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Emerging spatiotemporal patterns in cyclic predator-prey systems with habitats
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Three-species cyclic predator-prey systems are known to establish spiral waves that allow species to coexist.
In this study, we analyze a structured heterogeneous system which gives one species an advantage to escape
predation in an area that we refer to as a habitat and study the effect on species coexistence and emerging
spatiotemporal patterns. Counterintuitively, the predator of the advantaged species emerges as dominant species
with the highest average density inside the habitat. The species given the advantage in the form of an escape rate
has the lowest average density until some threshold value for the escape rate is exceeded, after which the density
of the species with the advantage overtakes that of its prey. Numerical analysis of the spatial density of each
species as well as of the spatial two-point correlation function for both inside and outside the habitats allow a
detailed quantitative discussion. Our analysis is extended to a six-species game that exhibits spontaneous spiral
waves, which displays similar but more complicated results.

DOI: 10.1103/PhysRevE.105.054401

I. INTRODUCTION

Systems far from equilibrium are often characterized by
the spontaneous formation of spatiotemporal patterns [1,2].
These patterns are found at every lengthscale, from the very
large (galaxy superclusters [3] and the Sloan Great Wall [4])
to the very small (developmental biology [5] and bacterial
colonies [6,7]). Due to their omnipresence, the formation and
persistence of patterns is of central importance for statistical
physicists interested in nonequilibrium systems. In this con-
text, a special place is taken by population dynamics models,
due to the fact that the stability and longevity of ecological
structures [8–14] has an intimate relationship with persisting
space-time patterns. Although the study of population dy-
namics models is driven by the desire to better understand
ecosystems, biodiversity, and species extinction, these and
related models also show up in contexts like biochemical
reactions [15], lasers [16], economy [17], epidemiology [18],
genetics [19], and social systems [20].

The spontaneous formation of spiral waves, generated for
example in a three-species system with cyclic interactions
[21], has been shown to favor biodiversity and enhance the sta-
bility of an ecosystem. These spirals can be broken up through
high mobility rates, which triggers extinction events and the
loss of biodiversity [22–26]. Very rich space-time patterns,
some in the form of spirals involving numerous species, result
from complicated cyclic interaction schemes with more than
three species [27–57]. Most of these studies assume spatially
homogeneous systems where the rates are species indepen-
dent and the same throughout the system. As a result, vital
aspects of real-world ecologies, such as changing environ-
ments, species fitness, and evolutionary changes, are not taken
into account. Consequently, these oversimplifications strongly
restrict the lessons that can be learned from these setups when
it comes to the stability of spatiotemporal patterns and the
ensuing persistence of species coexistence and biodiversity.

In this paper we investigate the transient and steady-state
properties of modified three-species (the May-Leonard model
[21]) and six-species systems [40] that yield in the standard
setup of a homogeneous environment a stable ecosystem
due to the persistence of spiral patterns. We consider a
structured heterogeneous environment where regions with
species-independent interactions alternate with regions where
one of the species has an enhanced probability to escape its
predators. Regions that provide this advantage are viewed as
the species’ habitats. The same setup was used in Ref. [57] to
study extinction probabilities in small heterogeneous systems.
In the present study we focus on systems so large that no
extinction events happen during our numerical simulations.
This allows us to investigate resulting complex space-time
patterns, with a focus on how the boundary between the dif-
ferent region types influences the long-time behavior in the
different regions. An interesting, and rather counterintuitive,
finding is that the enhanced escape probability provided to one
species turns out to be most beneficial to one of its predators.
This is independent of the escape probability, even so the de-
tails regarding the ranking of the species (as measured through
the local average population density) depend on the specific
value of that probability. As part of our quantitative analysis
we also compute locally averaged two-point correlation func-
tions and determine related correlation lengths. Investigation
of early time behavior after preparation of the system in a
disordered initial state provides insides into how the long-time
(“steady-state”) properties come to be.

The paper is organized in the following way. In the next
section we discuss how we set up our spatially inhomoge-
neous system for a three- and a six-species case that show
spiral waves in a homogeneous environment. We also intro-
duce the quantities we use for our analysis. In Sec. III we have
a close look at the three-species system, which is followed by
a similar discussion for the six-species model in Sec. IV. We
discuss our findings in Sec. V.
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FIG. 1. Snapshots of the homogeneous systems with (left) three and (right) six species characterized by the emergence of spirals. In the
notation discussed in the main text, these are the (3,1) and (6,4) systems. The linear size of the systems is L = 1000 and the snapshots have
been taken at t = 10 000 when starting from a fully disordered initial state.

II. MODEL AND QUANTITIES

We consider in the following nonconserved cyclic three-
species [21,24–26] and six-species [40,49,51] models that
display the spontaneous formation of spirals where every
spiral arm is occupied by one species. In cyclic games the
notation (n, r) [40] is sometimes used where n is the number
of species and r is the number of prey that each species
attacks, i.e., species i attacks species i + 1, . . . , i + r (modulo
n). In this notation our two games are the (3,1) and (6,4)
games. Often, these interaction schemes are put on a homoge-
neous lattice with at most one individual on each lattice site.
Mobility is allowed in the form of diffusion, i.e., jumping to
neighboring empty sites, and/or of exchanges of individuals
sitting on neighboring lattice sites. All these possibilities can
be cast in the following set of chemical reactions involving
neighboring sites:

si + s j
β−→ si + ∅, (1)

si + ∅ β−→ si + si, (2)

si + s j
1−β−−→ s j + si, (3)

si + ∅ 1−β−−→ ∅ + si, (4)

where si is an individual of species i, j is a prey of species
i and ∅ designates an unoccupied lattice site. For every
time step, on average, every site is selected once to undergo
an interaction which could be predation (1), reproduction
(2), swapping (3), or diffusion (4). We choose to have the
same rate β for predation and reproduction events, whereas
swapping and diffusion, two manifestations of the species’
mobility, take place with rate 1 − β. In our implementation
we select randomly a site and then select randomly one of the
four neighboring sites with the same probability. If species i
and j are preying on each other, as it may happen for the (6,4)
game, then the individual occupying the site that is selected
first is considered to be the predator.

The traditional setup just described has been the focus of a
range of studies, especially for the (3,1) model which is better
known as the May-Leonard model. We show in Fig. 1 for each
model a typical snapshot on a square lattice with linear extent
L = 1000 and with β = 0.75, the value used in the following.
As already mentioned, the interaction scheme yields rotating
spirals where each spiral arm is formed by individuals of one
species, with the subsequent spiral arm being formed by the
sole species that is not a prey of the species that forms the
previous spiral arm.

The focus of the present study is to gain a better under-
standing of the impact spatial heterogeneity has on species
coexistence and spatial pattern formation. For this we overlay
our square system with a 4 × 4 checkerboard (so that each
of the 16 squares is composed of L/4 × L/4 sites) formed
by two types of environments: habitats, where an advantage
is given to one species (species 1) in the form of a nonzero
probability to escape attacks from its predator(s), and neutral
regions, where the different rates are species independent.
This is realized by changing inside the habitat the reaction
(1) to

si + s1
β−α−−→ si + ∅,

where for the (3,1) game i = 3, whereas for the (6,4) game i
can be 6, 5, 4, or 3. For α = 0 we recover the homogeneous
system, whereas for α = β a member of species 1 will always
escape when attacked inside its habitat.

Small systems with cyclic interaction schemes on a
checkerboard of habitats and neutral regions were simulated
in Ref. [57] with the aim of investigating species extinction in
heterogeneous systems. The main finding of that study, which
was restricted to small values α < 0.2, has been that with
increasing α the system transitions from stable coexistence
to unstable coexistence. Here we consider systems of sizes so
large that species extinction is not observed in our simulations.
We also focus systematically on large values of α for which
remarkable changes to the space-time patterns take place. As

054401-2



EMERGING SPATIOTEMPORAL PATTERNS IN CYCLIC … PHYSICAL REVIEW E 105, 054401 (2022)

FIG. 2. Snapshots of the three-species system with habitats, with on the left α = 0.60 and on the right α = 0.75. The superimposed
gridlines show the checkerboard arrangements of the different regions, with the patch in the top left corner being a habitat that provides an
advantage to species 1. Species 1 is shown in red, 2 in green, and 3 in blue. The linear size of the systems is L = 1000 and the snapshots have
been taken at t = 10 000 time steps after starting from a fully disordered initial state.

we will discuss in the following, after an intriguing and very
dynamic early time regime, our systems settle into long-lived
states characterized by time-independent quantities.

A related setup was considered in Ref. [58] where symmet-
ric and asymmetric May-Leonard systems were connected via
diffusive coupling. As a result of this coupling, coexistence is
induced in the asymmetric subsystem through the stabilization
of spirals.

At the center of our analysis are various species and empty
site densities. Starting from an initially disordered state [each
lattice site is occupied with the probability 1/(N + 1) by
each of the species or is left empty with the same probabil-
ity 1/(N + 1)], we follow the time evolution of the system
through the measurement of ensemble-averaged densities of
each species and empty sites both inside and outside of the
habitats. With the occupation number ni(x, t ), which takes on
the value 1 if at time t a member from species i occupies the
site x and 0 otherwise, the time-dependent densities averaged
over habitats or nonhabitat regions are given by the expres-
sions

ρ i
I (t ) =

〈
1

NI

∑
x∈I

ni(x, t )

〉
(5)

and

ρ i
O(t ) =

〈
1

NO

∑
x∈O

ni(x, t )

〉
, (6)

where NI , respectively, NO, is the number of sites inside
respectively outside habitats, whereas 〈· · · 〉 indicates an av-
erage over an ensemble of independent runs with different
realizations of the noise. In the steady state, which is typically
reached within a few thousand time steps, with the notorious
exception of the limiting case α = β with a much longer
relaxation time, we compute the ensemble- and time-averaged
species densities ρ i

s(d ) as a function of the distance d from the
center of a habitat along a line connecting this center to the

center of a neighboring region, i.e., the line crosses the habitat
border at d = L/8 (d = 125 when L = 1000). As we will
see, the spatial inhomogeneities introduced by the habitats
manifest themselves through complicated spatial dependen-
cies of the species densities close to the habitat boundary.
For that reason we perform spatial averages in the central
region C of a habitat or nonhabitat region (a square patch of
L/10 × L/10 sites around the four central sites of a region)
where the time-dependent densities are found to be uniform or
to change very slowly with position. These locally averaged
quantities, ρ i

C;I (t ) and ρ i
C;O(t ), are given by an expression

analog to Eqs. (5) and (6) but with the sums extending to only
the central sites. With these densities we can compute various
“bulk” space- and time-dependent correlation functions and
derive time-dependent correlation lengths.

III. SYSTEMS WITH THREE SPECIES

Figure 2 provides a first impression of the changes that
result from adding to a May-Leonard system habitats where
one of the species (species 1 in our study) has an enhanced
probability to escape its predator. The snapshot on the left
is for α = 0.6. While in the habitats the cyclic predator-prey
relationship is maintained, an uneven distribution of species
is observed with species 3 (blue) dominating, whereas species
2 (green) is suppressed. This is an indication of the nonlinear
character of the system where a higher probability of escaping
a predator may result ultimately in an increase of the number
of predators in the habitat. Subtle changes take place close
to the habitat boundaries as well as in the regions outside
of the habitats, as we will see in the following quantitative
investigation. The right panel of Fig. 2 shows the limiting
case α = β = 0.75 where the predator-prey relationship be-
tween species 3 and 1 is replaced by a neutral and symbiotic
relationship as species 3 takes advantage of the fact that its
new partner is preying on species 2, the predator of species
3. As a result species 2 is practically eliminated inside the
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FIG. 3. The steady-state species and empty site densities along a line connecting the center of a habitat with the center of a adjacent
region. Simulated are (3,1) games with different values of α for species 1: (a) α = 0.15, (b) α = 0.45, and (c) α = 0.75. For α = 0.15
and α = 0.45 the steady state is accessed after less than 10 000 time steps, and for α = 0.75 one needs to wait for 30 000 time steps before
stationarity is reached. The data shown result from averaging over 1000 independent runs. The vertical dashed line indicates the boundary of the
habitat.

habitats, with the exception of close to the boundaries where
a more complicated behavior emerges due to exchanges with
the outside regions.

In order to develop an understanding of the spatiotemporal
behavior emerging in this system, we first discuss the steady
state as a function of α before investigating how the system,
initially prepared in a disordered initial state, evolves to this
long-lived state (as we do not see during our simulations any
changes in the properties of the system once this state is
reached, we call this the “steady state” for simplicity, with
the understanding that for the models studied here the final
configuration is that of fixation where a single species fills the
system).

As illustrated in Fig. 3, we find three different scenarios,
depending on the value of α. It is always species 3, the preda-
tor of species 1 with the “advantage” within the habitats, that
ends up being the dominating species in the habitats. There

exists a critical value αc = 0.40(2) of the escape probability at
which the preponderance of the species changes: For α < αc,
species 1 has the lowest density, whereas for α > αc it is
species 2 that is most suppressed. In the limiting case α = β,
shown in Fig. 3(c), the alliance of the neutral species 1 and
3 does not allow species 2 to maintain a sizable presence
inside the habitats. The resulting absence of predation events
inside the habitats results in the absence of empty sites inside
habitats, with the exception of a narrow region close to the
boundary where the diffusion of individuals of species 2 into
the habitat generates predation events.

Inspection of Fig. 3 reveals a broader transition region on
both sides of the habitat boundary where species densities
exhibit dramatic changes in order to connect the steady-state
densities inside and outside of a habitat. Increasing the value
of α results in increasing deviations from the steady-state
densities of the symmetric system. Consequently, changes
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FIG. 4. Normalized “bulk” two-point correlation functions for
the (3,1) game with α = 0.45 for species 1 inside the habitats.
These correlation functions are species dependent inside habitats
but species independent outside (magenta dashed line). The shown
data, measured once the steady state has been reached (typically after
10 000 time steps), result from both a time average (1000 time steps)
and an ensemble average (100 independent runs). The inset shows
the steady-state correlation lengths inside and outside (magenta filled
circles) of the habitats as a function of α. The correlation length is
defined as the distance at which the normalized two-point correlation
function takes on the value 0.1 (indicated by the horizontal black
dashed line in the main figure).

inside the transition region are more pronounced for larger α.
Remarkably, the cyclic interaction scheme combined with the
nonvanishing probability of escape for individuals of species
1 can result in nonmonotonic changes close to the habitat
boundary.

Away from the boundary region, spatial homogeneity al-
lows us to compute in the steady state the spatial correlation

Ci
I (r) =

〈
1

NC;I

∑
x∈C

ni(x)ni(x + r)

〉
− (

ρ i
C;I

)2
(7)

close to the center of a habitat (the same quantity can of
course also be computed inside nonhabitat regions). In Eq. (7)
the spatial average is over the central region C of the habitat,
NC;I is the number of sites in that region, and ρ i

C;I is the
steady-state density of species i in that central region.

Figure 4 shows the normalized correlation functions for the
different species inside habitats with α = 0.45 and compares
them with the behavior in the region where interactions are
species independent (dashed magenta line). Inside the habitat
the slower decays as a function of separation indicate the for-
mation of larger correlated regions. Although the correlation
function for species 3 decays the slowest, the corresponding
functions for the other two species display for this value of
α the same behavior at large distances, but differences are
observed for small distances. A correlation length can be

defined as the distance at which C(r)/C(0) crosses a threshold
value C0 (we choose C0 = 0.1 in the following). The habitat
correlation lengths increase with α and always exceed the
length obtained outside of the habitats, see the inset of Fig. 4.
The result for the correlation lengths reinforces the findings
of Fig. 3: Although the correlation length for species 3 is the
largest for every α > 0, the curves for species 1 and 2 cross
around α = 0.45, close to the value at which the density of
species 1 begins to exceed that of species 2, see Fig. 3. No
dependence of the correlation lengths on α is observed outside
of the habitats.

Additional insights emerge from monitoring the time de-
pendence of the different concentrations when starting from
a fully disordered state, see Figs. 5 and 6. As already men-
tioned, it is always species 3, the predator of the advantaged
species, that ends up dominating the habitat. While at first
glance this seems counterintuitive, it is a direct consequence
of the earliest time regime where the short-term advantage of
species 1 results in suppression of species 2 followed by a
surge of species 3, see the insets in Figs. 5(a) and 5(c). The
cyclic interaction scheme then yields oscillations which are
damped away on approach to the steady state. For not too large
values of α, the damped oscillations have an exponentially
decaying envelop, with the typical time constant τ decreasing
when α is increased. For example, for α = 0.15 one finds that
τ = 25.4, whereas for α = 0.30 one has that τ = 14.7. This
is accompanied by a slight increase of the oscillation period
T , from T = 67 for α = 0.15 to T = 71 for α = 0.30. It is
worth noting that the large population oscillations inside the
habitats at early times also induce small oscillations of species
densities in the outside region.

In the limiting case α = β, shown in Fig. 6, no oscillatory
behavior is observed. Instead, the fact that species 1 can evade
any attack from species 3 yields an immediate suppression
of its prey, species 2, see inset of Fig. 6. As a result, after
only a few time steps species 1 fills almost 80% of the sites
inside the habitat. This initial quick change inside the habitats
is then followed by a regime of slow decay of the species 1
population and, concomitantly, a slow increase of the species
3 population until the steady state is reached. This slow
change is a consequence of individuals of species 2 crossing
into the habitat from the outside. Due to the predator-prey
relationships with the other species, this provokes a flux of
individuals from species 3 away from the boundary, whereas
individuals from species 1 are migrating toward and across the
boundary.

IV. SYSTEMS WITH SIX SPECIES

The emergence of spiral waves and the subsequent sta-
bilization of species coexistence are not restricted to the
three-species system described until now but are also encoun-
tered in situations with more complicated interactions. As the
snapshot in Fig. 1 shows, spirals in the (6,4) system involve
all six species that segregate in separate spiral arms. In order
to understand whether lessons learned from the three-species
system are applicable to more general situations, we discuss
in the following the properties of the (6,4) model on the same
checkerboard of habitats, where one species has an enhanced
chance to escape unharmed an attack, and outside regions
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FIG. 5. Spatially averaged time-dependent empty site and species densities in (3,1) games when starting from a fully disordered initial
state. The region used for the average is either inside habitats (left column) or outside habitats (right column). The value of α is 0.15 in (a) and
(b), whereas it is 0.45 in (c) and (d). The predation rate is β = 0.75 everywhere. The insets in panels (a) and (c) show the first 100 time steps
and illustrate the suppression of species 2 and the resulting surge of species 3 at the very early stages of the temporal evolution of the system.
The data result from averaging over 50 runs for a lattice of 1000 × 1000 sites and a 4 × 4 checkerboard structure of habitats and nonhabitat
regions.

where all interspecies interactions are the same. The emphasis
hereby is to identify commonalities with the three-species
case discussed above.

Figure 7 shows typical configurations for large values of
α were the effects coming from the presence of habitats are
readily apparent. For the largest possible value α = β = 0.75
(right panel), at which a member of species 1 survives all
attacks from their predators, we end up deep within a habitat
with a neutral coexistence of species 1 and species 6, the only
predator species of species 1 that is not at the same time a prey
of species 1. Individuals from other species are leaking into
habitats from the outside, but due to the combined action of
the partnering species 1 and 6, their demise is quick and they
are not able to enter deep into a habitat. In the regions outside
of the habitats a tendency to form traveling wave like patterns
can be observed. For the smaller value α = 0.6 (left panel) the
habitats are dominated by three species (species 1, 5, and 6),

which strongly suppresses the remaining species. This snap-
shot already illustrates that more complicated scenarios show
up when considering systems with more than three species
that form spiral waves.

For the three cases shown in Fig. 8, the limiting case
α = β = 0.75 is the simplest and the best aligned with the
corresponding three-species system shown in Fig. 3(c). Also
for the (6,4) system the fact that species 1 always evades
its predators inside a habitat provides a major advantage to
the only species not preyed on by species 1. As a result,
species 6 has the highest steady-state densities, and all other
species are suppressed, with the exception close to the habitat
boundary. Also in agreement with the three-species case is the
observation that small values of α are in fact detrimental to
species 1, resulting in the lowest steady-state species densities
inside habitats, see Fig. 8(a). Due to the complex interaction
scheme of the (6,4) system and the resulting nonlinear effects,
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FIG. 6. Average time-dependent empty site and species densities in the (3,1) game with α = β = 0.75. The initial state is fully disordered.
(a) The time evolution of the densities spatially averaged inside the habitats, with the very first few time steps highlighted in the inset, whereas
(b) shows the time evolution of the densities spatially averaged outside of the habitats. The data result from averaging over 50 runs for a lattice
of 1000 × 1000 sites and a 4 × 4 checkerboard structure of habitats and nonhabitats.

it is difficult to predict the most and the least successful
species for intermediate values of α, see Fig. 8(c). Some
simple statements are still possible (for example, there is a
value of α at which species 2 takes over from species 1 the
role of least successful species), but a comprehensive picture
is difficult to establish. Finally, we note that for intermediate
values of α the impact of the habitat boundaries is felt for
the (6,4) system at rather large distances, and this both inside
and outside of the habitats [compare Fig. 3(b) and Fig. 8(b)].
This provides another illustration of the more complex behav-
ior observed when increasing the number of species involved
in the formation of spirals.

As for the (3,1) system, the early temporal evolution,
shown in Fig. 9, is dominated by oscillations of the species

densities, with the first density maximum being for the ad-
vantaged species 1, followed by density maxima for species
6, then 5, and so on. The main differences between the cases
shown in Fig. 9 is that species 2 is from the get go strongly
suppressed for larger values of α, due to the initial explosive
increase of its predator species 1, 6, 5, and 4. As a result,
species 2 never recovers to an extent needed to become at any
moment in time the dominating species, see Fig. 9(b). As a
result for α = 0.45 the density oscillations die out quickly,
whereas for the smaller values of α they can continue for
thousands of time steps. Outside of the habitats, oscillations
are also established and species end up with different average
concentrations. This is similar to what we discussed previ-
ously for the three-species case.

FIG. 7. Snapshots of the six-species system with habitat and escape rates α = 0.60 (left) and α = 0.75 (right). The superimposed gridlines
show the checkerboard arrangements of the habitat, with the patch in the top left corner being a habitat that provides an advantage to species
1 (in red). The linear size of the systems is L = 1000 and the snapshots have been taken at t = 10 000 when starting from a fully disordered
initial state.
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FIG. 8. The steady-state species and empty site densities along a line connecting the center of a habitat with the center of a adjacent
nonhabit region for (6,4) games with different values of α for species 1: (a) α = 0.15, (b) α = 0.45, and (c) α = 0.75. For α = 0.15 and
α = 0.45 the steady state is accessed after fewer than 10 000 time steps, whereas for α = 0.75 one needs to wait for 30 000 time steps before
stationarity is reached. The data shown result from averaging over 10 000 independent runs for α = 0.15 and α = 0.45, whereas 1000 runs
have been used for α = 0.75. The vertical dashed line indicates the boundary of the habitat.

V. DISCUSSION

The study of population dynamics models allows insights
into the factors that stabilize an ecology and help maintaining
biodiversity. In this context it was found that stable space-time
patterns in the form of spiral waves favor species coexistence.
Examples can be found in systems with cyclic predator-prey
interactions between species, as for example in the semi-
nal May-Leonard model. Changes like enhanced mobility or
species-dependent predation rates impede the formation of
spirals and result in species extinction and loss of biodiversity.

In our investigation we considered structured spatial het-
erogeneities in the form of habitats that locally provide one
of the species with an advantage. In this spatial setting we
perform numerical simulations of two systems with cyclic
interactions (one with three species and one with six species)
that in the case of species-independent rates display spi-
rals and therefore stable species coexistence. As shown in

Ref. [57] for small systems, replacing a spatially homoge-
neous system with structured spatial heterogeneities results in
a transition from stable coexistence to unstable coexistence.
Taking a different point of view, it was highlighted in Ref. [58]
that diffusively coupling a system with biased predation rates
(left alone, this system rapidly yields species extinction) to a
system with homogeneous rates stabilizes space-time patterns
also in the first system.

For our study we used large systems in order to avoid
extinction events during our simulations The observed
“steady-state” space-time patterns are complex and result in
a hierarchy of different species (from the highest to the lowest
species density) which is absent in a spatially homogeneous
system. For both the three- and six-species case we observe
that the species with an advantage inside the habitats is in
fact not the most successful one, and it is always one if its
predator species that has the highest species density. Espe-
cially for the three-species system, the predator of the species
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FIG. 9. Spatially averaged time-dependent empty site and species densities in (6,4) games when starting from a fully disordered initial
state. The region used for the average is either inside habitats (left column) or outside habitats (right column). The value of α is 0.15 in (a) and
(b), whereas it is 0.45 in (c) and (d). The predation rate is β = 0.75 everywhere. The data result from averaging over 50 runs for a lattice of
1000 × 1000 sites and a 4 × 4 checkerboard structure of habitats and nonhabitat regions.

with the advantage is always the most successful, which is a
manifestation of the “law of the weakest” observed previously
in models with cyclic interactions [59]. On increasing the
escape probability, transitions can be observed that alter the
hierarchies of the species.

Our simulations allow us to investigate both the long-
and the short-time behaviors. Starting from an initially dis-
ordered state, the short-time behavior is characterized by
violent changes to the species densities. For the small sys-
tems, it is these violent changes at early times that result
in species extinction [57]. Once this early-time regime has
passed, the system settles into damped oscillations, followed
by the “steady-state” regime with time-independent species
densities. Interestingly, the strong and rapid changes inside
the habitats also yield corresponding changes (albeit of a less
violent nature) in the outside regions.

Our study highlights the effects introduced by bound-
aries separating regions characterized by different values of
interaction rates (see also Ref. [60] for a discussion of

boundary effects in a lattice Lotka-Volterra model). These
boundaries induce in their vicinity complex and nonmono-
toneous changes of the species densities. In some cases this
boundary region is extended, and inside the habitats the
species densities are position dependent even far from the
boundaries. For the cyclic systems investigated here, the cou-
pling of spatial regions with different predation rates yields
many nontrivial effects. It will be worth checking whether also
for other interaction schemes boundaries separating regions
with different sets of rates have a corresponding impact on the
short- and long-time properties of the system.
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