eq. (16) can be written as

ξ ∝ m0.17(1 − bm0.01), (20)

where b is a constant. Since m0.01 varies with m very slowly,
bm0.01 can be taken as a constant and Eq. (20) can be
approximated as

ξ ∝ m0.17. (21)

Thus td (= 0.693/ξ ) can be written as

td = am0.17, (22)

where a is a constant. Using the data in Fig. 3 and applying
the least squares method, a is determined as 38.37. The value
of td computed using Eq. (22) is plotted in Fig. 4, compared
with the data from Fig. 3. It is seen that Eq. (22) gives a good
prediction on td varying as a function of m.

Equation (22) shows that td is proportional to the 0.17
power of the insect mass (m), which means that as the mass
of the insect decreases, td will decrease (i.e., the instability
becomes fast). This indicates that smaller insects need shorter
reaction times than larger insects. Data on insect reaction time
that could be found in the existing literature are limited to only
three species of insects ( fruit fly [24] and honey bee and stalk-
eyed fly [35]). The reaction time of honey bee (m ≈ 102 mg),
stalk-eyed fly (m ≈ 7 mg), and fruit fly (m ≈ 0.96 mg) have
been measured to be 20.3, 16.5, and 13 ms, respectively. These
data show that smaller insects have shorter reaction times.
This provides some support to our finding.

V. CONCLUSIONS

In the present study, the longitudinal flight dynamic sta-
bility of two hovering miniature insects was computed. With
the computed stability properties of the miniature insects and
those of large insects from previous works, we studied the
effects of insect size on the longitudinal flight dynamic sta-

FIG. 4. The relationship between td and m.
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TABLE VII. Parameters of two miniature insects. m: insect mass; h1: distance between the center of mass and the middle of wing roots;
h1: distance between the middle of wing roots and the body axis; Iy: moment of inertia about the y axis.

Species m (mg) h1 (mm) h2 (mm) Iy (kg m2)

Vegetable leaf miner (Liriomyza sativae) 0.25 0.30 0.18 4.85 × 10–14

Gall midge (Anbremia sp.) 0.05 0.38 0.15 7.29 × 10–15

bility of insects in the full range of insect sizes. We have
the following results: Although the insects considered have a
30 000-fold difference in mass, their modal structure of flight
stability is the same: There are an unstable oscillatory mode,
a stable fast subsidence mode, and a stable slow subsidence
mode; because of the unstable mode, the flight is unstable. An
approximate analytical expression on the growth rate of the
unstable mode as a function of insect mass (m) was derived. It
shows that the time to double the initial values of disturbances
(td ) is proportional to the 0.17 power of the insect mass (m).
That is, as m becomes smaller, td decreases (i.e., the instabil-
ity becomes faster). This means that miniature insects need
faster nervous systems to control the instability than larger
insects. For example, the response time (represented by td )
of a miniature insect, gall midge (m ≈ 0.05 mg), needs to be
faster by about 7 times than that of a larger insect, hawk moth
(m ≈ 1600 mg).
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APPENDIX A: MORPHOLOGICAL PARAMETERS

In Eqs. (1) and (2), the insect mass and the moments of
inertia are required. The mass of the vegetable leaf miner was
measured and is available [30]. The mass of the miniature
insect gall midge was not measured; it is estimated using
the computed mean vertical force of the hovering insect,
m = F̄V /g, where F̄V is the mean vertical force computed
by our group [29]. The measured mass of the vegetable leaf
miner and the estimated mass of the gall midge are listed in
Table VII. The moments and products of inertia were esti-
mated using a method given by Ellington [2] and Zhang and
Sun [18]. In the method, pictures of the side and dorsal vertical
views of the body are obtained and the cross section of the

body is taken as an ellipse, giving the body shape; a uniform
density is assumed for the body. With these assumptions, the
center of mass and the moments and products of inertia can be
estimated. The results are also listed in Table VII.

APPENDIX B: CALCULATION OF THE STABILITY
DERIVATIVES

In addition to the mass and the moments of inertia, the
stability derivatives are also required in Eqs. (1) and (2). The
detailed process of calculating the derivatives have appeared
in several papers of our group (e.g., Refs. [8,18]). Only a brief
description is given here. The wing flapping kinematics at
hovering (equilibrium) flight is obtained from Refs. [29,30];
so is the wing geometry.

In determining the stability derivatives, the computational
fluid dynamics method is used to compute the forces and mo-
ments; the method used to solve the Navier-Stokes equations
is the same as that in Sun and Tang [36]. The hovering flight is
taken as the reference flight in the calculation of the stability
derivatives. A stability derivative is a partial derivative; e.g.,
Xu denotes the rate of change of X when only u is changed. In
order to calculate the stability derivatives, six consecutive flow
cases in which u, w, and q are varied separately are solved and
the corresponding aerodynamic forces and moments are ob-
tained. As an example, a u series means that u is varied while
w and q are fixed at the reference values (i.e., w = q = 0);
other series are similar to the u series.

Let �X +, �Z+, etc., denote the differences between X +,
Z+, etc., and their corresponding values at hovering flight,
respectively. The u-series, w-series, and q-series results of
�X +, �Z+, and �M+ are plotted. These curves, representing
the variation of the aerodynamic forces and moments with
each of the u, w, and q variables, are fitted and then the
stability derivatives are estimated by the local tangent at the
equilibrium point of the fitted curves.
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