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We study an asymmetric version of the threshold model of binary decision making with anticonformity
under an asynchronous update mode that mimics continuous time. We analyze this model on a complete graph
using three different approaches: the mean-field approximation, Monte Carlo simulation, and the Markov chain
approach. The latter approach yields analytical results for arbitrarily small systems, in contrast to the mean-field
approach, which is strictly correct only for an infinite system. We show that, for sufficiently large systems, all
three approaches produce the same results, as expected. We consider two cases: (1) homogeneous, in which
all agents have the same tolerance threshold, and (2) heterogeneous, in which thresholds are given by a beta
distribution parametrized by two positive shape parameters α and β. The heterogeneous case can be treated as a
generalized model that reduces to a homogeneous model in special cases. We show that particularly interesting
behaviors, including social hysteresis and critical mass reported in innovation diffusion, arise only for values of
α and β that yield the shape of the distribution observed in reality.
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I. INTRODUCTION

Within the broad class of two-state dynamics [1], threshold
models are particularly useful for describing various social
and economic phenomena [2–4]. As in other binary-state
opinion dynamics [5], the threshold model describes the social
influence in decision making for the choice between precisely
two alternatives, often denoted by 1 (agree, adopt, be active,
etc.) and 0 (disagree, refuse, be inactive, etc.). Although a
binary decision framework seems to be oversimplified, it is
relevant for surprisingly many complex problems [3].

In the original threshold models of collective behavior pro-
posed by Schelling [6] and Granovetter [2], an agent takes
action 1 if the proportion of his neighbors in state 1 ex-
ceeds some threshold, otherwise action 0 is taken. It means
that an agent in state 1 may return to state 0, because not
enough neighbors are active. On the other hand, in many
other threshold models, the transition from state 1 to state 0 is
forbidden [3,7,8].

Here, we will use the original formulation, in which a
transition from 1 to 0 is possible, as in [2,9,10], but addi-
tionally in the presence of anticonformity. Such a model has
been already studied from a mathematical point of view under
the synchronous update mode [10], considering a complete
network or a random neighborhood. The study focused on
finding absorbing classes, cycles, etc. In this paper, we inves-
tigate the same model but under random sequential updating
(asynchronous updating), which mimics continuous time, and
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restricting to the complete network. Quick analysis shows that
the two models behave very differently. Under the complete
network assumption, the synchronous updating is a determin-
istic model and causes the appearance of cycling phenomena,
in a way which is very dependent on the parameters chosen. In
contrast, asynchronous updating is probabilistic and prevents
the appearance of cycles. We show that it behaves similarly to
a random-walk process. The appropriate tools in this situation
are the phase transitions and phase diagrams under the mean-
field approximation, which are typical for statistical physics
of opinion formation [11–15], and also the Markov chain
approach. It should be noted that phase transition diagrams
cannot be used in the case of cycling, as only steady states can
be studied.

We study the model on a complete graph since in this case
the mean-field method allows us to obtain rigorous results.
Independently, we conducted Monte Carlo simulations to val-
idate the theoretical approach. Finally, we present a Markov
chain approach, which allows us not only to obtain results
for arbitrary small systems but also to derive the stationary
distribution of visited states.

II. MODEL

We consider a society of n agents placed at the vertices of
an arbitrary graph G = (N, E ), where N = {1, . . . , n} is a set
of vertices (agents) and E is the set of undirected edges. Each
agent i has a set of neighbors Ki = { j ∈ N : {i, j} ∈ E}, and
the cardinality of this set |Ki| = ki is the degree of agent i.
Here we assume that each agent belongs to its own neigh-
borhood to avoid the unrealistic effect that the agent does
not consider its own state at all. However, this assumption
is only relevant when the neighborhood is small, which is
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obviously not the case for an infinite complete graph. As in
many other models, an agent can be in one of two alternative
states: 1 (agree, adopt, be active, etc.) or 0 (disagree, refuse,
be inactive, etc.). Following [10], we use the term “active”
for agents in state 1, and “inactive” for agents in state 0, and
denote by ai(t ) the state (action) taken by agent i at time t .

We consider two types of social response, anticonformity
and conformity, which occur with complementary probabil-
ities p and 1 − p respectively. In both cases, an agent can
change its state if the ratio of active neighbors is above its
tolerance threshold ri ∈ [0, 1]. The threshold ri of each agent
is the realization of the random variable R with arbitrary
distribution function FR(r) and does not change over time. In
case of conformity, an agent follows the others, whereas in
case of anticonformity he takes an opposite state to others.
Therefore, the dynamics of the agent’s state in the case of
conformity can be written as [10]

ai(t + �t ) =
{

1 if 1
ki

∑
j∈Ki

a j (t ) � ri,

0 otherwise,
(1)

whereas in case of anticonformity [10]

ai(t + �t ) =
{

0 if 1
ki

∑
j∈Ki

a j (t ) � ri,

1 otherwise.
(2)

In this paper, we use the random sequential update mode,
which means that an elementary update consists of

(1) random drawing of agent i from all n agents;
(2) with probability p agent i anticonforms to the neigh-

borhood, that is, takes action ai(t + �t ) according to Eq. (2);
(3) with complementary probability 1 − p agent i con-

forms to the neighborhood, that is, takes action ai(t + �t )
according to Eq. (1);

(4) time is updated: t := t + �t .
As usual, �t = 1/n which means that the time unit consists

of n elementary updates, which corresponds to one Monte
Carlo step (MCS).

III. TRANSITION PROBABILITIES

Since we limit our study to the complete graph, we can
fully describe the state of the system using a single random
variable:

c = n1

n
, (3)

where n1 is the number of agents in the state 1 and thus c is
the ratio of active agents. Therefore, there are n + 1 possible
states of the system: 0, 1

n , 2
n , . . . , 1.

Because we use the sequential (asynchronous) update
mode, at most one agent can change its state at a time, and
thus we can introduce the following transition probabilities:

γ +(c) = Pr

(
c(t + �t ) = c(t ) + 1

n

)
,

γ −(c) = Pr

(
c(t + �t ) = c(t ) − 1

n

)
. (4)

For our model, the explicit form of these probabilities
can be written, according to the algorithm described in the

previous section, as follows:

γ +(c) = (1 − p)(1 − c) Pr(R � c) + p(1 − c) Pr(R > c),

γ −(c) = (1 − p)c Pr(R > c) + pc Pr(R � c), (5)

where Pr(R � c) is the probability that the concentration c
of the active agents is greater than or equal to the threshold R
of the considered agent. This probability is simply the value of
the cumulative distribution function FR(r) at r = c. Similarly,
Pr(R > c) is the probability that the concentration of active
voters does not exceed the threshold of considered agents, and
thus it is equal to 1 − FR(c). Therefore, we obtain

γ +(c) = (1 − p)(1 − c)FR(c) + p(1 − c)[1 − FR(c)],

γ −(c) = (1 − p)c[1 − FR(c)] + pcFR(c). (6)

As can be seen from Eq. (4), the concentration of active
agents c is a random variable. However, we can easily write
the evolution equation for the expected value of c. Moreover,
for n → ∞ we can assume that c is localized to the expecta-
tion value. Therefore, we can write [5]

dc

dt
= γ +(c) − γ −(c) ≡ f (c), (7)

where f (c) can be interpreted as an effective force acting on
the system. Such a force will later allow us to introduce a
potential that helps visualize the dynamics of the system [16].
As usual, we focus on the steady states, i.e., those for which

dc

dt
= 0. (8)

In the next two sections, we will use condition (8) to calculate
the stationary concentration of active agents for two cases:
(1) homogeneous, in which all agents have the same tolerance
threshold, and (2) heterogeneous, in which the distribution
of thresholds FR(r) is given by the beta distribution. We will
compare the analytical results with the results of Monte Carlo
simulations for the system of size n = 104, averaged over ten
independent runs collected after 104 Monte Carlo steps. For
the Monte Carlo simulations, two types of initial conditions
will be used to reproduce all stable solutions of Eq. (8): (1)
all agents initially active, which will be denoted by c(0) = 1,
and (2) all agents initially inactive, which will be denoted by
c(0) = 0.

IV. ONE THRESHOLD

In this case, the random variable R takes one value for
all agents in the system, that is, all voters have the same
threshold r:

FR(c) = 1{r�c},

1 − FR(c) = 1{r>c}, (9)

where 1{r�c} = 1 when r � c and 0 otherwise. Inserting (9)
into Eq. (6) and then into Eq. (7) we obtain

dc

dt
= (1 − p)[(1 − c)1{r�c} − c1{r>c}]

+ p[(1 − c)1{r>c} − c1{r�c}]. (10)
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FIG. 1. Dependency between the stationary concentration of ac-
tive agents c and the probability of anticonformity p for the model
with one threshold for different values of the parameter r (indicated
in the plots). Solid lines represent stable fixed points obtained ana-
lytically from Eq. (16). Symbols represent Monte Carlo simulations
from two initial conditions indicated in the legend. Arrows indicate
the flow in the system. The length of each arrow corresponds to the
value of velocity dc

dt given by Eq. (10).

From (10), we obtain several trivial fixed points:

(p = 0, c = 0) ∀r �= 0, (11)

(p = 1, c = 0) r = 0, (12)

(p = 0, c = 1) ∀r ∈ [0, 1], (13)

(p = 0.5, c = 0.5) ∀r ∈ [0, 1], (14)

(p = 1 − r, c = r) ∀r ∈ [0, 1]. (15)

The remaining solutions can be obtained by solving
Eq. (8), which leads to

p = 1{r�c} − c

1{r�c} − 1{r>c}
, (16)

which is equivalent to the following cases:

∀c < r p = c, ∀c � r p = 1 − c. (17)

From the above analysis, we do not obtain the steady state for
any value of r ∈ [0, 1] if p � r for r > 0.5 or p > 1 − r for
r � 0.5. However, from the evolution of Eq. (10), represented
by solid lines in Fig. 1, and from Monte Carlo simulations,
represented by symbols in Fig. 1, we see that the system
approaches the state c = r for p > r. This raises the question
of what the evolution of the system actually looks like. To

answer this question we can provide at least three alternative
approaches. We decided to present all three because we be-
lieve that there is value in showing the different possibilities of
system analysis, especially given the interdisciplinary nature
of the work. The composition of the authors themselves is
also interdisciplinary, and each of us found a different method
more compelling/intuitive.

The first, which is the most basic technique used to ana-
lyze dynamical systems, consists of interpreting a differential
equation as a vector field [16]. Within this graphical way of
thinking, we draw the arrows representing the flow dc/dt
in the plane of model parameters, as shown in Fig. 1. The
second method is based directly on the transition proba-
bilities γ +(c), γ −(c). If we split the transition probabilities
into cases,

∀c < r γ +(c) = p(1 − c) ∧ γ −(c) = (1 − p)c,

∀c � r γ +(c) = (1 − p)(1 − c) ∧ γ −(c) = pc. (18)

we easily observe that they do not cross at any point, when
∀r > 0.5 p � r or ∀r � 0.5 p > 1 − r; see the fourth column
of Fig. 2. This implies no steady state. On the other hand,
for p < r transition probabilities γ −(c) and γ +(c) cross each
other, as shown in the first three columns of Fig. 2, i.e., the
steady state γ −(c) = γ +(c) exists.

The third method is based on the idea of potential
V (c) [16]:

V (c) = −
∫

f (c)dc. (19)

From Eq. (18) we see that the effective force f (c) defined in
Eq. (7) takes the following form:

f (c) = γ +(c) − γ −(c) =
{

p − c for c < r,
1 − p − c for c � r,

(20)

and thus

V (c) =
{− ∫

(p − c)dc = c2

2 − cp for c < r,
− ∫

(1 − p − c)dc = c2

2 − c(1 − p) for c � r.

(21)

Using such an approach, we draw a ball sliding down the
walls of a potential well [16], as shown in Fig. 2. It should be
noted that potentials given by Eq. (21) are determined up to a
constant. Therefore, the size of the jump at the border c = r
is not unambiguously defined. Here, we have assumed that
both constants are equal to zero, but this does not influence
the dynamics of the system since the system cannot jump from
one to the other potential minima, as presented in Fig. 2. This
is because the point c = r belongs only to one area and thus
the dynamics from this point is uniquely defined no matter
what jump is at c = r.

The steady states are the local extrema of V (c). From
Eq. (21) we see that the potential has a discontinuity at c =
r, which implies no maximum (unstable steady state). Still,
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FIG. 2. Analysis of the steady states and the stability of the system for two values of threshold r = 0.6 (two first rows) and r = 0.5 (two
last rows) and four values of p = 0.2 (first column), p = 0.4 (second column), p = 0.45 (third column), p = 0.8 (fourth column). In first and
third rows, solid lines represents values of γ + and dotted lines stands for γ − obtained with Eq. (18). Potentials V (c) (second and fourth rows)
are obtained with Eq. (21). In all subplots, filled circles denote continuity, while empty circles denote lack of continuity at this point.

at most two minima (stable steady states) are possible. In
general, the number of minima, denoted by M(r, p), can be
described as follows:

∀r > 0.5 M(r, p) =
⎧⎨
⎩

2 for p � 1 − r,
1 for 1 − r < p < r,
0 for p � r,

(22)

∀r � 0.5 M(r, p) =
⎧⎨
⎩

2 for p < r,
1 for r � p � 1 − r,
0 for p > 1 − r.

(23)

In conclusion, despite the lack of steady state in the case
M(r, p) = 0 we can observe that the flow of the system is
towards the point c = r. It reaches an asymptotic minimum
at this point because from both the left and right boundaries,
the system flow is towards this minimum. This explains the
behavior shown in Fig. 1, which was at first incomprehensible
and inspired the above analysis.

V. BETA DISTRIBUTION

In the previous section, we studied the homogeneous sys-
tem, in which all agents had the same value of the tolerance

threshold r. However, we can also consider more general
distributions of thresholds, allowing for heterogeneity. The
most useful are distributions whose support values r ∈ [0, 1]
and show a variety of shapes. This is the case of the beta dis-
tribution with two parameters α and β, previously considered,
for the models of tolerance without anticonformity [4]. It has
a well-defined cumulative distribution function:

FR(r) = Ir (α, β ) = B(r, α, β )

B(α, β )
, (24)

where Ir (α, β ) is the regularized incomplete beta function,
which can be defined in terms of the incomplete beta function
B(r, α, β ) and the complete beta function B(α, β ). Inserting
FR(r) given by Eq. (24) into (6) we obtain the transition
probabilities γ +(c), γ −(c). Then inserting them to Eq. (7)
we get

dc

dt
= (1 − p)[(1 − c)Ic(α, β ) − c(1 − Ic(α, β ))]

+ p[(1 − c)(1 − Ic(α, β )) − cIc(α, β )]. (25)

Again, we can point out the obvious steady states (p =
0, c = 0), (p = 0, c = 1) for arbitrary values of α and β. For
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FIG. 3. Phase diagram for the heterogeneous model with thresh-
olds described by the beta distribution parametrized by two shape
parameters α and β. Each inset shows representative behavior of c(p)
for a given area of the phase diagram. Solid lines in the insets corre-
spond to stable stationary states, whereas dashed lines correspond to
unstable stationary states.

c = 1/2 formula (25) boils down to

dc

dt

∣∣∣∣
c= 1

2

=
(

I 1
2
(α, β ) − 1

2

)
(1 − 2p), (26)

which has two roots. The first one p = 1/2 gives the fixed
point (p = 1

2 , c = 1
2 ). The other root I 1

2
(α, β ) = 1

2 exists if

the beta distribution is symmetric around the value 1
2 . This

happens for α = β, which leads to the conclusion that the
value c = 1

2 is a fixed point for all values of p if α = β. For
all remaining solutions we have the following relation:

p = Ic(α, β ) − c

2Ic(α, β ) − 1
. (27)

The information about the stability of the steady state is given
by the sign of the derivative

dF

dc
= cα−1(1 − c)β−1�(α + β )

�(α)�(β )
(1 − 2p) − 1. (28)

The state is stable if the above derivative is negative and
unstable otherwise. The overall behavior of the model is
summarized in Fig. 3. In the insets of this figure the de-
pendence between the stationary value of c and parameter
p is shown. Two shaded areas in Fig. 3 correspond to the
situation in which at least one of the parameters α, β is
smaller than 1. In this case, for p > 0 there is always only
one steady state and c is monotonically increasing (β < α),
monotonically decreasing (β > α), or constant (β = α) func-
tion of p.

Recalling the shape of the probability density function
(PDF) of the beta distribution, we can draw some conclusions.
If the PDF of the tolerance threshold is a monotonically de-
creasing function of the threshold r, then the concentration of
active agents decreases with the probability of anticonformity
p, and vice versa. If the PDF has the highest values at r = 0
and r = 1, being a convex function of r, then for all values of
p > 0 the stationary value of active agents is 0.5.

The most complex behavior is seen if both shape param-
eters α, β are greater than 1 but not infinitely large, which
corresponds to a unimodal PDF, with zero probabilities at both
end of the interval range, i.e., at r = 0 and r = 1. This case
correspond to moderate tolerance [4], and it is a typical shape
of the distribution of actual trait manifestations in behavior, as
reported by psychologists [17]. In such a case, the phase tran-
sitions appear, as shown in Fig. 3. As long as β = α, which
corresponds to the symmetric PDF, there is a continuous phase
transition between the phase in which one type of agent (active
or inactive) dominates, and the symmetrical phase without the
domination. The critical point, at which this transition occurs,
can be calculated by solving the equation

dF

dc

∣∣∣∣
c= 1

2

= 0, (29)

which gives

p∗
1 = 1

2
− �2(α)

23−2α�(2α)
. (30)

For α �= β, as long as shape parameters are finite and at
least one of them is larger than 1, we obtain an interesting
behavior, with the jump at some value of p = p∗ and hys-
teresis, as shown in Fig. 3. This can be especially useful
to describe the innovation diffusion. For example, if β > α

then for the small value of p < p∗ there is possibility of high
adoption if the initial fraction of adopted is above the critical
mass. However, if the initial fraction of adopted is too low,
i.e., below the critical mass, the innovation cannot spread in
the society. Similar behavior has been recently reported for
the completely different mathematical model of the collec-
tive decision making with social learners for unequal merit
options [18].

It is worth noticing that for α, β → ∞ we can recover the
solution for the model with one threshold, as shown in Fig. 3.
We are able to do that by recalling the formula giving the
mode of the beta distribution with α, β > 1:

m = α − 1

α + β − 2
. (31)

While α, β → ∞, the beta distribution is a one-point degen-
erate distribution with probability 1 at the midpoint m and
0 elsewhere. Thus, to obtain the case with the mode at the
point m = r, i.e., recover the distribution for one threshold,
parameters α and β should follow the formula

β = (1 − r)α − 1 + 2r

r
(32)

for α, β → ∞.
All results obtained analytically for beta distribution can be

also obtained by Monte Carlo simulations, as shown in Fig. 4.
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FIG. 4. Representative dependencies between the stationary concentration of spins up and the probability of anticonformity for model with
beta distribution for different values of the parameters α and β: (a) α = β � 1, (b) α = β > 1, (c) α < β < 1; α close to β, (d) 1 > α > β;
α close to β, (e) α � 1 ∧ α < β, (f) β � 1 ∧ α > β, (g) 1 < α < β, (h) α > β > 1. Solid and dotted lines represent stable and unstable
steady states respectively, obtained with Eq. (27). The exact values of parameters in the plots are as follows: (a) α = β = 0.9; (b) α = β = 4;
(c) α = 0.1, β = 0.2; (d) α = 0.2, β = 0.1; (e) α = 1, β = 3; (f) α = 3, β = 1; (g) α = 5, β = 8; (h) α = 8, β = 5. Symbols represent Monte
Carlo simulations from two initial conditions, denoted in the legend. The results are averaged over ten runs and collected after 104 MCS for
system of size 104.

VI. MARKOV CHAIN APPROACH

Previously, we were assuming that the size of the system
is infinite, i.e., n → ∞. However, such an assumption is not
very realistic for social systems. Actually, social scientists are
often interested in small systems. Therefore, in this section,
we make analysis of the convergence of c in the long run using
Markov chains for arbitrary small systems. The advantage

of the Markov chain approach in the context of agent-based
modeling of opinion dynamics has been already reported
in [19].

Transition probabilities given by Eq. (4) allows us to write
the (n + 1) × (n + 1) transition matrix, whose general term
(i, j) indicates the probability of transition from state i to state
j. Due to the asynchronous update mode, P is a tridiagonal
row-stochastic matrix:

P =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

γ 0(0) γ +(0) 0 0 · · · 0

γ −(
1
n

)
γ 0

(
1
n

)
γ +(

1
n

)
0 · · · 0

0 γ −(
2
n

)
γ 0

(
2
n

)
γ +(

2
n

) · · · 0

0 · · · . . .
. . .

. . . 0

0 · · · 0 γ −(
n−1

n

)
γ 0

(
n−1

n

)
γ +(

n−1
n

)
0 · · · 0 0 γ −(1) γ 0(1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(33)

with γ 0(c) = 1 − γ +(c) − γ −(c). This process is a random
walk process. Its transition graph is strongly connected and
aperiodic, hence P is a primitive matrix, i.e., the only absorb-
ing class is the set of all states. This means that in the long
run, the system at time t can be in any of the n + 1 states, and
there is no stabilization [20,21].

From Markov chain theory, the limit vector π =
[π (0), . . . , π (c), . . . , π (1)]T giving the probability π (c) to be

in state c in the long run is obtained as the left normalized
eigenvector of P associated with eigenvalue 1, i.e., π is the
solution of the linear system in variable z

(PT − I )z = 0, 1T z = 1 (34)

with 1 = (1, . . . , 1)T . From now on, to avoid heavy notation,
we denote γ +(k/n) by γ +(k), and similarly for γ −(k/n),
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π (k/n), etc. We obtain

PT −I=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−γ +(0) γ −(1) 0 0 0 · · · 0
γ +(0) −γ −(1) − γ +(1) γ −(2) 0 0 · · · 0

0 . . .
. . .

. . . 0 · · · 0
0 · · · γ +(k − 1) −γ −(k) − γ +(k) γ −(k + 1) · · · 0

0 · · · 0 . . .
. . .

. . . 0
0 · · · 0 0 γ +(n − 2) −γ −(n − 1)−γ +(n−1) γ −(n)
0 · · · 0 0 0 γ +(n − 1) −γ −(n)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(35)

Solving the system yields

π (0) = γ −(1)

γ +(0)
π (1),

π (1) = γ −(2)

γ +(1)
π (2),

... = ...

π (k) = γ −(k + 1)

γ +(k)
π (k + 1),

... = ...

π (n − 1) = γ −(n)

γ +(n − 1)
π (n). (36)

This yields

π (k) = γ +(k−1)

γ −(k)

γ +(k−2)

γ −(k − 1)
· · · γ +(0)

γ −(1)
π (0) (k = 1, . . . , n).

(37)
In the case of one threshold we are able to derive the above
formulas analytically. Using Eq. (18) we obtain

π (k) = (1 − p)(k + 1)

p(n − k)
π (k + 1) (k < rn − 1),

π (k) = k + 1

n − k
π (k + 1) (rn − 1 � k < rn),

π (k) = p(k + 1)

(1 − p)(n − k)
π (k + 1) (k � rn).

Let us find when π (k) is increasing or decreasing. Supposing
k < rn − 1, we have

(1 − p)(k + 1)

p(n − k)
� 1 ⇔ (1 − p)(k + 1) � p(n − k)

⇔ k � p(n + 1) − 1.

When k � rn, we obtain

p(k + 1)

(1 − p)(n − k)
� 1 ⇔ k � n − p(n + 1).

Therefore,
(1) For states below r, the peak is attained at

ĉ1 = k̂1

n
, with k̂1 = �p(n + 1)� − 1.

Observe that when n is large, this yields ĉ1 ≈ p.

(2) For states above r, the peak is attained at

ĉ2 = k̂2

n
, with k̂2 = n − �p(n + 1)�.

When n is large, we obtain ĉ2 ≈ 1 − p.
Depending on the relative positions of p and r, there can

be one or two peaks, as summarized as follows:
If r � p, r � 1 − p: peak at ĉ2,
if p � r � 1 − p: two peaks at ĉ1, ĉ2,
if 1 − p � r � p: peak at �rn�

n ,
p � r, 1 − p � r: peak at ĉ1.
In the case where there are two peaks, i.e., p � r � 1 − p,

let us find the relative heights of the peaks. From (37), we find,
assuming rn �∈ N,

π (�rn�) = π (k̂1)

(
p

1 − p

)�rn�−�p(n+1)�+1

× (n − �rn� + 1) · · · (n − �p(n + 1)� + 1)

�rn� · · · �p(n + 1)� ,

π (�rn� + 1) = π (k̂2)

(
p

1 − p

)n−�p(n+1)�−�rn�−1

× (�rn� + 2) · · · (n − �p(n + 1)�)

(n − �rn� − 1) · · · (�p(n + 1)� + 1)
,

π (�rn� + 1) = π (�rn�)
n − �rn�
�rn� + 1

.

Hence, assuming p(n + 1) �∈ N,

π (k̂2)

π (k̂1)
=

(
p

1 − p

)2�rn�−n+1

. (38)

When n is large, we obtain

π (k̂2)

π (k̂1)
≈

(
p

1 − p

)n(2r−1)+1

. (39)

Observe that the peaks have equal heights when p = 0.5, and
when r = 0.5 the ratio is equal to p/(1 − p).

Besides, we have solved numerically by SCILAB the system
of equations (34), which is possible for reasonable values
of n, and obtained its solution π (k), k = 0, . . . , n. Table I
shows the value of the ratio of the two peaks for various
values of p, r as given by Eq. (38), compared to the output
of SCILAB. Figure 5 shows the computed distribution π for
n = 100 for the one-threshold case and also the case of the
beta distribution, compared to the histograms obtained from
Monte Carlo simulations.
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TABLE I. Example of results for n = 10 for different values of p
and r under the condition p � r � 1 − p. In the table are presented
the theoretical ratio given by Eq. (38) (left column), as well as the
values π (k̂1) and π (k̂2) computed numerically and the ratio between
them (three rightmost columns).

p r π (k̂2)/π (k̂1) π (k̂1) π (k̂2) Ratio

0.21 0.41 3.7619048 0.064177 0.241429 3.7619052
0.21 0.61 0.0187835 0.2966234 0.005572 0.0187834
0.25 0.5 0.3333333 0.218683 0.0728942 0.3333334

We comment on these results. The Markov approach per-
mits to obtain the stationary probability distribution of the
different states, for any value of n, without approximation.
It is found that in the long run, even if any state has a
nonzero probability to be reached, some states have a much
higher probability than the others to appear. In the case of one
threshold, we have analytically proved the presence of one or
two peaks, and their positions when n is large perfectly coin-
cides with what was predicted by the mean-field approach.
It is complementary to the results given by the mean-field
approach, since the Markov approach is able to give the prob-
ability of occurrence of each stationary state. On the other
hand, the complexity of the system of linear equations (34)
induced by the Markov chain makes this approach not always
tractable (e.g., with the beta distribution). Nevertheless, we

0 0.2 0.4 0.6 0.8 1
0

0.05
(a)

c

π
(c

)

0 0.2 0.4 0.6 0.8 1
0

0.4
(b)

c

π
(c

)

0 0.2 0.4 0.6 0.8 1
0

0.08
(d)

c

π
(c

)

0 0.2 0.4 0.6 0.8 1
0

0.14
(c)

c

π
(c

)

FIG. 5. Stationary distributions of visited states for model with
one threshold (upper row) with parameters (a) r = 0.5, p = 0.3;
(b) r = 0.6, p = 0.7 and model with beta distribution (bottom row)
with parameters (c) α = 8, β = 5, p = 0.1; (d) α = 3, β = 1, p =
0.4. Solid red lines are distributions obtained with Markov approach,
black histograms are obtained with trajectories from Monte Carlo
simulations for system of size n = 100 and thermalization time
t = 2 × 106 MCS from 100 initial conditions evenly distributed on
interval [0,1], averaged over 1000 independent runs.

have shown that for reasonably large values of n (e.g., n =
100), this linear system can be solved numerically, giving a
perfect fit with theoretical values, as shown by Table I and
with Monte Carlo simulations as well, see Fig 5.

VII. SUMMARY AND RESEARCH DIRECTIONS FOR
THE FUTURE

In this paper, we investigated the threshold model with an-
ticonformity under asynchronous update mode, which mimics
continuous time. We considered two cases: (1) homogeneous,
in which all agents had the same threshold, and (2) het-
erogeneous, in which the thresholds are given by the beta
distribution function. The homogeneous case with r = 0.5 is
identical to the homogeneous symmetrical threshold model
with anticonformity [22]. Moreover, it is almost identical to
the majority-vote process [23,24]. The only difference be-
tween the models is when the number of active and inactive
agents in the neighborhood of a chosen agent is equal. In
such a case, the state of the system does not change within
the majority-vote model, whereas within the threshold model
the change is possible. From this point of view, the threshold
model with anticonformity under asynchronous updating can
be treated as a generalization of a majority-vote model.

On the complete graph, the homogeneous threshold model
does not give particularly interesting results. The relation-
ship between the stationary ratio of active agents and the
probability of anticonformity consists of linear dependencies,
similarly to the homogeneous symmetrical threshold model
[22,25]. The only interesting feature of this model is the
discontinuity that appears at c = r = 1 − p for r > 0.5 and
at c = r = p for r < 0.5. In the result, the system reaches one
of two different steady states, depending on the initial condi-
tions. Much richer behavior is observed in the heterogeneous
model with thresholds given by the beta distribution func-
tion, parametrized by α, β, which allows tuning the model
to the homogeneous one (α, β → ∞) and to the maximally
heterogeneous one (i.e., described by the uniform distribution
function).

A particularly interesting behavior is obtained if at least
one of the shape parameters α or β is larger than 1 and both
parameters are finite. In this case the PDF has a shape that
resembles those of actual trait manifestation in behavior, as
reported by psychologists [17], i.e., unimodal, not necessarily
symmetrical, function with maximum at the value 0 < r < 1.
In such a case a phase transition appears, which is continuous
for α = β, and discontinuous otherwise. In the latter case, the
transition involves phenomena typical of social systems, such
as social hysteresis [26] and the critical mass [27–29].

The future research on the model can be conducted in
several directions, related to the following questions:

(1) How would the results change if the threshold for
anticonformity were different than that for conformity? This
question is inspired by the work on the q-voter model with
generalized anticonformity [30]. In the q-voter model such a
generalization resulted in switching from continuous to dis-
continuous phase transitions for some values of parameters.
The question is, are the same phenomena observed for the
threshold model?
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(2) How would the structure of a network influence the
results? This question is inspired by the work on the sym-
metrical threshold [25]. It was shown that on random graphs
with the degree observed empirically for social networks, the
largest social hysteresis is observed for r ∈ (0.65, 0.85). This
was a meaningful result from the social point of view and
thus it would be desirable to check if it appears also in the
asymmetric model studied here.

(3) How would the results change if the quenched ap-
proach to anticonformity were used? In this version of the
model, we used the annealed approach, in the sense that each
agent could anticonform (with probability p) or conform (with
probability 1 − p). However, we could use also the quenched

approach, in which a fraction p of agents are permanently
anticonformists. This question is inspired by the work on
the q-voter model with nonconformity under quenched and
annealed approaches [31]. It was shown that on the complete
graph both approaches give the same result for the q-voter
model with anticonformity, but different results for the model
with independence. The question is, to what extend is this
result universal?
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