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Directed percolation in random temporal network models with heterogeneities

Arash Badie-Modiri ,1 Abbas K. Rizi ,1 Márton Karsai ,2,3 and Mikko Kivelä 1

1Department of Computer Science, School of Science, Aalto University, FI-0007, Finland
2Department of Network and Data Science Central European University, 1100 Vienna, Austria

3Alfréd Rényi Institute of Mathematics, 1053 Budapest, Hungary

(Received 18 October 2021; accepted 7 April 2022; published 25 May 2022)

The event graph representation of temporal networks suggests that the connectivity of temporal structures can
be mapped to a directed percolation problem. However, similarly to percolation theory on static networks, this
mapping is valid under the approximation that the structure and interaction dynamics of the temporal network
are determined by its local properties, and, otherwise, it is maximally random. We challenge these conditions
and demonstrate the robustness of this mapping in case of more complicated systems. We systematically analyze
random and regular network topologies and heterogeneous link-activation processes driven by bursty renewal
or self-exciting processes using numerical simulation and finite-size scaling methods. We find that the critical
percolation exponents characterizing the temporal network are not sensitive to many structural and dynamical
network heterogeneities, while they recover known scaling exponents characterizing directed percolation on low-
dimensional lattices. While it is not possible to demonstrate the validity of this mapping for all temporal network
models, our results establish the first batch of evidence supporting the robustness of the scaling relationships in
the limited-time reachability of temporal networks.
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I. INTRODUCTION

Connectivity is an essential characteristic of complex net-
works as it determines how far information or influence can
spread in a network structure. Consequently, it governs the
emergence and scale of any macroscopic phenomena often
modelled on networks such as disease spreading, transporta-
tion, or information diffusion, to mention a few examples.
Percolation theory provides a comprehensive understand-
ing that characterizes network connectivity with various
mathematical and algorithmic tools primarily developed for
complex networks. For example, percolation can be mapped
to late-stage results of specific epidemic processes [1–5], such
that the size of percolating components determine the final
size of the epidemic. Meanwhile, the percolation transition
and its related critical behavior explain the disease outcome
close to the epidemic threshold.

However, these theoretical descriptions commonly assume
that the network is static, with links and nodes always present,
ignoring the typical character of several complex structures
where links may vary in time. Since information, disease,
or other effects can pass between two nodes in a network
only at the time of their interactions, the temporal alternation
of links may crucially influence the critical behavior and fi-
nal outcome of any ongoing spreading processes [6–12]. To
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characterize these processes, one needs to measure connectiv-
ity in temporal networks across time, where components are
defined in terms of network nodes and links and the temporal
distribution of interactions. Consequently, beyond the well-
studied structural heterogeneities of static networks, like in
their node degrees, the effects of temporal correlations leading
to temporal heterogeneities in the interaction dynamics, like
burstiness, become important [13–18]. This is especially the
case for so-called limited-waiting-time processes, where an
effect or information, e.g., a disease or a meme [19], arriving
at a node can pass over to another node only if an interaction
appears within a time window δt . Otherwise, the pathogen
times out, e.g., the patient recovers or the meme becomes
irrelevant, making it impossible to reach other nodes.

Similarly to static networks, the connectivity of temporal
networks passes through a phase transition. However, close
to this critical threshold, temporal networks exhibit different
critical behavior as compared to static structures [20–22]. For
limited-waiting-time connectivity, where the control parame-
ter is δt , this phase transition can be theoretically understood
under some simplifying assumptions about the homogeneous
dynamics of connectivity [22]. Since there is an embedded
direction (or flow) of time, the microscopic dynamics can be
fundamentally irreversible with a broken detailed balance and
nonequilibrium steady state. These results suggest that the
dynamics of percolation on temporal networks are generically
the same as any other system belonging to the directed perco-
lation (DP) universality class, which is characterized by a one-
component order parameter without additional symmetries
and unconventional features such as quenched disorder [23].

The homogeneity approximations used for the derivations
presented in Ref. [22], however, become less grounded when
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the underlying structure deviates from a random graph or if the
interaction dynamics become inhomogeneous. In this paper,
our goal is to build on the theory laid down in Ref. [22] to
investigate further the relation between temporal networks and
directed percolation. In other words, the primary objective
of this manuscript is as follows: to show empirically that
diverse classes of temporal networks, with various degrees of
temporal and spatial heterogeneity, combined with the very
general notion of limited-waiting-time reachability, will show
an absorbing phase transition in connectivity that belongs to
the directed percolation universality class.

In its epidemic interpretation, directed percolation can be
one of the most basic nonequilibrium second-order phase tran-
sitions from fluctuating states into so-called absorbing states,
which exhibit universal features, determined by symmetry
properties and conservation laws. We demonstrate the preci-
sion of this mapping using extensive numerical simulations
and provide further theoretical calculations to study synthetic
temporal networks as directed percolation processes with a
range of temporal and spatial inhomogeneities.

The remainder of Sec. I will be dedicated to laying
the groundwork and presenting the context in which this
manuscript is set: In Sec. I A we will discuss connectivity on
temporal networks, the event graph representation, and mod-
eling spreading processes and Sec. I B will introduce directed
percolation and its characteristics.

Section II is dedicated to an overview of our contributions.
Section II A will describe our mapping of concepts of directed
percolation and temporal networks. Section A provides an
overview of the theoretical results from Ref. [22], which will
be extended further in Sec. A 1 by explicitly deriving some
critical exponents and scaling relations. Section II B will lay
down the algorithmic techniques that make large-scale simu-
lations of spreading processes on temporal networks possible.

Finally, in Sec. III we will describe the experimental setup
and provide numerical evidence for validity of our hypothesis
by application of the methods described previously, while
Sec. IV provides an overview of the implications of the results
and the limitations of our study.

A. Temporal networks and the event graph

A temporal network G = (V, E ) provides representations
of a dynamically changing complex system as a set of timed
interactions known as events E between a set of entities
V = {v1, v2, . . . , vn} known as nodes or vertices during an
observation period T . Each event indicates a time-dependent
interaction between two nodes, e.g., physical contact or
communication between two people or trade between two
commercial entities [24], i.e., e = (u, v, tstart, tend) such that
u, v ∈ V between times of tstart, tend ∈ T (tstart < tend). Note
that this definition can be easily extended to directed events
and to directed or undirected temporal hypergraphs.

Two events e, e′ ∈ E are adjacent if they share at least
one endpoint node in common, {u, v} ∩ {u′, v′} �= ∅, and they
follow each other in time such that �t (e, e′) = t ′

start − tend >

0. Therefore, any temporal network can be represented as a
higher-order static directed acyclic weighted graph known as
the event graph D = (E, ED,�t (e, e′)) [20,25]. Nodes of the
event graph are the events of the original temporal network

and the weight of a link between two connected nodes (adja-
cent events) is then defined as the time difference �t between
the corresponding events.

Every path on the event graph constitutes a causal chain as,
by definition, a path constitutes a list of events where every
two consecutive events are adjacent. Paths in event graphs
are, therefore, equivalent to time-respecting paths in the cor-
responding temporal network representation [26]. Therefore,
calculating time-respecting reachability on a temporal net-
work is equivalent to connectivity on its corresponding (static)
event graph representation. The weakly connected compo-
nents on an event graph determine causal domains, disjoint
sets of events where there can be no causal connections what-
soever between events if they belong to two different weakly
connected components. In addition, as compared to reachabil-
ity, the size and distribution of weakly connected components
are quantities, which are much easier to measure for temporal
networks and they characterize a percolation transition if we
assume an undirected network. Moreover, the sizes of these
components put an upper bound on how much an effect can
spread starting from one of the events in that component [20].

Temporal networks preserve the dynamic properties of the
represented complex system, unlike aggregated static net-
works where this information is lost. Through the studies of
time-varying networks, several new phenomena in human dy-
namics have been explored over the past decades, such as node
and link burstiness [18,27,28], causal, temporal motifs [29],
or the cyclic activation patterns of human interaction activi-
ties [30], to mention a few. As opposed to systems governed
by homogeneous and independent processes, these correla-
tions and the induced temporal dynamics may have significant
effects on various dynamical processes evolving on temporal
networks such as spreading [31,32], reachability [33,34], dif-
fusion [9,35], and opinion formation [36].

The different dynamics of a temporal network are often
straightforward to study through simulations. For example, in
the case of spreading processes, transmission can be modeled
by temporal network events [13–17]. More concretely, in a
physical interaction network, where nodes represent people
and events represent two people coming to close proximity,
each of these contact events will have a probability of trans-
mitting the disease. The disease then spreads to all the nodes
that can be reached via such infecting events from the initially
infected nodes. Similarly, in a network where events represent
communication of information at a specific time, such as
mobile phone calls or email exchanges, it is straightforward
to model the spreading of information by keeping track of the
information nodes have access to at each point in time.

Many dynamics evolving on top of networks, such as
some spreading processes [37–39], social contagion [40–42]
ad hoc message passing by mobile agents [43] or routing
processes [44], can have a limited memory thus can only use
paths constrained by limited waiting times. Limited waiting-
time reachability can be modeled using the event graph, D,
that contains a superposition of all temporal paths [20,26,45].
In a limited waiting-time spreading process unfolding over
a temporal network, either the spreading agent (e.g., the
pathogen in the disease spreading) must be transmitted on-
ward from a node within some time δt or the infection has to
be renewed before that time. In other words, the node must
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participate in a possibly disease-carrying event in δt time or
the process stops and the node reverts to susceptible. There-
fore, all the spreading paths in the network are δt-constrained
time-respecting paths. Let us call two adjacent events e and e′
as δt-adjacent if �t (e, e′) � δt . A subset of the event graph
D with an upper threshold of weights no greater than δt , i.e.,
where directed links indicate δt adjacency, enables us to calcu-
late reachability for δt limited-time spreading process for the
corresponding temporal network. Therefore, the event graph
encapsulates a complete set of δt-constrained time-respecting
paths for all values of δt simultaneously.

B. Directed percolation

The waiting-time limit δt can be regarded as the control
parameter of a continuous phase transition, where connectiv-
ity in the event graph is determined by δt-connected paths
of events. As the value of maximum waiting time decreases,
more and more of the links of the event graph get removed,
where each deleted link corresponding to an adjacency rela-
tionship between two events that are temporally more than
δt apart. This leads to a drop in connectivity in the event
graph, which is exactly equivalent to the drop in connectiv-
ity on the temporal network. In order to characterize these
phase transitions, unlike characterizing the superficially sim-
ilar phase transitions that take place when removing links in
static (undirected) networks, we need to consider a percolation
framework that can explicitly model the one-way flow of time.

Directed percolation is a paradigmatic example of dynami-
cal phase transitions into absorbing states with a well-defined
set of universal critical exponents and is often used to model
phenomena with inherent directionality, such as fluids pass-
ing through porous media [23,46–48]. Originally introduced
as a model for directed random connectivity [49], directed
percolation attracted scrutiny in percolation theory in the late
seventies [50]. Since then, a considerable body of work has
been devoted to this approach of interpretation in the literature
since the critical behavior of many stochastic many-particle
nonequilibrium processes can be shown to belong to the di-
rected percolation universality class. Directed percolation has
applications in various domains at multiple scales ranging
from galaxies to semiconductors [51–54].

As the simplest model exhibiting a transition between ac-
tive and absorbing phases [46], it is straightforward to define
and implement models governed by directed percolation, e.g.,
in the case of lattice models [55–61]. Directed percolation,
however, does not appear to be an integrable model and its
critical behavior is highly nontrivial. Moreover, it seems that
the basic features of directed percolation, such as nonfluctuat-
ing states, are quite difficult to realize in nature [62]. Another
fundamental problem is quenched disorder due to microscopic
inhomogeneities of the system [23]. One of the earliest un-
ambiguous and robust experimental realizations of a system
exhibiting critical behavior in the directed percolation class
was for the rather specific case of liquid crystal electrohydro-
dynamic convection [63]. Another experimental evidence was
reported in 2016 in the case of transition to turbulence [64].
Due to the simplicity and robustness of directed percolation,
it seems to be a good model for explaining ubiquitous phase
transitions in many real-world phenomena, especially in the

so-called contact processes [4,33,65–72] in the realm of tem-
poral networks [24].

Before presenting the mapping between reachability in
temporal networks and the concepts in directed percolation,
for the remainder of this section we will review these concepts
for the case of the simple infinite lattice. Let us take the ex-
ample of a spreading process across time in an infinitely large
d-dimensional square lattice: Assume that each infected (or
occupied) node can infect any of its neighbors independently
with probability p at each tick of a discrete timer. Let us also
assume that an infected node recovers (becomes unoccupied)
in one tick of the clock after infection unless it is reinfected by
a neighbor. This configuration is denoted in many sources as a
d + 1-dimensional lattice, substituting the temporal axis with
another discrete spatial dimension with the only difference
that, unlike the other d dimensions, this one has an inherent
directionality. Throughout the rest of this section, we will
continue to use the space and time analogy to facilitate a better
transition to modeling phenomena on temporal networks.

The dynamics of this spreading process is defined by the
topology and dimensionality of the medium of percolation
and competition between two processes: the probability that
an infected node infects each of its neighbors in a single tick
of the clock, or “reproduction” from the perspective of the
spreading agent, and the time it takes for each infected node
to recover, or “self-annihilation” or “death” of the spreading
agent. In the many classic representations of directed perco-
lation, the reproduction probability is often denoted by the
parameter p and the “self-annihilation” is set to happen in
exactly one tick of the clock. For large-enough values of p,
the system will forever stay in an “active state” where there
is a nonvanishing density of nodes infected (occupied) at all
times. Conversely, if the annihilation process has the upper
hand, then the system eventually transitions irreversibly into
an “absorbing phase” where no occupied nodes are left in the
lattice and the spreading agent is extinct.

More generally, let us say the reproduction and self-
annihilation process respectively happen at rates μp and μr .
Let us assume that at t = 0, nodes are uniformly occupied
with density ρ0. To write a mean-field rate equation for occu-
pation density ρ(t ), we need to take into account how often
more than one spreading agent (pathogens) simultaneously
occupies (infects) the same node, in which case only one new
node is occupied. Let us only consider the rate μc at which two
other nodes simultaneously infect a single node and assume
the probabilities of three or more simultaneous infections are
small. In this case, the rate equation is of the form

∂

∂t
ρ(t ) = τρ(t ) − gρ(t )2, (1)

where the control parameter τ = μp − μr is the manifesta-
tion of the competition between reproduction and death as
described above and coupling constant g = μc describes the
events of infecting a node already infected by another neigh-
bor [23]. This equation has a steady state at limt→∞ ρ(t ) =
ρstat(τ ) = 0 which corresponds to the aforementioned ab-
sorbing phase. Furthermore, for τ > 0 the value of ρ(t )
approaches a stationary occupation density of limt→∞ ρ(t ) =
ρstat(τ ) = τ/g, which is identified as the order parameter of
the directed percolation process. At exactly τ = 0, occupation
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density decays algebraically with time ρ(t ) ∼ (ρ−1
0 + gt )−1.

Naturally, for values of τ < 0 the system eventually arrives at
the absorbing phase ρ(t ) → 0 in finite time.

More generally, starting from a homogeneously occupied
initial condition, order parameter ρstat(τ ) of a system in the
directed percolation universality scales as ρstat(τ ) ∼ τβ , when
control parameter τ is close to τc = 0. For τ > 0, density
decays algebraically as ρ(t ) ∼ t−α where in the mean-field
regime (i.e., d � 4), β = α = 1. In the case of a spreading
process controlled by a percolation probability p introduced at
the beginning of this section, it can be shown that τ ∝ p − pc

where critical percolation probability pc is a function of topol-
ogy and dimensionality of the percolation medium [73,74].

Alternatively, we can focus on the ramifications of starting
from a single seed of infection, as opposed to a homoge-
neous initial distribution of occupied nodes. A characteristic
property of this scenario is survival probability P(t ): The
probability that a spreading process starting from a single
seed would still be in the active phase (ρ(t ) > 0) at time t .
Similarly to occupation density ρ(t ), at criticality τ = τc =
0 survival probability also decays algebraically with time
P(t ) ∼ t−δ . A second alternative for order parameter is the ul-
timate probability of survival Psurv(τ ) = limt→∞ P(t ). When
the control parameter is close to the critical threshold τ → 0−,
the ultimate probability of survival scales algebraically as
Psurv(τ ) ∼ τβ ′

.
Continuous phase transitions in models with timelike di-

mensions generally have the same system of two separate
order parameters, controlled by two different critical expo-
nents β and β ′. For the case of directed percolation, however,
“rapidity-reversal symmetry,” an invariance property under
time reversal, ensures the two exponents have the same value
β = β ′ [75] which implies that P(t ) and ρ(t ) are at least
asymptotically proportional as t → ∞, and in some cases
exactly equal P(t ) = ρ(t ) [23]. Rapidity-reversal symme-
try limits the number of independent critical exponents to
three [76,77].

1. Characteristic quantities of the directed percolation

The single-source initial condition also allows us to define
additional interesting characteristic quantities in the absorbing
phase, which might lend themselves to experimental observa-
tion. Let us define pair-connectedness function c( �r1, t1, �r2, t2)
as the probability that a path exists from a node with spatial
coordinates �r1 at time t1 and another in �r2 at time t2. Note
that the definition of spatial coordinates for nodes as a d-
dimensional vector �ri implies that the percolation medium
and node i is embedded in a d-dimensional space, e.g., a
d-dimensional lattice. Assuming that the percolation medium
is invariant with respect to translations across time and space,
we can simplify the pair-connectedness function by fixing the
origin on the source node and denote the pair-connectedness
function as c(�r, t ). Mean cluster mass M is defined as the
integration of the pair-connectedness function across time and
space:

M =
∫ ∞

0
dt

∫
d�rc(�r, t ), (2)

which, with control parameter close to the critical threshold
τc = 0 scales like M ∼ (−τ )−γ where γ = ν‖ + dν⊥ − β −
β ′. Similarly, mean spatial volume V can be defined as the
number of unique nodes that will ever get infected in a single-
source spreading scenario. As with the case of the cluster mass
M, spatial volume scales through a power relationship V ∼
(−τ )−υ close to the critical threshold where υ = dν⊥ − β ′.
It is possible to think of spatial volume V as the size of the
projection of the percolation cluster over the d-dimensional
spatial plane, i.e., over the original d-dimensional lattice. Pro-
jection of the same cluster on the temporal dimension will
define the survival time of the cluster, which is distributed
according to the probability of survival P(t ).

The homogeneous, fully occupied initial condition, on the
other hand, allows us to study the response of a system to an
external field h on the order parameter static density ρstat. For
the case of directed percolation, an external field can be im-
plemented as the spontaneous occupation of nodes at a rate h.
A positive external field deprives the system of the possibility
of ever transitioning into an absorbing phase. Susceptibility
χ is defined as the magnitude of the response generated by a
minuscule disturbance in the external field

χ (τ, h) = ∂

∂h
ρstat (τ, h), (3)

which diverges algebraically as the control parameter τ con-
verges to the critical threshold τc = 0, χ ∼ |τ |−γ where γ is
the same exponent as the mean cluster mass M. For the rest
of this paper, when not specified, susceptibility χ is studied at
minuscule values of external field (h = 0) as τ converges to
the critical threshold τc = 0. In practical terms, susceptibility
is a useful tool for finding the transition point, as unlike the or-
der parameters, we do not need to define an arbitrary threshold
for what constitutes a small or large value for a quantity such
as M(t ) or V (t ) close to the transition point in a finite system.
Instead, the susceptibility will typically show a peak even in
finite systems, which are discussed in more detail in Sec. I B 2.

2. Finite-size scaling properties of the system

While the dynamics described previously explain the be-
havior of an infinitely large system, measuring properties of
infinitely large systems is a rather involved task. Verifying that
the behavior of a system at criticality is explained by a specific
set of critical exponents is often easier performed by studying
the finite-size scaling properties of the system. This can be
carried out by measuring a set of quantities for realizations
at different scales and plotting the universal scaling function
of each quantity as a function of scale-invariant ratios. If the
exponents used are correct, then all the scaling functions of
different linear system sizes for the same quantity should
collapse on top of each other.

The effect of the finite size of the system manifest them-
selves as deviations from the scaling laws as described before
and their effects are measurable after some characteristic size-
dependent amount of time has elapsed since the beginning
of the simulation. For example, while in an infinitely large
system in active phase τ > 0 the system will forever stay in an
active phase, a finite system will always have a nonvanishing
probability of transitioning to the absorbing state due to fluc-
tuation of the order parameter. These finite-size effects take
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place at a characteristic time t f that scales as t f ∼ lz where
z = ν‖/ν⊥ is the so-called dynamical exponent and l is the
lateral (or linear) size of the system as opposed to system size
N measured in number of nodes, where N ∝ ld .

In phenomenological scaling theory simple scaling is
assumed for absorbing phase transitions. This means that
large-scale properties of the system are invariant under scale
transformations with the control parameter close to the critical
threshold. A multiplicative transformation, or “concentra-
tion,” of the control parameter τ by a factor of λ, τ �→ λτ

would result in rescaling of other quantities as

t �→ λ−ν‖t l �→ λ−ν⊥ l

ρ �→ λβρ P �→ λβ ′
P

h �→ λσ h χ �→ λ−γ χ,

(4)

where t and l denote timelike and lengthlike quantities respec-
tively.

More specifically, scale invariance mandates very specif-
ically how a quantity will change under multiplicative scale
change. As an example, let us study changes of ρ(t, l ),

ρ = f (t, l ) �→ λβρ = f (λ−ν‖t, λ−ν⊥ l ), (5)

where t is time from initial infection seed and l is the linear
system size.

Since this relationship is valid for all values of λ, we can
remove one parameter of the function by selecting a special
value λ = l1/ν⊥ ,

lβ/ν⊥ρ = f (l−ν‖/ν⊥t, 1) = F (l−ν‖/ν⊥t ), (6)

where the function F (x) is referred to as the “(universal)
scaling function” of its corresponding quantity, in this case,
density ρ. The parameter to this function l−ν‖/ν⊥t is in it-
self invariant to scale transformations. This parameter and
those similarly derived for other quantities are often known as
“scale-invariant ratios.” The function F (x) is universal, mean-
ing that if measured to sufficient accuracy, then we obtain
exactly the same type of scaling function for systems with
similar boundary conditions and shape for any phenomena in
the directed percolation universality class [23].

The value of each exponent is only a function of a few
large-scale properties of the system, such as the number
of spatial dimensions of the system. There exists an upper
critical dimension dc where systems with spacial dimension-
ality d � dc all follow the same set of values for critical
exponents, which are exactly equal to those derived through
mean-field estimation. For the case of the directed percolation
universality class the upper critical dimension has a value of
dc = 4 [23].

II. METHODS

A. Directed percolation in temporal networks

Let us now take the case of δt limited-time spreading
from a single source on a temporal network. Similarly to the
classic directed percolation single-source spreading process,
each temporal network node can participate in the spreading
process by becoming infected, infecting others and recover-
ing multiple times. Temporal networks are different from the

archetypal directed percolation systems presented in Sec. I B
in that they do not present a regular lattice or metric space
in the spatial dimension. Furthermore, there is typically no
discrete structure in the temporal dimension, which is usually
modeled as a continuous axis. Nevertheless, if the various
concepts such as order parameter, control parameter, and clus-
ter sizes are defined carefully, then temporal networks and
limited waiting-time connectivity can be mapped to directed
percolation [22].

To put it in the same reference frame as with other ab-
sorbing phase transitions, changing the parameter δt , in this
scenario, controls the relative occurrence of “annihilation”
and “multiplication” processes. A small-enough value of δt
will lead to a situation where spreading scenarios will even-
tually die out, at which point the system enters an absorbing
phase. Similarly, as δt grows, a spreading agent will be able
to avoid extinction for longer time, until after some threshold
δt > δtc a random spreading scenario will not die out (in
an infinitely large network). As discussed in Sec. I A, such
spreading scenarios are closely related to various properties
of the δt thresholded limited waiting-time event graph D.

As illustrated in Fig. 1, the projection of the spreading
cluster over the spatial plane amounts to a subset of temporal
network nodes V that has ever participated in the spread-
ing process. This can be measured by calculating the mean
number of unique temporal network nodes involved in the
out-components of the event graph. The (ensemble) average
number of unique nodes participating in single random source
spreading processes is analogous to mean spatial volume V .
The projection of the spreading cluster over the temporal
axis is equal to the time window from the beginning of
the spreading process to its end. The ensemble average of
this time duration is analogous to mean survival time T .
The sum of the duration of infectiousness for all the nodes,
i.e., the integration of the pair-connectedness function, would
therefore be analogous to spatial and temporal integration
of the pair-connectedness function or mean component mass
M. Note that the duration of the infectiousness is equal in
all of the events, therefore, we use the number of reachable
(i.e., possibly infection-carrying) events as a proxy for M,
ignoring the overlaps. The above-defined quantities can be
measured as features of the event graph. The average number
of events in the out-component of a node in the event graph
(equivalent to an event in the temporal network) measures
the number of reachable events. The survival probability P(t )
can be similarly defined over an ensemble of single-source
spreading instances based on the distribution of the lifetime
of each spreading scenario, accounting for the finite temporal
window of the simulation of the temporal network using a
Kaplan-Meier estimator [78].

Another scenario is the simulation of the spreading pro-
cess from homogeneous, fully occupied, initial conditions.
Translating this from classic directed percolation poses a new
problem; a homogeneous initial condition cannot translate to
a “full row” of occupied nodes since we are dealing with
continuous-time as opposed to the typical directed percolation
case of discretized time presented in Sec. I B. Rather, a better
translation of the fully occupied initial condition to continuous
time is to assume all nodes to be occupied at the beginning
of the observation period t = min(T ), or more accurately by
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FIG. 1. Two spreading scenarios starting from random events [marked with black circles on (b) and (c)] represented over (a) temporal
network, (b) δt-limited event graph, and (c) reduced event graph of a temporal network built from a one-dimensional grid of 40 nodes (displayed
on the left side) with Poisson activation of events with mean interevent time 1 unit of time, simulated for 20 units of time. The adjacency
relations have a maximum waiting time δt = 0.8 unit of time. Spatial volume V can be visualized as the mean size of projection of a spreading
cluster on the spatial plain, i.e., the static base network on the vertical axis, whereas survival time T is equivalent to the mean size of projection
of the cluster on time (horizontal) axis. While measuring a direct analog to component mass M, integrating the pair-connectedness function
across time and space equivalent to the mean sum of lengths of colored horizontal lines in (a) is not straightforward with the event graph
representation. It is possible to show that the mean number of uniquely counted events involved in the spreading process, corresponding to the
cardinality of the out-component of the initial event here represented by the total number of colored nodes in the event graph, show the same
scaling behavior. (d) Homogeneous, fully occupied initial condition with the occupied events shown in a darker shade than unoccupied events
shows the decline and eventual stabilization of the occupation density as time grows. In this scenario, all nodes are considered occupied for
time −∞ < t < 0, which translates to the occupation of all events in period 0 � t < δt and all events in their out-components.

assuming all nodes to be occupied for all values of t where
t � min(T ). Occupation density ρ(t ) is defined as the frac-
tion of infected nodes at time t . Stationary density ρstat(τ ) is
therefore defined as occupation density after the system had
enough time to reach a stationary state. We can also emulate
the effects of an external field h in this scenario: In continuous
time, this is equivalent to each node spontaneously becoming
occupied through an independent Poisson point process with
a rate of h. Susceptibility χ (τ, h) can then be measured, from
Eq. (3), by the rate of change in stationary density as external
field changes.

B. Empirical methods for estimation of characteristic quantities

In practice, we can estimate M, V , T , and P(t ) on the event
graph by finding all the out-components, i.e., every reachable
event starting from every event [see Fig. 1(c)]. Calculating
the exact set of out-components for every event in the event
graph is time and memory intensive. However, if we are only
interested number of events or number of unique nodes that
participate in those events, as opposed to the full set of events
in the out-components, then we can use probabilistic cardinal-
ity estimation data structures to estimate out-component sizes
with arbitrary precision in O(|E | log |E |) time, as opposed to
O(|E |2) time required for exact calculation [45]. Minimum
and maximum time of all events in the out-component can be

exactly calculated in O(|E | log |E |) time. Calculating prop-
erties of the in-component of an event is possible through a
simple reversal of direction of all links in the event graph and
applying the same algorithms.

Similarly, in the homogeneous fully occupied initial condi-
tion scenario, we do not need to directly estimate occupation
density ρ(t ), stationary occupation density ρstat(τ ), and sus-
ceptibility χ (τ, h) via naive algorithms, which would explic-
itly compute these measures by simulating propagation. The
properties of homogeneous, fully occupied, δt-constrained
reachability can be estimated by marking as occupied any
event that is in the out-component of at least one event with
time −∞ < t < t0. This can be accomplished by running
the in-component size estimation algorithm [45] once over
the whole network, recording minimum observed time in in-
component of each event and marking those with minimum
in-component time smaller than t0 as occupied. In practice,
temporal networks are only recorded or generated for a finite
window of time tmin < t < tmax. As there are no adjacency
relationship between events more than δt apart temporally,
any event that has at least one event in its in-component
with time tmin < t < tmin + δt can be considered occupied.
Figure 1(d) shows all occupied events (dark gray) with the
initial condition that assumes all nodes are occupied from
−∞ < t < 0. The density of occupied events, which corre-
sponds to particle density ρ(t ), can be estimated from the
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event graph representation by the number of occupied nodes
in a band of time divided by the area covered by the band, i.e.,
number of nodes multiplied by the width of the band.

Normally, calculating the effects of an external field h
would require simulating a fully occupied initial condition,
marking some nodes randomly selected with rate h as occu-
pied, computing their out-components, and measuring how
many new events got occupied. As we are interested in the
effects of a minuscule positive external field, indicated by
susceptibility χ (τ, 0), we can instead calculate the effects
of spontaneously marking exactly one random event in the
whole network as occupied using probabilistic counting and
in-components of all events (i.e., looking back in time). If the
number of events in the in-component of an event e is denoted
as |E in(e)| and the minimum time among all events in its
in component as t in

min(e) = min(u,v,t )∈E in (e) t , then the expected
number of spontaneously occupied events when a minuscule
external field h is applied can be estimated as

∑
e∈E Poccupied(e)

where

Poccupied(e) =
{

1 if t in
min(e) < t0

|E in (e)|
|E| otherwise

. (7)

In this scenario, the respective value for the external field
that would spontaneously occupy on average one event is
proportional to h ∝ 1/|E |. We approximate ρ(t ) by number
of occupied events within a δt time window divided by spa-
tiotemporal hypervolume of the time window δt × |V|. The
estimate for ρ(t ) can in turn be used to approximate quantities
like stationary density ρstat (τ ) and susceptibility χ (τ, h).

III. RESULTS

A. Experimental setup

In this section, we focus on validating and exploring the
limits to our hypothesis that δt limited-time spreading in many
forms of temporal networks belongs to the directed percola-
tion universality class. We do this by performing single-seed
and homogeneous initial-condition spreading simulations fol-
lowing the method defined in Sec. II A and explained in detail
in Sec. II B. By measuring various observables for networks
of different sizes as described in Sec. I B 2, we can verify
whether for each quantity the corresponding universal scaling
functions collapse for systems of different finite sizes when
using the same values of critical exponents β, β ′, ν‖, and ν⊥
as that of DP corresponding to the dimensions of the system as
a previous mean-field approximation and experimental setups
for the directed percolation.

The experiments are performed on a variety of synthetic
temporal networks. The generation procedure consists of gen-
erating a static base network corresponding to the aggregate
network and generating events, i.e., activations or timestamps,
for each link based on some temporal dynamic. In total,
we analyzed 26 combinations of base networks and link-
activation processes. In order to perform the finite-size scaling
analysis, we computed all the statistics for 10 network sizes,
starting from N = 28 nodes and increasing the size by a
factor of two until we reached N = 217 nodes. For the case
of d-dimensional square grids where d ∈ {2, 3, 4}, however,
closest powers of d to the powers of two from 28 to 217 was

used with a periodic boundary condition, to provide spatial
translational invariance. Each statistic was calculated as the
average of at least 256 (up to 4096) realizations and each
realization of the largest configuration consists of around
3.7 × 107 events. No sampling of spreading scenarios was
required for each network’s realization, as the effect of start-
ing a spreading process from any possible combinations of
nodes and times could be gathered in one pass as described in
Sec. II B. See the Supplemental Material [79] (which includes
Refs. [80–86]) for a more detailed overview of the experimen-
tal setup.

Static base networks are either (a) one to four-dimensional
square lattice grids with periodic boundary conditions, (b)
random regular graphs with specified average degree [87,88],
or (c) Erdős–Rényi G(n, p) random networks with specified
expected average degree [89]. For the random networks, we
chose the average degrees 8 for the Erdős–Rényi graphs and
9 for the random regular graphs (such that both networks
have the same expected excess degree). The higher degrees
of random networks ensure that the probability of generating
networks with large isolated components remains negligible
and that, even locally, the network would be of high-enough
dimensionality to be in the mean-field regime above the upper
critical dimension dc = 4.

Temporal dynamics of the links are either governed by
(a) Poisson processes, i.e., exponential interevent times; (b)
bursty processes, i.e., renewal processes with power-law in-
terevent time distributed as ∝ �t−γ with exponents γ ∈
{2.05, 2.2, 2.8, 5.2} and minimum interval cutoff set so that
the expected interevent would be equal to 1; and (c) Hawkes
independent self-exciting processes with different parameter
sets. The Hawkes univariate exponential self-exciting pro-
cess [90] is defined by the conditional intensity function

λ∗(t ) = μ + αθ
∑
ti<t

e−θ (t−ti ). (8)

The parameters of this formulation of the Hawkes process are
(1) background (or exogenous) intensity of events μ indicat-
ing the random probability of events happening without being
caused through self-excitement; (2) the infectivity factor α,
which can be interpreted as the expected number of induced
self-exciting events per each event; and (3) the rate parameter
of the delay θ . Based on the properties of exponential kernel
used in defining Eq. (8), 1/θ is the expected interevent time
between an event (e.g., a coincidental social interaction) and
its corresponding induced self-exciting event (e.g., the follow-
up social interactions) [91].

As the unit of time is arbitrary, temporal processes are
scaled, without loss of generalization, so that they produce
timestamps with a mean interevent time equal to 1. The pro-
cesses are initialized in their stationary state, and in practice,
the first timestamp for each event is generated through resid-
ual time distribution of each process, except for the case of
Hawkes process where the process is allowed a burn-in time
equal to the simulation time window before the first times-
tamp is recorded. The temporal processes of pairs of links
are simulated independently of each other. Figure 2 shows
a visualization of the different methods of generating event
activations. Temporal networks were simulated for a time
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FIG. 2. Sample timestamps from a single realization (activations
of a single link) with different temporal dynamics. Each point repre-
sents a single activation at a specific time. The points are scattered
over the vertical axis to avoid overlaps in the visualization. All
timestamps were generated for 256 units of time with parameters or
minimum cutoffs that would result in an expected interevent time of
1. Equation (8) defines the parameters and the intensity function of
the Hawkes univariate exponential self-exciting process.

window of at least T = 64 and up to T = 8192 units of time.
See Supplemental Material [79] for the exact experimental
setup for each system size. The difference in system sizes
and time windows for the simulations were necessitated by
the limitations and optimal utilization of the computational
facilities.

B. Estimating the critical threshold δtc and
the critical exponents β, β′, ν‖, and ν⊥

Best estimate of the critical exponents β, β ′, ν‖, ν⊥ and
critical threshold δtc can be determined by finding the values
of these exponents that would produce the best data collapse
for the universal scaling functions corresponding to ρ(t ), P̂(t ),
M(t ), and V (t ). The quality of collapse, in turn, can be as-
sessed by comparing the deviation of the scaling function
curves for different system sizes from the average trajectory.
Here, for each of the quantities P̂(t ), ρ(t ), M(t ), and V (t ),
we calculated one trajectory for finite-size scaling function
for each system size, as defined for example for the case of
ρ(t ) by Eq. (6). As the tested value of critical exponents and
δtc gets closer to the actual critical threshold, the curves for
different sizes should more closely collapse on top of each
other. Plotted with the correct values of critical exponents and
critical threshold, we expect to see all trajectories collapse into
one with the possible exception of very small values of t . To

FIG. 3. Root-mean-square (logarithmic) deviation of scaling-
corrected functions of probability of survival P̂(t ), density ρ(t ), mass
M(t ), and volume V (t ) for different system sizes from average tra-
jectory shows a sharp drop at δtc due to data collapse. Each instance
of the network is made through realizations of (a) Erdős–Rényi static
network 〈k〉 = 8 and Poisson process λ = 1 activations; (b) random
9-regular networks with bursty (power law with minimum cutoff)
interevent time distribution with mean 1 and exponent γ = 2.8;
(c) Erdős–Rényi static network 〈k〉 = 8 and Hawkes univariate ex-
ponential self-exciting process with parameters μ = 0.2, α = 0.8,
and θ = 1.0; and (d) one-dimensional grid with periodic boundary
conditions (a circle) and Poisson process λ = 1 link activations.
Refer to Sec. III A for the definitions of the parameters.

quantify the quality of a collapse, we measure the mean curve
in the area where all system sizes have defined values for
the scaling function and measure the root-mean-square differ-
ence of all points from all system sizes to the mean curve. The
errors were measured after logarithmically scaling the values
to account for the power-law nature of the scaling functions.
Sum of errors for the collapse of P̂(t ), ρ(t ), M(t ), and V (t )
was used in evaluating each set of parameters.

In order to assess collapse of the universal scaling func-
tions, we first determine a value for δtc for each network
configuration. That is, the best candidate for δtc is selected
based on the least total error for collapse of P̂(t ), ρ(t ), M(t ),
and V (t ) assuming DP critical exponents. Figure 3 shows this
total error of collapse for two network configurations. This
shows is a clear minimum for each configuration indicating
the critical value δtc, which is consistent across P̂(t ), ρ(t ),
M(t ), and V (t ) trajectories. The resulting estimates for δtc can
be used to visually verify directed percolation critical expo-
nents and our selected optimal value of δtc for each system by
plotting the finite-size universal scaling functions of different
system sizes. In total, we produce collapses for eight charac-
teristic quantities measured in a single source or homogeneous
initial conditions. Figure 5 shows these collapses measured for
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FIG. 4. Total error of collapse of universal scaling functions of
M(t ), V (t ), P̂(t ), and ρ(t ) for Erdős–Rényi networks 〈k〉 = 8 and
Poisson process activation λ = 1 as a function of β and β ′. In
these visualizations we set ν⊥ = 0.5, ν‖ = 1, and δtc = 0.08421,
and vary one of these parameters such that the three panels from
left to right correspond to values (a) ν⊥ ∈ {0.34, 0.5, 0.66}, (b) ν‖ ∈
{0.84, 1, 1.16}, and (c) δtc ∈ {0.0840, 0.08421, 0.0844}. Note that
the center panel is repeated across the rows and always has parameter
values ν⊥ = 0.5, ν‖ = 1, and δtc = 0.08421. We see that there is a
minimum in the error close to β = β ′ = ν‖ = 1 and ν⊥ = 0.5 within
this five-dimensional space.

regular networks with bursty dynamics (renewal process with
power-law interevent times) and Erdős–Rényi networks with
a Hawkes self-exciting process dynamics. The full set of plots
for all 26 configurations are shown in the Supplemental Mate-
rial [79]. In all cases, a satisfactory collapse can be observed
for at least probability of survival P̂(t ) and density ρ(t ) and in
most cases, other quantities show a good collapse as well. It is
important to note that quantities that depend on measuring val-
ues as time approaches infinity, e.g., ρstat(δt ) and χ (δt ) have
generally lower quality of measurement and collapse since the
time to reach a stable value for these increases substantially
close to criticality [46].

Table I (column “Est. δtc”) shows our best estimate of the
critical threshold δtc for each configuration using the method
described above. As the systems become rapidly more and
more connected after the critical threshold, a lower value
for the critical threshold δtc indicates higher, or more ro-
bust, spatiotemporal connectivity, meaning that the same δt
limited-time spreading would result in a larger number of
reachable nodes, V (δt ), or larger number of reachable events,
M(δt ). When modeling infectious disease spreading as di-
rected percolation on temporal networks, larger values for
V (δt ) and M(δt ) may indicate larger epidemic sizes and the
total number of human hours of infection in the population,
respectively.

These results indicate that within each spatial configura-
tion, increased burstiness (as indicated by lower value for the

power-law exponent γ ) generally leads to a lower value for δtc
threshold and higher connectivity. Furthermore, for the case
of the self-exciting process, increasing the expected number
of self-induced events, as indicated by α, generally results
in a lower value for δtc (higher connectivity). While it was
previously understood that a wide range of temporal inho-
mogeneities slows down spreading processes over temporal
networks [13], these results demonstrate that certain temporal
inhomogeneities, e.g., a highly bursty or self-exciting tem-
poral dynamic, can enable a more limited spreading agent
(expressed in terms of a maximum waiting time) to spread to
a wider set of nodes. For example, spreading processes with
maximum waiting time between 0.063 < δt < 0.084 over an
Erdős–Rényi networks 〈k〉 = 8 will spread to a much larger
set of nodes and span a longer span of time if the link acti-
vations are highly bursty (γ = 2.05) compared to a Poisson
process with the same mean interevent time, as the latter
will be spreading in the subcritical regime compared to the
supercritical regime for the former.

It is also interesting to note that while the random spa-
tial configurations, namely random 9-regular networks and
the Erdős–Rényi networks 〈k〉 = 8, both result in networks
with the same expected excess degree value, the Erdős–Rényi
networks with higher levels of spatial inhomogeneity, which
manifests as a wider spread degree distribution, can be ob-
served to have a lower δtc critical threshold. While testing on
a wider range of spatial (structural) inhomogeneities would be
required before a conclusion is reached, these results might
hint at a similar behavior as with temporal inhomogeneities,
namely that introducing certain spatial inhomogeneities might
result in higher connectivity in the sense that the same limited-
time spreading agent can eventually spread to a wider share of
the network.

Additionally, we present a method to assess the quality of
a collapse for a range of different values of critical exponents
(β, β ′, ν‖, and ν⊥) and δtc. A five-dimensional grid search
for optimal values for critical exponents and δtc based on
the quality of collapse for P(t ), ρ(t ), M(t ), and V (t ) shows
that the total error declines around critical exponent values
close to that of directed percolation, i.e., β = β ′ = ν‖ = 1
and ν⊥ = 0.5 for mean-field regimes and their respective
DP values for lower-dimensionality square grid networks.
Figure 4 shows for Erdős–Rényi static networks with 〈k〉 = 8
and Poisson process link activation, the β × β ′ plane from the
five-dimensional grid search with two sandwiching parallel
planes along each of the ν‖, ν⊥, and δtc dimensions. This ver-
ifies that there is a minimum close to β = β ′ = ν‖ = 1, ν⊥ =
0.5, and δtc = 0.08421 for total error of collapse of P(t ),
ρ(t ), M(t ), and V (t ). Similar plots for some other network
configurations (along with a different two-dimensional slice,
ν‖ × ν⊥) can be viewed in the Supplemental Material [79].
It is important to note that while other combinations of pa-
rameters in the grid might lead to other local optima, visual
inspection of the resulting collapse show that to be mainly
numerical artifacts where the total error changes rapidly close
to extreme values of the parameters (i.e., critical exponents
and δtc) where only a very small fraction of the trajectories
for different finite sizes actually overlap.

Furthermore, for each of the critical exponents, we can
measure an estimation error based on this five-dimensional
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FIG. 5. Universal scaling functions for δt limited-time reachability over [(a), (c), (e), (g), (i), (k), (m), and (o)] random 9-regular network
with bursty (heavy-tail with minimum value cutoff) link activation with mean interevent time of 1 and exponent γ = 2.8 and [(b), (d), (f),
(h), (j), (l), (n), and (p)] random Erdős–Rényi network 〈k〉 = 8 with Hawkes univariate exponential self-exciting process link activation with
parameters μ = 0.2, α = 0.8, and θ = 1.0. The finite-size scaling is performed for the following single-source scenarios: [(a) and (b)] The
mean component mass M as function of δt close to critical point and [(c) and (d)] as function of time t at the critical point, [(e) and (f)] the
mean component volume V as function of δt close to critical point, and [(g) and (h)] as function of time t at the critical point and [(o) and
(p)]. Survival probability P̂ as function of time t at the critical point. For fully occupied initial conditions the finite-size scaling is performed
for [(k) and (l)] the occupation density ρ as function of time t at the criticality, and both [(i) and (j)] the static density ρstat and [(o) and (p)]
susceptibility χ as function of δt close to the critical point. The collapse of the universal scaling functions validates the hypothesis that these
systems are governed by the same critical exponents as in directed percolation in the mean-field regime. See Sec. III A for the full definitions
of the parameters.

parameter grid. For each exponent, we find a range of values
where, assuming that all other exponents are fixed at their DP
values, would produce collapses of higher or equal quality
compared to the DP value of that exponent. The sizes of
these ranges, which by definition includes the DP value for
all exponents, provides a confidence interval for the range of
possible exponent values that are able to explain the behavior
of the system with at least the same quality as that of directed
percolation. As shown in Table I, these errors are in most
cases only a few percentages, with a notable exception of the
highly bursty renewal processes with γ = 2.05. Simulating
power-law distributions becomes a much harder problem as
the magnitude of the exponent approaches 2. Close to this
exponent, it takes a larger and larger number of realizations for
the properties of the population, e.g., average interevent time
for bursty temporal dynamics, to converge. It is also possible
that the large estimation error is an indicator that the system is
approaching a breakdown of one of the key symmetries, with
the most likely candidate being rapidity-reversal symmetry
based on the fact that the estimation error for β ′ is much larger
than that of the other exponents.

C. Estimating critical exponents by simulating very
large systems

As discussed before in Sec. I B, the effects of the finite size
of the system manifest at characteristic times t f ∝ Nν‖/dν⊥ in
the form of fluctuations that causes the transition of the system
to the absorbing phase. At times much smaller than t f the sys-
tem shows approximately the scaling behavior of an infinitely
large system where at criticality, ρ(t ) ∼ t−α and P̂(t ) ∼ t−δ

where α = β/ν‖ and δ = β ′/ν‖. On the other hand, the power-
law scaling behavior becomes visible at times comparable to
the mean interevent time of the dynamic process but not up to
arbitrarily infinitesimal values of t . Given these properties, we
fitted two power-law functions using the least-squares method
to the results of experiment with the largest system size for
the range of time 2 < t < 0.04 × Nν‖/dν⊥ on ρ(t ) and P̂(t )
to derive exponent α and δ. Figure 6 shows one such fitting
for a system made from Erdős–Rényi networks with 〈k〉 = 8
and N = 217 nodes and bursty (power law with minimum
cutoff) interevent time distribution with mean 1 and exponent
γ = 2.8. Table I (columns Est. α and Est. δ) shows the best
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TABLE I. Column “Est. δtc” shows the best candidate for critical threshold δtc selected by minimizing the collapse error of the universal
scaling functions for probability of survival P̂(t ), density ρ(t ), mass M(t ), and volume V (t ) derived for different system sizes, assuming DP
exponents. The collapse error is measured by the sum of root-mean-squared deviation of logarithmically scaled trajectories for all four scaling
functions. For the best estimate for exponents α = β/ν‖ and δ = β ′/ν‖, reported respectively in columns “Est. α” and “Est. δ,” a power law
was fitted to the head of values of probability of survival P̂(t ) and density ρ(t ), respectively, for the largest system size simulated for the time
period between 2 < t < 0.04 × Nν‖/dν⊥ , where both functions are expected to be still mostly behaving, similar to an infinite system, according
to power relations t−α and t−δ respectively. Directed percolation mean-field values for these critical exponents are δ = α = 1, which is close
to the value estimated for random, high-dimensional networks. Furthermore, the value of these critical exponents in a DP system are expected
to be close to α = δ = 0.15946 for 1+1 dimensional, α = δ = 0.450 for 2+1 dimensional, α = δ = 0.732 for 3+1 dimensional and equal to
the mean-field estimates systems α = δ = 1 for 4+1 dimensional [46], which is close to values estimated for one-dimensional lattice and two-
to four-dimensional square lattices.

Configuration Est. δtc β Error β ′ Error ν‖ Error ν⊥ Error Est. α Est. δ

Erdős–Rényi 〈k〉 = 8
Poisson 0.08421 0.01 0.01 0.06 0.03 1.0702 1.0338
Bursty
γ = 2.05 0.06231 0.06 0.17 0.08 0.09 1.0110 0.9816
γ = 2.2 0.08013 0.02 0.05 0.04 0.03 1.0320 1.0285
γ = 2.8 0.08649 0.01 0.01 0.05 0.01 1.0625 1.0368
γ = 5.2 0.08655 0.01 0.01 0.06 0.02 1.0540 1.0499

Hawkes self-exciting
μ = 0.2 α = 0.8 θ = 0.5 0.0815 0.01 0.04 0.07 0.03 0.9929 1.0015
μ = 0.2 α = 0.8 θ = 1.0 0.07932 0.02 0.06 0.06 0.04 1.0185 0.9747
μ = 0.5 α = 0.5 θ = 0.5 0.08339 0.01 0.03 0.05 0.02 1.0791 1.0328
μ = 0.5 α = 0.5 θ = 1.0 0.08281 0.01 0.04 0.07 0.03 1.0311 1.0116
μ = 0.8 α = 0.2 θ = 0.5 0.08397 0.01 0.01 0.07 0.02 1.0542 1.0246
μ = 0.8 α = 0.2 θ = 1.0 0.08383 0.01 0.02 0.07 0.02 1.0251 1.0087

Random 9-regular
Poisson 0.08808 0.03 0.05 0.05 0.02 1.0096 0.9947
Bursty
γ = 2.05 0.06484 0.08 0.17 0.11 0.08 0.9752 0.9660
γ = 2.2 0.08413 0.04 0.05 0.05 0.03 1.0044 0.9825
γ = 2.8 0.09046 0.02 0.03 0.05 0.02 1.0190 0.9874
γ = 5.2 0.09049 0.02 0.02 0.07 0.01 0.9886 0.9755

Hawkes self-exciting
μ = 0.2 α = 0.8 θ = 0.5 0.0853 0.05 0.06 0.06 0.03 0.9982 0.9686
μ = 0.2 α = 0.8 θ = 1.0 0.08303 0.02 0.06 0.08 0.04 0.9680 0.9564
μ = 0.5 α = 0.5 θ = 0.5 0.08728 0.02 0.03 0.06 0.02 1.0094 0.9702
μ = 0.5 α = 0.5 θ = 1.0 0.08663 0.02 0.05 0.09 0.03 0.9861 0.9664
μ = 0.8 α = 0.2 θ = 0.5 0.0879 0.05 0.01 0.12 0.01 0.9901 0.9563
μ = 0.8 α = 0.2 θ = 1.0 0.08769 0.04 0.05 0.06 0.03 0.9936 0.9796

1D lattice
Poisson 0.9919 0.01 0.03 0.01 0.03 0.1583 0.1456

2D square lattice
Poisson 0.28428 0.01 0.08 0.03 0.01 0.4109 0.3922

3D square lattice
Poisson 0.15375 0.01 0.06 0.02 0.01 0.7229 0.6899

4D square lattice
Poisson 0.1045 0.02 0.03 0.03 0.02 1.0077 0.9870

estimates of these exponents, which as expected are very
close to respective directed percolation critical exponents of
1 (for the mean-field regime d � 4) for the case of random
networks and 0.159, 0.450 and 0.732 for one-, two-, and
three-dimensional lattices respectively [46].

IV. DISCUSSIONS

Through combining multiple methods of empirical and
theoretical verification, we are able to confidently state that
limited waiting-time connectivity percolation over a wide

range of synthetic temporal networks incorporating a range
of temporal and topological inhomogeneities show behavior
compatible with the directed percolation universality class.
It is of utmost importance to discuss the limitations of our
method: chief among them, that our empirical finite-size
simulation method, as described in Sec. II B, is not able to
measure quantities which are defined at t → ∞, such as
the ultimate probability of survival Psurv and static density
ρstat (and therefore susceptibility χ ) to the same standard
of accuracy as the other quantities due to the finite size of
the synthetic networks used for analysis. This is exacerbated
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FIG. 6. An example of fitting power-law functions on empirical
ρ(t ) and P̂(t ) results on finite networks for deriving critical expo-
nents α = β/ν‖ and δ = β ′/ν‖. Power-law functions were fitted on
experimental results of spreading over Erdős–Rényi networks with
〈k〉 = 8 and N = 217 nodes and bursty (power law with minimum
cutoff) interevent time distribution with mean 1 and exponent γ =
2.8. The fitting was performed on values in range 1 < t < 0.04 ×
Nν‖/dν⊥ (i.e., 1 < t < 14.48) to limit the interference of finite-size
effects with the scaling behavior.

close to the critical threshold where the equilibration time,
the time required for the network to reach a stationary state,
grows rapidly while the memory and computational cost of
simulating a temporally larger temporal network grow linearly
and log-linearly, respectively, with the increased simulated
time [46]. This is visible in Figs. 5(e), 5(f) 5(k), and 5(l) as
a worse collapse as compared to other quantities.

Also, while it is computationally much more feasible to
measure susceptibility χ by inducing occupation of exactly
one existing event in the temporal network (described in
Sec. II B) as compared to inducing occupation of nodes at
random times (as described in Sec. I B), the latter method
might be more robust, especially when dealing with a tem-
poral network with a high degree of temporal inhomogeneity.
Although our experiments with this alternative method were
limited to smaller system sizes, we could not observe any sig-
nificant difference between the two methods for the network
configurations presented in this manuscript.

While a wide range of temporal dynamics and network
structures with different levels of inhomogeneity are studied
here, there is still a wide variety of systems that present
computational and theoretical challenges. First, the effects of
event-event correlations between links are not studied. It has
been shown that event-event correlations, among other forms
of inhomogeneity, can affect the rapidity of the spreading
process on temporal networks [13]. Conceptually, local event-
event correlations such as temporal motifs [29], are close to
temporal event graphs, which are in practice computed using

isomorphisms on slightly modified temporal event graphs.
Thus, incorporating temporal motifs to the framework at the
level of analytical computations is an interesting future di-
rection, as that corresponds to modifying the frequency of
appearance of structural motifs in the event graphs. Second,
the effect of static base networks with heavy-tail degree dis-
tributions and other more complicated network topologies
are absent from this study. Here, of especial interest are the
networks with heavy-tailed degree distribution with static
network reachability percolation threshold at zero occupied
links, e.g., p(k) ∝ k−2. While initial results did not support
the conclusion that a δt limited waiting time over this class of
synthetic temporal networks would be in the directed perco-
lation universality class, due to limitations on computational
resources, we were not able to perform the analysis on the
larger system sizes comparable to the other types of networks.

Depending on the physical mechanism involved in the
modeled connectivity phenomenon or spreading process, al-
ternative methods of defining the adjacency relationship might
be more suitable than the one used here. For example, for the
case of disease spreading over a physical contact network,
the currently used definition of event graph causes a “rein-
fection” of the infected party, manifested as a restart of their
δt duration of disease. This can be resolved by substituting
each undirected event in the temporal network with two si-
multaneous directed events. Similarly, for a disease spreading
scenario over transportation networks, such as an airplane
traffic network, the time between two events (the value that is
compared to the maximum duration of disease δt to determine
whether two flights are adjacent) should be calculated from
the departure of one flight to departure of the possibly adjacent
flight and not, as it is currently presented, from the arrival of
the latter to the departure of the former. This might be an
important factor when dealing with scenarios in which the
reasonable values for δt are comparable to the delay or the
duration of the events, e.g., the time from the departure of a
flight to the arrival in a spreading process over an air transport
network.

For some spreading mechanisms, it might also be more
suitable to replace the hard δt limited-time cutoff of adjacency
requirement used in this work with a probabilistic process by
measuring quantities over an ensemble of event graphs. For
example, using a Poisson process instead of a δt limited-time
cutoff would produce dynamics similar to simulations of SIS
processes over networks while simulating results of the sim-
ulation starting at every possible starting point in one pass.
Viewed this way, normal δt limited-time cutoff can be seen as
a probabilistic process where the probability of adjacency is
a step function at �t = δt . It is also possible to combine an
occupation probability similar to classic directed percolation
(see Sec. I B) with a δt limited-time cutoff (or a Poisson pro-
cess cutoff or other forms of temporal locality constraint) to
construct a two-dimensional phase diagram for each temporal
network.

It would also be possible to define connectivity in the event
graphs in a way that mimics the SIR process. In this case, one
would need to prune some of the temporal paths in the event
graph such that temporal network nodes are not repeated. This
distinction is equivalent to paths and simple paths (or walks
and paths, respectively) in static graphs. The algorithmic
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techniques employed in this work are not directly applicable
to this case, and in fact, it has been recently shown that
algorithmic problems in such settings can be computationally
difficult. For example, in the SIR interpretation of the event
graph, finding if it is possible for a node infected at a specific
time to infect a given node is an NP-hard problem [92]. In
any case, averaging over explicit simulations of spreading
scenarios is always an alternative option to the algorithms that
take advantage of the redundancies in computing reachability.

Connectivity, which encapsulates several important phe-
nomena on complex systems such as spreading pro-
cesses [37–39] and routing dynamics [44], has not yet
undergone the same level of development on temporal net-
works as the static networks. It has been previously suggested
that connectivity on temporal networks, or other adjacent rep-
resentations such as dynamic networks, might show the same
properties as any other directed percolation system [20,21],
a class of percolation models with built-in directionality
which has enjoyed abundant attention in the past decades.
In Ref. [22], we laid formal foundations by providing one-
to-one analogues between concepts from directed percolation
and temporal network connectivity and provided theoretical
evidence supporting this hypothesis. In this work, we pre-
sented multiple accounts of empirical evidence showing that
connectivity on many model temporal networks belongs to the
directed percolation universality class and that this hypothesis
is robust for a range of temporal and spatial heterogeneities.

This work focused mainly on establishing the vocabulary
and developing the required tools in the hopes of rendering
studies of connectivity in temporal networks ripe for future
analysis, especially from a critical phenomena perspective.
It is important to note that this work has only scratched the
surface of the analytical study of connectivity on temporal
networks and still, a vast body of analytical and phenomeno-
logical topics, some of which were eluded to in the previous
paragraphs, remains open for future study.
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APPENDIX: MEAN-FIELD SOLUTION FOR DIRECTED
PERCOLATION IN TEMPORAL NETWORKS

The event graph representation contains many redundant
adjacency relationships, e.g., triangles, or more generally
feed-forward loops, that can be removed without changing
reachability of nodes, producing a reduced event graph [22].
Assuming the probability of two or more adjacent events
happening at exactly the same time is negligible, the reduced
event graph, a subset of the event graph with exactly the same
reachability properties, has a maximum in- and out-degree of
2 [22,25]. If we make the simplifying assumption that the
reduced event graph representation of δt limited waiting-time

spreading process on a specific temporal network is indistin-
guishable from a random directed network with the same joint
in- and out-degree distribution P(kin, kout ), then a mean-field
solution to order parameter occupation density ρstat for a δt
limited-time spreading process over temporal networks, as
defined in Sec. II A, can be derived in the form

∂

∂t
ρ(t ) = (〈Qout〉 − 1)ρ(t ) − 〈Qout〉ρ(t )2, (A1)

where 〈Qout〉 is the mean excess out-degree of the reduced
event graph [22]. This rate equation has the same form as
Eq. (1). The solution to this equation shows a phase transition
at τc = 0 and other behavior consistent with τ = 〈Qout〉 − 1
being the control parameter of directed percolation. As with
Eq. (1) this sets two of the four critical exponents in the
mean-field regime to the same values as those of mean-field
DP, α = β = 1.

Under the same assumption, the probability-generating
function representation of the out-degree distribution is
Gout

0 (y) = G(1, y) where G(x, y) is the joint in- and out-degree
distribution probability-generating function. Similarly, the ex-
cess out-degree distribution probability-generating function
can be defined as

Gout
1 (y) = 1

〈kEG〉
∂

∂x
G(x, y)|x=1, (A2)

where 〈kEG〉 = ∂
∂x G(x, y)|x=y=1 = ∂

∂y G(x, y)|x=y=1 is the
mean in- or out-degree on the event graph. This can
be used to derive the out excess-degree distribution as
Qout

i = ∂ i

i!∂yi Gout
1 (y)|y=0.

Making the same assumption as above, namely that the
event graph representation is indistinguishable from a random
directed network with the same joint in- and out-degree distri-
bution P(kin, kout ), we can derive the mean cluster mass, which
as discussed in Sec. II A can be calculated as the number of
reachable events or mean out-component size on the event
graph, as

M = 1 + 〈kEG〉(−τ )−1 = 〈kEG〉 − τ

−τ
, (A3)

which has a power-law asymptote at τc = 0 of the form M ∼
−τ−1 which confirms the mean-field DP exponent γ = 1 [22].

Deriving a closed-form solution for τ becomes pro-
hibitively complex for many types of synthetic temporal
networks that involve even the slightest traces of spatial or
temporal inhomogeneities and require many simplifying ap-
proximations of the structure of networks. As the nature of the
assumption are similar to the ones we used while showing the
critical exponents in the mean-field regime, this alone would
not be productive as a mean to validate or refute the previous
theoretical claims for networks with heterogeneous structure
or dynamics. Therefore, we complemented these analytical
derivations of τ (from Sec. A 1) and the critical exponents
(from the mean-field approach of Ref. [22] and the current
section) with measurements derived from simulations. While
it would be possible to measure τ from the simulated event
graphs, we elected to use δt − δtc as a stand-in for control
parameter τ , similar to how p − pc was used in Sec. I B for
lattices. Very close to the critical threshold τ → τc, δt − δtc
linearly approximates the control parameter τ , which would
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preserve the power-law relationships mentioned before at least
for some neighborhood of τ = τc = 0. δt is simply a pa-
rameter of the simulation and δtc can be derived empirically
for each configuration, either by trial and error or through
the finite-size scaling method described in Sec. I B 2. This
means that, by virtue of not relying on the methods and
assumptions presented previously, we can provide a clean sep-
aration between the empirical validation and our theoretical
assumptions.

It is possible to find a closed-form solution for τ for very
simple systems, such as the case of random k-regular networks
with Poisson process link activations. This, however, entails
making simplifying assumptions about the structure of the
event graph. The results of this derivation and the comparison
with empirical measurements follows in Sec. A 1.

1. Solution for random k-regular static base networks
with Poisson link activation

For the case of random k-regular static base networks and
Poisson process activation of links with mean interevent time
λ, we were able to analytically derive a closed-form solution
of the control parameter τ as a function of δt , k, and λ. To
this end, it is necessary to derive the joint degree distribution
probability-generating function G(x, y) of the event graph
based on the excess degree distribution of the base random
k-regular network and the Poisson process [22]. This leads to
a formulation of out-degree and excess out-degree distribution
probability-generating functions of the form

Gout
0 (y) = Gout

1 (y) = −2(k − 1)(y − 1)yeδt (−k)λ

k

+ (y − 1)(2k(y − 1) − 2y + 1)eδt (1−2k)λ

2k − 1

+ y(2(k − 1)2y + 3k − 2)

k(2k − 1)
. (A4)

This in turn, based on relation τ = 〈Qout〉 − 1 = G′out
1 (1) − 1,

produces

τ = (4k2 − 6k + 2)eδt (−k)λ + keδt (1−2k)λ − 2(k − 1)2

(1 − 2k)k
.

(A5)
Figure 7(a) shows the relationship between the theoreti-

cally derived value of the control parameter τ from Eq. (A5)
for different random k-regular networks with a Poisson pro-
cess with mean interevent time fixed to 1. As expected, a
denser network has a lower onset of criticality in terms of the
maximum waiting time δt . Furthermore, a linear approxima-
tion of τ ∝ δt − δtc works quite well for these systems for the
neighborhood close to τ = 0 given the lower curvature for at
least the immediate surrounding of τc.

Given that, for the event graph representation of an in-
finite random k-regular networks with a Poisson process
activation configuration the out-degree and the excess out-
degree distributions are equal, as derived in Eq. (A4) [i.e.,
Gout

0 (x) = Gout
1 (x)], Eq. (A3) simplifies to M = −τ−1 for τ <

0. Figure 7(b) compares this analytical solution of mean

FIG. 7. (a) Theoretically derived value of control parameter τ as
a function of δt as given in Eq. (A5) for random k-regular networks
with Poisson processes link activation with λ = 1. The intersection
with the horizontal line at τ = 0 indicates the predicted critical
value δtc. (b) The analytical solutions for mean out-component size
M = (−τ )−1 as a function of δt compared to empirical measurement
of M(δt ) over 256 realizations of large (N = 217) finite network for
random 9-regular networks in the absorbing phase δt < δtc. Also
visualised is the effect of using δt − δtc as an approximation of
control parameter τ , which shows similar behavior close to δtc.

out-component size (calculated with the assumption of the
randomness of the event graph) with empirical measurements
of a large network. Note that, for k = 9, our best empirical
estimate for δtc, δt empirical

c = 0.08808, compared to the esti-
mate from the analytical method, δt theoretical

c = 0.08559, have a
difference of around 3%. This is also visible when comparing
empirical measurements of mean cluster mass M(δt ) and the
theoretical estimations for the system in Fig. 7(b). This can
be attributable to the fact that the rate equation Eq. (A1) is
constructed for temporal networks under the assumption that
the event graph is indistinguishable from a random directed
network with the same joint in- and out-degree distribution.
This difference seems to suggest that certain local structures
in the event graph are very slightly over-represented compared
to a random directed graph with the same degree distribution.
Also indicated by Fig. 7(b) is the fact that the power-law
behavior of the empirical trajectory with a critical exponent
of γ = −1 can quite easily be validated by using an empirical
estimation of δtc.
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