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Perfect cycles in the synchronous Heider dynamics in complete network
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We discuss a cellular automaton simulating the process of reaching Heider balance in a fully connected
network. The dynamics of the automaton is defined by a deterministic, synchronous, and global update rule.
The dynamics has a very rich spectrum of attractors including fixed points and limit cycles, the length and
number of which change with the size of the system. In this paper we concentrate on a class of limit cycles
that preserve energy spectrum of the consecutive states. We call such limit cycles perfect. Consecutive states
in a perfect cycle are separated from each other by the same Hamming distance. Also the Hamming distance
between any two states separated by & steps in a perfect cycle is the same for all such pairs of states. The states
of a perfect cycle form a very symmetric trajectory in the configuration space. We argue that the symmetry of the
trajectories is rooted in the permutation symmetry of vertices of the network and a local symmetry of a certain
energy function measuring the level of balance and frustration of triads.
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I. INTRODUCTION

We study dynamics of spin variables £1 defined on edges
of a complete graph on N nodes. The spins change in discrete
time according to the following synchronous update rule [1]:

si(t 4+ 1) =sgn Y suO)si;(t) Vi j. )

ki, j

Single indices i, j, k € {1, ..., N} refer to nodes. Pairs of
indices, like ij, refer to edges. Edges are undirected so ij is
equivalent to ji. There are no self-connections so by default
s;; = 0. For convenience we assume that N is odd. This im-
plies that the sum on the right-hand side of Eq. (1) is strictly
positive or negative. It is never zero.

The dynamics Eq. (1) is motivated by the idea of the Heider
balance [2] in social networks, where the variables s;; = 1
represent relationships between agents represented by nodes i
and j of the graph. The relationships can be either friendly
(+1) or hostile (—1). They are assumed to symmetric:
Sii = Sij.

! We i‘ecall that the iteration rule defined by Eq. (1) has been
designed in Ref. [1] as to reproduce the process of removal of
cognitive dissonance when observing interpersonal relations.
This is a kind of majority rule that adjusts the sign s;; of
an edge to the majority of signs of triangular complements
sieskj of that edge. If applied locally to one edge at a time,
then it greedily maximizes the number of balanced triads.
When comparing with literature, this is an unique formula
with symmetric links which can lead to relatively long limit
cycles (see Refs. [3—7]), although these cycles are not generic.
Now, if such an equation is designed for a heterogeneous net-
work, then this heterogeneity is expected to lead to a particular
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partition. In terms of symmetry, a fully connected network is
the most complex and therefore the most interesting.

This kind of dynamics is known to generically lead to a
final state where the system divides into two groups [3-7]
internally friendly but mutually hostile. Such states are termed
“balanced” [2]. Here we abstract from the sociological in-
terpretation [2] and focus on mathematical properties of the
dynamics itself. We are mainly interested in final states
reached during the evolution. In addition to “balanced” states,
which are fixed points of the dynamics, the dynamics can lead
to jammed states, which are also fixed points but they are
not balanced [3]. More interestingly, the dynamics also has
limit cycles of different lengths. The fixed points and limit
cycles can be used to classify states by basins of attraction
they belong to. The statistics of basins of attraction for small
systems was reported in Ref. [1]. The aim of the present paper
is to explore properties of limit cycles, in particular of perfect
limit cycles to be defined below.

II. OBSERVABLES

Let us introduce quantities that are useful in probing the
behavior of the system. It is convenient to define an energy
function

Us=— " syspsi= Y thijk )

i<j<k i<j<k

where u;jx = —s;;$jisw; is energy of triangle ijk. The triangle
energy is —1 when the triad ijk is balanced and +1 when it
is frustrated. Because edges are undirected, any permutation
of indices ijk corresponds to the same triangle. A balanced
state consists only of balanced triads. Energy of a balanced
state iS Upjn = —(lg). This is a global minimum of the en-
ergy function. A fully frustrated state has the energy equal
Upax = (g’ ). A fully frustrated state can be obtained from a
balanced state by flipping all spins s;; — —s;;. One can also
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define edge energy as a sum of energies of all triangles sharing

the edge
Ujj = Z Uijk 3
k

and similarly node energy as a sum of energies of all triangles

sharing the node
U = Z U;jk- €]

Jj<k

Clearly, >, u; = >_,_;u;j = 3U. Each triangle energy con-
figuration {u;jx}i<j<x has a 2N=1_fold degeneration meaning
that there are 2V~! distinct spin configurations having the
same triangle energies. One can obtain them from each other
by flipping all spins sharing a node. This operation does not
change triangle energies because it flips an even number of
spins in each triangle. This is a local gauge symmetry of
the system. This operation can be repeated for N — 1 nodes,
leading to 2V~! different spin configurations for every trian-
gle energy configuration. Note that the initial configuration
would be restored, if the gauge transformation was repeated
for all N nodes. Therefore “gauge orbits” consist of 2¥~! and
not 2V different spin configurations. We can define energy
spectra: triangle energy spectrum n, () is the number of tri-
angles having energy u, edge energy spectrum n,.(u) is the
number of edges having energy u, and node energy spectrum
n,(u) is the number of nodes having energy u. Formally we
can write 7, (1) = Zi<j<k Suu» Me(U) = ij Suuy; Ma(U) =
> uu; Where 8, 5 is the Kronecker 8. The energy spectra take
nonzero values from the range %1 for triangles, £(N — 2) for
edges and =(N — 1)(N — 2)/2 for nodes.

The proximity of spin configurations A and B can be mea-
sured by the Hamming distance

1
di (A, B) = 7 > Isij(A) = si;(B). 5)

i<j

Similarly one can define the Hamming distance between triad
configurations {u;;(A)} and {u; ; (B)}

1
DA, B) =7 ) lui(A) — (B, 6)

i<j<k

since triangle energies u;;;’s are also binary variables. The
Hamming distance Dy (A, B) is equal zero for A and B from
the set of 2V~! spin configurations having the same triangle
energies. It does not imply that A = B so Dy is not a distance
for spin configurations. Obviously dy (A, B) = 0 implies that
Dy (A, B) = 0, but not vice versa. We shall write A < B if
Dy (A, B) = 0, to denote gauge equivalent configurations.

We can use the Hamming distance Eq. (5) to mea-
sure proximity of consecutive configurations Ag — A} —
A, — ... generated by the synchronous dynamics Eq. (1)
and in particular to find fixed points and limit cycles of
the dynamics. A configuration A, such that dy (A, A;41) =0
is a fixed point of the dynamics. The minimal value c
such that dy(A;,A;+c) =0 is the length of a limit cy-
cle. The corresponding cycle consists of configurations
Ai,Arit, - - -5 Arpe—1- Initial configurations Ay of any se-
quence of configurations Ag — Ay — ... generated by the
dynamics Eq. (1) can be classified by a fixed point or limit

cycle of the sequence. With a limit cycle (or a fixed point) one
can associate a basin of attraction that is a set of initial states
Ap which lead to this limit cycle.

The update rule Eq. (1) can be written in the following way:

1= st oo = 350 00
)

If this update rule was applied asynchronously that is to one
edge at one time, then it would never increase energy, and
it would drive the system to a local energy minimum. We
are however interested in synchronous dynamics. In this case
more than one edge of a triangle can be updated simultane-
ously and in effect triangle energy and thus also energy of the
system can increase. The number of spins flipped in one step
of synchronous dynamics Eq. (1) is equal to the number of
positive u;;’s, so

dy (A, A) = ) Oluy (D] = ) ne(u, 1), (8)

i<j u>0

where ® is the Heaviside step function, and n.(u, t) is the
edge energy spectrum of the configuration A,. It follows that
A, is a fixed point of the dynamics, if all edge energies are
negative, that is n.(u,t) = 0 for u > 0. The edge spectrum
is said to be steady for r >ty if n.(u,t) = n.(u,t + 1) for
all u and ¢ > #. This just means that the spectrum does not
change for ¢ > #y. For steady spectra the time dependence
can be skipped n.(u,t) = n.(u). Fixed points have steady
spectra, but as we will see also some cycles have. We will
call such cycles perfect. The Hamming distance between any
two consecutive configurations of a perfect cycle is constant:
dy(A;, Ai41) = const, as follows from Eq. (8). In the next
section we will discuss examples of perfect cycles.

III. PERFECT CYCLES

Let us first consider the system for N = 9. This is a good
test site because the update rule Eq. (1) can be applied to
all 23¢ spin configuration using a computer program, so one
can test all configurations. Already for N = 11 the number
of configurations is too large for an exhaustive computation
for all configurations. We found that there are 967 680 cycles
of length ¢ = 12 for N = 9. An example of a configuration
belonging to a perfect cycle is

o -1 -1 -1 +1 -1 +1 +1 -1
—1 O -1 -1 +1 -1 41 +1 +I
-1 -1 o -1 -1 +1 +1 +1 -1
-1 -1 -1 o +1 +1 -1 -1 -1
s=|+1 +1 -1 +1 o -1 -1 -1 +1
-1 -1 +1 +1 -1 0o +1 -1 -1
+1 +1 +1 -1 -1 41 0 +1 +1
+1 41 +1 -1 -1 -1 41 0 +1
-1 +1 -1 -1 +1 -1 +1 +1 0

©)

A graphical representation of this state and remaining states
belonging to the perfect cycle is shown in Fig. 1. With a
naked eye it is rather difficult to see what makes these states
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FIG. 1. An example of a perfect limit cycle on a complete graph
on N = 9 nodes. The cycle consists of ¢ = 12 configurations. They
are drawn in the order they appear in the cycle. Edges for s;; = 1
are in red and for s;; = —1 in blue. Labels of vertices are not dis-
played. Vertices are numbered i = 1, ..., 9 clockwise, starting from
the vertex 1 on the top. The configuration in the left upper corner is
equivalent to that given by the matrix Eq. (9).

form a perfect cycle. The situation changes when the energy
spectra of these states are analysed, because then you can
observe that all states have constant spectra. Edge energy
spectrum is given in Table I. One can easily see that en-
ergy of the states is U = % >, un.(u) = —6, and the distance
between any two consecutive states in the cycle Eq. (8) is
dy(As,Asy1) = Zu>0 n.(u) = 18. Using a computer program
we have checked that configurations separated by two steps in
the cycle differ by a constant number of spins dy (A;, A1) =
22. Similarly, the distance between any two configurations
separated by three steps is constant dy (A;, A;+3) = 20. Gen-
erally we found that for any s the distance dy(A;, Arvs)
in the cycle is constant for all # as long as s is fixed.
For completeness, dy(A;, A;+s) = 10, 18, 20, for s = 4, 5, 6.
Also, dy(A;, As+s) is the same as for s — 12 £ 5. The plus
minus symmetry follows from the symmetry of the distance
function: dy (A;, Arys) = du (A5, Ar) = du(Ar, Ary).

Also the number of triangles by which A, and A, differ
is constant for all # when s is fixed, and it is Dy (A;, A;15) =
36,32,16,32,36,0fors =1,2,3,4,5,6.

Let us also mention some other features that are present
for all such cycles. There are six types of edges which
differ in the sequence of states: (1) 3 links remain con-
stant (+1 or —1) with energy E;; = —s;; Y, susSk; equal
to —7; (2) 4 links change 12 times, with E;; = +1; (3) 6
links change 4 times (s;; = 1,1, 1, —1, —1, —1 and cyclically,
E;j = —1, =5, +1 and cyclically); (4) 3 links change 8 times
(s;j =—1,—1,4+1 and cyclically, E;; = —1,+43,+3 and
cyclically); (5) 8 links change 6 times (s;; =1, 1, —1, —1 and
cyclically, E;; = —1, +1 and cyclically); (6) 12 links change
6 times (S,'j = —1, —1, 1, 1, —1, 1, 1, 1, —1, —1, 1, —I,Eij =
—1,+5, =3, +1, +3, —3 and cyclically.

Positions of states in the cycle are equivalent in the sense
that measuring relative changes to other states in the cycle you
are not able to distinguish the states. This equivalence must
be rooted in a symmetry of the system. There are two basic

TABLE I. Edge spectrum of states belonging to the perfect cycle
of length ¢ = 12 for N = 9.

u =7 -5 -3 -1 +1 +3 +5 +7

ne (1) 3 2 4 9 12 4 2 0

TABLE II. Each row contains a list of node energies of a con-
figuration of the cycle. The row in the table header numbers the
nodes, and the column on the left side numbers the successive cycle
configurations. The node energy spectrum is steady: n,(10) =1,
n,(—2) = 5 and n,(—6) = 3.

1 2 3 4 5 6 7 8 9

1 10 -2 -2 -6 -2 -6 -2 -6 =2
2 -6 -2 -2 -6 -2 =2 10 -6 -2
3 -2 -2 -2 -6 =2 10 -6 -6 2
4 10 -2 -2 -6 -2 -6 -2 -6 =2
5 -6 -2 -2 -6 -2 =2 10 -6 -2
6 -2 -2 -2 -6 =2 10 -6 -6 =2
7 10 -2 -2 -6 -2 -6 -2 -6 =2
8 -6 -2 -2 -6 -2 =2 10 -6 -2
9 -2 -2 -2 -6 =2 10 -6 -6 -2
10 10 -2 -2 -6 -2 -6 -2 -6 =2
11 -6 -2 -2 -6 -2 =2 10 -6 -2
12 -2 -2 -2 -6 =2 10 -6 -6 =2

symmetries that should be taken into account: the auto-
morphism of the complete graph, that is equivalent to the
permutation of indices of the complete graph, and the gauge
symmetry of spin configurations which preserves triangle en-
ergies. The hypothesis is that every configuration of a perfect
cycle can be obtained from the previous one by a permuta-
tion of indices and a gauge transformation of spins. This in
turn means that there exists a permutation w of indices such
that A, < w(A;). We have tested this hypothesis for N = 9.
Applying the update rule to the state Eq. (9), that we denote
by A;, we obtained a state A, ;. Then we have determined all
permutations 7’s such that A;1; < w(A;) by checking if the
condition

Dy[Ar1, m(A)]1 =0 (10)

is fulfilled. We have found that there are eight such permuta-
tions:

7.[1 = (77 37 27 47 97 1’ 67 87 5)7

m =(7,3,2,8,9,1,6,4,5),

7.[3 = (77 37 97 4’ 27 1’ 67 87 5)7

14 =1(7,3,9,8,2,1,6,4.,5),

7.[5 = (77 57 27 47 97 1’ 6? 87 3)7

6 =1(7,5,2,8,9,1,6,4,3),

7.[7 = (77 5’ 97 4’ 27 1’ 6? 87 3)7

ng =(7,5,9,8,2,1,6,4, 3). (11)
Renaming A, to A; and applying Eq. (10) we have again
found the same eight permutations. It turns out, that the
same eight permutations map any configuration onto the next
configurations in the cycle. The permutations can be deter-
mined by exhaustive search but such a procedure is inefficient
because there are 9! permutations. One can improve the
search using the information encoded in the node energy lists

of the configurations of the cycle, see Table II. By analyzing
migration of node energies in consecutive configurations of
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the cycle one can learn about the corresponding permutations
of indices which fulfill the condition Eq. (10). For example,
energy 10 moves from the position 1 to 7, from 7 to 6 and from
6 to 1. This means that the permutation has a cycle (7,6,1).
This in turn reduces the number of remaining permutations
to 6!. Further, by analyzing migration of remaining items
row by row in Table II, one can find other cycles and
reconstruct all the permutations Eq. (11). For completeness
we give the cycle decomposition of the permutations:
m = (7,6,1)3,2)(9,5), m =(7,6,1)3,2)(8,4),5),
m = (7,6,1)(3,9,5,2), m = (7,6,1)(3,9,5,2)(8,4),
ws = (7,6,1)(5,9,3,2), 7w = (7,6,1)(5,9,3,2)(@8,4),
w7 = (7,6,1)(5,2)(9,3) and g = (7, 6, 1)(5, 2)(9, 3)(8, 4).
We can use the result to calculate the number of the
corresponding cycles. Each cycle is represented by 12
tables like Table II. Twelve tables which differ by a cyclic
permutation of rows are equivalent, since for a cycle it does
not matter which configuration is listed first. Any permutation
of columns (nodes) produces a table with the same node
energy spectrum but possible with different positions on
the lists. The tables obtained by 9! permutations generically
correspond to different cycles, but not always. One has to
take into account that eight permutations Eq. (11) produce a
cyclic shift of rows in the table, as follows from the fact that
the effect of the these permutations is equivalent to applying
one step the dynamics Eq. (1). Thus permutations of indices
generate 9!/8/12 nonequivalent tables. Due to the gauge
symmetry, each energy configuration is realised by 28 distinct
spin configurations. Putting theses factors together, we find
that there are

9!
8 x 12

28 — 967680 (12)

distinct perfect cycles having the node energy spectrum
n,(10) = 1, n,(=2) = 5, n,(—6) = 3. We have confirmed this
prediction numerically by checking the effect of the action of
the transformation Eq. (1) for all configurations for N = 9.
We also found that there are no other cycles of length ¢ = 12
for N =9. The perfect cycles of length ¢ =12 for N =9
have relatively small basins of attraction which consist of 312
states including the 12 states belonging to the cycle and 300
other states. Twelve of 300 states are mirror states of those
belonging to the cycle. Mirror state s* of a state s is a state
with all opposite signs s}; = —s;; for all ij. The remaining
288 states can be divided into 12 groups, each having 12 pairs
of mutually mirror states. Each of the 12 groups is associ-
ated with one state of the cycle to which all 24 states from
the group are transformed in a single step of the dynamics
Eq. (1). None of 300 states has a predecessor. Such states are
sometimes called “Garden of Eden” [8].

We have also studied systems for N > 9 to search for
perfect cycles. In this case, however, we performed a random
search since as mentioned the number of configurations is
too large for these systems to be exhaustively browsed. We
have found perfect cycles of length ¢ = 14 for N = 11. The
edge energy spectra of these cycles is shown in Table III. As
follows from the table, energy of the configurations is U =
% >, un.(u) = —1, and the Hamming distance between any
two neighboring states in the cycle Eq. (8) is dy(A;, Ar41) =

TABLE III. Edge energy spectrum of states belonging to the
perfect cycle of length ¢ = 14 for N = 11.

u —9 -7 =5 -3 —1 41 +3 45 +7 49

n.(u) 0 0 4 10 15 13 9 3 1 0

> us0Me() =26. The corresponding node energy spec-
trum is n,(—9) =1, n,(-=5) =4, n,(3) =4, n,(7) =2 and
n,(u) = 0 for other values of u. As before we found that
dy(As, Ai4s) and Dy (A;, A;4) for fixed s are independent of
t, so all configurations of the cycle are equivalent, and sym-
metrically distributed in the configuration space. We found
that there are two distinct permutations fulfilling the condition
Eq. (10). They can be decomposed into a cycle of length seven
and two cycles of length two. Using the same enumeration
argument as before Eq. (12) this gives 11!/2/14 x 2'° such
cycles. One would need to check all configurations, to ex-
clude that there are no other cycles (with a different energy
spectrum) for N = 11. We have also found a perfect cycle
of length ¢ = 12 for N = 13. The edge energy spectrum is
given in Table IV. The energy of the configurations is U =
% >, un.(u) = —56, and the Hamming distance between any
two neighboring states in the cycle Eq. (8) is dy(A;, A;41) =
> u=0Ne(u) = 20. The node energy spectrum is n,,(—20) = 4,
n,(—16) =2, n,(—12) = 4, n,(—4) = -2, n,(0) = 1. Again
we found that dy (¢, t + s) and Dy (¢, t + s) are independent
on t when s is constant.

Summarizing, we have reported new features of cycles of
length 12 for N =9, which could be understood in terms
of the notion of perfect cycles, which relates the steadiness
of dynamics and the stability of energy spectra. It remains
to check what is the abundance of perfect cycles for larger
systems. While the entire set of initial configurations is too big
and cannot be directly explored for N > 9, we found perfect
cycles on larger systems as well.

IV. SEMIPERFECT CYCLES

Not all limit cycles have steady energy spectra. There are
cycles whose spectra change periodically. We will call them
semiperfect. As an example let us discuss a semiperfect cycle
that we have found for N = 13. The cycle is representative
for all semiperfect cycles in that that it has typical features, but
additionally it is the longest limit cycle we have found so far. It
has the length of ¢ = 48. The energy spectra of the states in the
cycle change with the period three. The edge spectra of three
consecutive states of the cycle are given in Table V. Energies
of the states are U, = —32, —32, —28. The Hamming distance
between neighboring states is dy (t,t + 1) = 34, 32, 30 and

TABLE IV. Edge energy spectrum of states belonging to the
perfect cycle of length ¢ = 12 for N = 13.

u =11 -9 -7 =5 =3 —1 +1 +3 +5 +7 +9 +11

n(wy 1 3 7 8 21 18 12 6 2 0O 0O O
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TABLE V. Edge energy spectra of three consecutive states be-
longing to the semiperfect cycle of length ¢ = 48 for N = 13.

u -1 -9 -7 =5 -3 -1 +1 +3 +5 +7 +9 +11

ne(wy 2 0 3 11 17 15 17 8 4 1 0 O
n(wuy 2 2 6 8§ 10 16 16 17 1 0 O O
ne(wuy 2 0 2 9 18 15 20 9 2 0 1 0

Dy(t,t + 1) =128, 136, 134. The values repeat every three
steps. If we denote the map corresponding to a single state
Eq. (1) by s(t + 1) = ®[s(¢)], then taking every third config-
uration is equivalent to s(¢ + 3) = ®[P[D[s(¢)]]] = V[s(?)],
where the map is a triple composition of ®: W = ® o ® o .
Viewed from this perspective, the semiperfect cycle of the
dynamics defined by the map ® Eq. (1) is a perfect cycle for
W. More generally, the class of semiperfect cycles is a class
of limit cycles which are perfect for a multiple composition
® o...o0 ® of the original update rule.

V. DISCUSSION

The motivation behind the evolution rule Eq. (1) is that
it locally maximises the number of balanced triads. Indeed,
when performed asynchronously, that is one edge at time, the
rule never reduces the number of balanced triads and thus
it leads to a state at local maximum, as far as the number
of balanced triads is concerned [equivalent to local energy
minimum Eq. (2)]. The synchronous version of the evolution
Eq. (1) where all edges are updated simultaneously has a far
more interesting spectrum of attractors: in addition to fixed
points it has limit cycles of different length and of different
symmetry. Some limit cycles are surprisingly long. For ex-
ample we found a limit cycle of length ¢ = 48 for N = 13.
In this paper we mostly focused on a class of limit cycles
which preserve the energy spectrum and are represented by
symmetric trajectories in the configuration space, such that
any two states separated by the same number of steps in the
perfect cycle are separated by the same Hamming distance in
the configuration space. We have argued that the symmetry of
these trajectories is rooted in the automorphism group of the
complete graph on which the system is defined and in the local
gauge symmetry of the energy function Eq. (2).

There are many open questions. Is it possible to formu-
late general conditions that would make it possible to judge
whether a state belongs to a limit cycle, before checking it
explicitly by iterating Eq. (1)? What is the longest limit cycle
and the longest perfect cycle for the complete network for
given N? What is the abundance of such cycles? We know
[1] that the fraction of initial states which lead to perfect limit
cycles of length ¢ = 14 for N = 11 is about 107, which is
much less than the fraction of perfect cyclesc = 12 for N =9
which is 0.004. We expect that the percentage of states of
perfect cycles decreases with the system size, but it would be
good to find an argument about asymptotic behavior.

Generally, the dynamics we discussed in this paper is of
the type s(t + 1) = ®(s(¢)). The map ® given by Eq. (1)
is just a particular case. One can change the evolution rule.
For example adding a minus sign to the expression on the
right-hand side of Eq. (1) we would obtain a system having
a tendency to maximize the number of frustrated triads. Of
course this evolution would be in one-to-one correspondence
to the one discussed here as can be seen by replacing states s in
one original dynamics by mirror states s* in the new one. But
the question about how the attractors of the evolution depend
on the given map & is quite interesting. For example what is
the class of maps ® which would lead to perfect limit cycles?
It would be interesting to study symmetry classes for general
maps [9].

There is some correspondence of the dynamics of the
model discussed in this paper and the quenched Kauffman
NK model [10,11] of time evolution of networks. As we
argued in Ref. [1], here the number K of incoming links which
determine the current state of a node (here: of a link) evolves
with the number of degrees of freedom (here: N?) as a square
root of this number (here N). An important difference is that
in our case, there is only one function [given by Eq. (1)] which
determines the state of each link in a subsequent time, and not
arandom (fixed in the quenched model) set of these functions,
different for each node. What is similar is the large number of
steady states with minimal energy, which in our case is just the
number of balanced states, varying with N as 2¥~!. We add
that the process of reaching the Heider balance, modeled by
Eq. (1), has been termed as “social mitosis” [12]. Limit cycles
in the Kauffman model [13,14] are no less important than
fixed points and have biological interpretation. Our results
indicate that limit cycles can also occur when evolution is
deterministic and identical for all components of the system.
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