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Systematic assessment of the quality of fit of the stochastic block model for empirical networks
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We perform a systematic analysis of the quality of fit of the stochastic block model (SBM) for 275 empirical
networks spanning a wide range of domains and orders of size magnitude. We employ posterior predictive model
checking as a criterion to assess the quality of fit, which involves comparing networks generated by the inferred
model with the empirical network, according to a set of network descriptors. We observe that the SBM is capable
of providing an accurate description for the majority of networks considered, but falls short of saturating all
modeling requirements. In particular, networks possessing a large diameter and slow-mixing random walks tend
to be badly described by the SBM. However, contrary to what is often assumed, networks with a high abundance
of triangles can be well described by the SBM in many cases. We demonstrate that simple network descriptors
can be used to evaluate whether or not the SBM can provide a sufficiently accurate representation, potentially
pointing to possible model extensions that can systematically improve the expressiveness of this class of models.
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I. INTRODUCTION

The stochastic block model (SBM) [1,2] is an important
family of generative network models used primarily for com-
munity detection [3] and link prediction [4]. In its simplest
formulation, it describes a network formation mechanism
where the nodes are divided into discrete groups, and the
probability of an edge existing between two nodes is given
as a function of their group memberships. Many variations of
this idea exist, including mixed-membership SBMs [5], where
nodes are allowed to belong to multiple groups, the degree-
corrected SBM (DCSBM) [2], where nodes are allowed to
possess arbitrary degrees, as well as several extensions to
other domains, such as dynamical networks [6–8] and mul-
tilayer networks [7,9], to name a few.

SBMs also serve as generalizations of more fundamental
random network models. The basic SBM has the Erdős-Rényi
model [10] as a special case when there is a single group, and
likewise the DCSBM recovers the configuration model [11] in
the same situation. However, differently from these more fun-
damental models, the SBM possesses a set of parameters—the
partition of the nodes and the affinities between groups—that
is not trivially recoverable from observed networks. These
parameters are latent information that need to be obtained via
inference algorithms, which form the basis of the community
detection methods that use this approach [3]. Furthermore, the
SBM has a controllable level of complexity: by increasing the
number of groups, we have the ability to express increasingly
elaborate types of network structures, via arbitrary mixing
patterns between the latent groups. In fact, despite its stylized
nature, it can be shown that the SBM can approximate a broad
class of generative models that are different from it [12],
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and its inference functions similarly to fitting a histogram to
numeric data in order to estimate the underlying probability
density—with the node groups playing a similar role to the
histogram bins. However, the expressiveness of the SBM is
not absolute, especially when the networks are sparse, i.e.,
when their average degree is much smaller than the total
number of nodes. In such a situation, there is no guarantee
that the SBM is capable of arbitrarily approximating the true
underlying model, regardless of how we infer it: By increasing
the model complexity we move from a situation where we are
underfitting, i.e., extracting patterns that do not sufficiently
capture all the features of the true model, to a situation where
we are overfitting, i.e., incorporating randomness into the
model description, which is also a deviation from the true
model. When we find the most adequate inference that bal-
ances statistical evidence against model complexity to prevent
overfitting, we might still be missing important features of
the true model, simply because it cannot be sufficiently well
captured under the SBM parametrization.

Here we are not interested in evaluating the SBM as a
plausible generative process of networks across all domains,
since it does not represent an ultimately credible mechanism
for any of them. Instead, our objective is to assess how capable
it is of providing a general effective description of empirical
networks, and in which aspects and to what extent (and not
whether) it tends to be misspecified. Understanding the limits
of the SBM representation in empirical settings is therefore a
nuanced undertaking that is likely to be affected by a variety
of possible sources of deviations. Since the SBM tends to
yield very good comparative performance in link prediction
tasks [13,14], it is therefore known that it tends to outperform
alternative models in capturing the structure of networks, but
we still lack a more accurate assessment of its qualities and
shortcomings in absolute terms.

In this work, we evaluate the quality of fit of the SBM in
empirical contexts by performing model checking on Bayesian
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inferences. Based on a diverse collection of 275 networks
spanning various domains and several orders of size mag-
nitude, we compare the values of many network descriptors
computed on the observed network with what would be typi-
cally obtained with networks sampled from the inferred SBM.
In this way, any significant discrepancy can be interpreted as
a form of “residual” that points to a shortcoming of the SBM
in capturing that particular network property.

Overall we find that the SBM is capable of encapsulat-
ing the network structure to a significant degree for a large
fraction of the networks studied, but falls short of com-
pletely exhausting the modeling requirements in many cases.
We find that for networks with very large diameter or a
very slow mixing random walk [15] the SBM tends to pro-
vide a poor description. This includes, for example, many
transportation networks—which are typically embedded in
a low-dimensional space—as well as some economic net-
works.1 However, for other kinds of networks the quality of
fit tends to be good overall.

We proceed with describing in detail the model and infer-
ence procedure (Sec. II), our criteria to evaluate the quality of
fit (Sec. III), the network corpus used (Sec. IV), and the results
of our analysis for it (Sec. V). We finalize in Sec. VI with a
conclusion.

II. MODEL AND INFERENCE

For our analysis we will use the microcanonical degree-
corrected SBM (DCSBM) [2,17], which combines arbitrary
mixing patterns between groups together with arbitrary degree
sequences. It has as parameters the partition of the nodes
into B groups, b = {bi}, with bi ∈ [1, B] being the group
membership of node i, the degree sequence k = {ki}, where
ki is the degree of node i, and the edge counts between
groups e = {ers} (or twice that number for r = s), given by
ers = ∑

i j Ai jδbi,rδbi,s. Given these constraints, the network is
generated with probability [17]

P(A|k, e, b) =
∏

r<s ers!
∏

r err!!
∏

i ki!∏
i< j Ai j!

∏
i Aii!!

∏
r er!

, (1)

where A = {Ai j} is the adjacency matrix of an undirected
multigraph with potential self-loops, and er = ∑

s ers.
All the networks we will be studying are undirected simple

graphs, for which the above model can give only an approx-
imation. As demonstrated in Ref. [18], the use of multigraph
models based on the Poisson distribution (or equivalently,
microcanonical models based on the pairing of half-edges,
as above) cannot ascribe probabilities to simple edges (i.e.,
Ai j = 1) that are larger than 1/e ≈ 0.37. This limits the ap-
plicability of such models on networks with heterogeneous
density, due to either broad degree distributions or sufficiently
dense communities, which are common properties of empir-
ical networks. To address this limitation, we use the latent
multigraph model of Ref. [18], where we assume that an
underlying unobserved multigraph A is in fact responsible for

1See Ref. [16] for a qualitative overview of the different network
classifications we consider.

the observed simple graph G simply via the removal of the
edge multiplicities and self-loops:

P(G|A) =
∏
i< j

(
1 − δAi j ,0

)Gi j
δAi j ,0

1−Gi j . (2)

Note that P(G|A) can take only a value of 0 or 1, depending
on whether G and A are compatible. Via this mathematical
construction, the final model

P(G|k, e, b) =
∑

A

P(G|A)P(A|k, e, b) (3)

can express both arbitrary mixing patterns between groups
as well as degree correction, without the limitations of the
multigraph model for networks with large local densities [18].
The inference of this model is performed by sampling from
the posterior distribution

P(A, k, e, b|G) = P(G|A)P(A|k, e, b)P(k, e, b)

P(G)
, (4)

which remains tractable. Here we use the merge-split Markov
chain Monte Carlo (MCMC) algorithm described in Ref. [19]
to efficiently sample from this distribution.

Note that for P(k, e, b) we use the nonparametric micro-
canonical hierarchical priors and hyperpriors described in
Refs. [17,20]. Importantly, this kind of approach determines
the appropriate model complexity (via the number of groups)
according to the statistical evidence available in the data. As
has been shown in these previous works, this choice guaran-
tees that only compressive inferences are made in a manner
that prevents overfitting (finding a number of groups B that
is too large), but also with a substantial protection against
underfitting (finding a number that is too small), which tends
to happen when noninformative priors are used instead.

In addition to the DCSBM we will also use the configura-
tion model as a comparison, obtained by reshuffling the edges
of the obtained network while preserving its degree sequence
(here we use the edge-switching MCMC algorithm [11]). We
note that the configuration model is an approximate special
case of the DCSBM considered above when there is only a
single group.2 Therefore, whenever the Bayesian approach
above identifies more than one group with a large probability,
this automatically implies a selection of the DCSBM in lieu
of the configuration model. This happens for every network
that we consider in this work, meaning that the DCSBM is the
favored model for all of them. Nevertheless, the configuration
model serves as a good baseline to determine to what extent
the quality of fit obtained with the DCSBM can be ascribed
to the degree sequence alone or to the group-based mixing
patterns uncovered.

III. ASSESSING QUALITY OF FIT

The approach we use to assess the quality of fit of the
DCSBM is based on obtaining the posterior predictive dis-
tribution of certain network descriptors. More precisely, for a

2This is only approximately true since the configuration model and
the latent Poisson models are not identical, but sufficiently similar
for the purposes of this work [18].
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scalar network descriptor f (G), its posterior predictive distri-
bution is given by

P(y|G) =
∑

G′,A′,A
k,e,b

δ(y − f (G′))P(G′|A′)

×P(A′|k, e, b)P(A, k, e, b|G), (5)

where δ(x) is the Dirac delta function. In other words, for
each inferred parameter set (k, e, b), weighted according to its
posterior probability, we sample a new network G′ from the
model defined above (which can be done in time O(E + N )
where E and N are the total number of edges and nodes,
respectively, as we show in Appendix A), and obtain the
descriptor value y = f (G′).3

We can say that a model captures well the value of a
descriptor if its predictive posterior distribution ascribes high
probability to values that are close to what was observed in the
original network. We can obtain a compact summary of the
level of agreement in two different ways. The first measures
the statistical significance of the deviation, e.g., via the z score
[21]

z = f (G) − 〈y〉
σy

, (6)

where 〈y〉 and σy are the mean and standard deviation of
P(y|G). The second criterion is the relative deviation, which
here we compute in two different ways,

�1 = f (G) − 〈y〉
f (G)

, �2 = f (G) − 〈y〉
fmax − fmin

, (7)

depending on whether the descriptor values are bounded in a
well-defined interval [ fmin, fmax] (�2) or not (�1).

The z score and relative deviation measure complementary
aspects of the agreement between data and model, and rep-
resent different criteria which should be used together. While
a high value of the z score can be used to reject the inferred
model as a plausible explanation for the data, by itself it tells
us nothing about how good an approximation it is. Conversely,
the relative deviation tells us how well the descriptor is being
reproduced by the model, but nothing about the statistical
significance of the comparison.

In Fig. 1 we show examples that illustrate how the different
criteria operate. In Figs. 1(a) and 1(b) we see examples that
show good and bad agreements between model and data, re-
spectively, according to both criteria simultaneously. In these
cases, the conclusion is unambiguous: we either see no reason
whatsoever to condemn the model, or we see a definitive
reason to do so. However, in Figs. 1(c) and 1(d) we reach
mixed conclusions. In Fig. 1(c) the model typically yields
different values than observed in the data, but it still ascribes
a large probability to it. We cannot condemn the model as an
implausible explanation for the data, but it is conceivable that
the true generative model would be more concentrated on the

3The posterior predictive distribution for the configuration model is
analogous, i.e., P(y|G) = ∑

G′ δ(y − f (G′))P(G′|k), where k are the
observed degrees, and P(G|k) is the likelihood of the configuration
model.

(a) Small disagreement (b) Large disagreement

(c) Large but insignificant (d) Small but significant

FIG. 1. Examples of posterior predictive distributions for some
descriptors (see Table I for definitions) using the DCSBM, together
with z score and relative deviation. The solid black line shows the
empirical value of the descriptor f (G), and the dashed green line the
mean of the predictive posterior distribution. In (a) and (b) we see
examples where employing both criteria reveal unambiguously good
and bad agreements, respectively, between data and model. However,
in (c) we see a situation where despite a substantial disagreement
with respect to the relative deviation, the z score indicates that the
model cannot be discarded as a plausible explanation for the data. In
(d) we see a situation where the z score points to decisive rejection
of the model, but the small relative deviation allows us to accept it as
an accurate approximation.

observed value. Conversely, in Fig. 1(d) we see a situation
where the model ascribes close to zero probability to the
actual descriptor value seen in the data, but, in absolute terms,
the discrepancy is quite small. Although we find evidence to
condemn the plausibility of the model, we could still claim
that it is a good approximation.

Overall, since we know that a model like the DCSBM
cannot possibly correspond to the true generative model of
empirical networks, we should expect that in situations where
the network is sufficiently large, and hence there is more abun-
dant data, the values of the z score will tend to be high. Here
we argue that since the objective of a model like the DCSBM
is to obtain a good approximation of the underlying model, not
an exact representation, the ultimate criterion is a combination
of the two, where we may deem the model compatible with
the data when either the z score or the relative deviation has
a sufficiently low magnitude. For the purpose of clarity and
simplicity of our analysis, we will consider the thresholds
|z| = 3 and |�| = 0.05 as reasonable choices to deem the
model compatible with data, although our results will not
depend on these particular choices, and we will always report
the full range of values.

Before continuing, some important considerations regard-
ing model checking should be made. While an excellent
model should fulfill both of the above criteria simultaneously,
we need to observe that a model that maximally overfits,
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TABLE I. Network descriptors used in this work, with their respective symbol, range of values, and how the relative deviation was
computed. More details on how the descriptors are computed are given in Appendix B.

Symbol Descriptor Range �

r Degree assortativity [−1, 1] �2

〈c〉 Mean k-core value [0, ∞] �1

Cl Mean local clustering coefficient [0,1] �2

Cg Global clustering coefficient [0,1] �2

λA
1 Leading eigenvalue of the adjacency matrix [0, ∞] �1

λH
1 Leading eigenvalue of the Hashimoto matrix [0, ∞] �1

τ Characteristic time of a random walk [0, ∞] �1

∅ Pseudodiameter [1, ∞] �1

Rr Node percolation profile (random removal) [0, 1/2] �2

Rt Node percolation profile (degree-targeted removal) [0, 1/2] �2

S Fraction of nodes in the largest component [0, 1] �2

i.e., ascribes to the observed network a probability of one,
and to any other a probability of zero, will achieve the best
possible performance according to both relative deviation and
statistical significance. This occurs because we are using the
same data to perform both the model inference and evaluate
its quality, which is an invalid approach for model selection.
Therefore, it is important to recognize the crucial differ-
ence between model checking and model selection: the latter
attempts to find the model alternative that is better justified ac-
cording to statistical evidence, while the former simply finds
systematic discrepancies between the inferred model and data.
In our analysis, protection against overfitting is obtained via
Bayesian inference, and we use model checking only to eval-
uate the discrepancies (indeed, the fact we find discrepancies
to begin with shows that we cannot be massively overfitting).
Another observation is that when performing multiple com-
parison over many networks and descriptors, some amount of
“statistically significant” deviations are always expected, even
if the models inferred correspond to the true ones, unless we
incorporate the fact that we are doing multiple comparisons
in our criterion of statistical significance, which would be
the methodologically correct approach. We will not perform
such a correction in our analysis, because we do not seek to
demonstrate the absolute quality of DCSBM as an ultimately
plausible hypothesis for network formation. As we will see
from our results, such a correction would gain us very little.

Finally, in Table I we list the network descriptors that are
used in this work. Our approach requires scalar values, so
we constrained ourselves to this category, and furthermore we
chose quantities that can be computed quickly, so that robust
statistics from the predictive posterior distributions can be
obtained. Given these restrictions, we then chose descriptors
that measure different aspects of the network structure, both
at a local and global levels. Further details on the network
descriptors are given in Appendix B.

IV. NETWORK CORPUS

We base our analysis on a corpus containing 275 net-
works spanning various domains and several orders of size
magnitude, as shown in Fig. 2. We have not collected every
network at our disposal, but instead chosen networks that are

as diverse as possible, in both size and domain, and avoided
many networks that are closely related by belonging to the
same subset. In Appendix C we give more details about the
data sets used.

V. RESULTS

In Fig. 3 we show the summaries of the posterior predictive
checks for each descriptor and network, for both models con-
sidered. We observe a wide variety of deviation magnitudes,
for the same descriptors both across networks and across
descriptors. As expected, the DCSBM results show system-
atically better agreement with the data when compared with
the configuration model. Overall, the descriptors that show the

FIG. 2. (Top) Number of nodes and edges for the networks in
the corpus used in this work and their domain composition (inset).
(Bottom) Distribution of descriptor values for the networks in the
corpus. The horizontal line marks the median values.
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MBSCD)b(ledomnoitarugfinoC)a( MBSCD)b(ledomnoitarugfinoC)a(

FIG. 3. Distribution of relative deviation (top), z score (middle), and fraction of networks reproduced (bottom) for (a) the configuration
model and (b) the DCSBM, according to their respective predictive posterior distributions for each descriptor. We also show the median and
mean of the absolute values for all descriptors for each network. The solid blue lines mark the negative and positive median values, and the
dashed red line marks the values of |�| = 0.05 and |z| = 3. The fraction of networks reproduced correspond to those that have the absolute
value of either � or z below these thresholds. The points in green color correspond to the networks that are not reproduced according to this
combined criterion.

worst agreement is the characteristic time of a random walk
(τ ) and the diameter (∅), both of which are particularly high
for networks that are embedded in two dimensions, and for
which the DCSBM is an inaccurate approximation (more on
this below). Nevertheless, there is no single descriptor that the
DCSBM does not capture for fewer than 50% of the networks.
For descriptors like S, Rr , Rt , and 〈c〉, the difference between
the DCSBM and the configuration model are relatively minor,
indicating that those can be captured to a substantial degree
by the degree sequence alone.

When considering all descriptors simultaneously for each
network, by either the median or mean of the absolute values
of the z score and relative deviation, we observe that a substan-
tial majority of the networks considered show good agreement
with the DCSBM, as opposed to the small minority that agree
with the configuration model. The difference between the me-
dian and the mean indicates that there is a sizeable fraction of
the networks where the agreement is spoiled by a few outlier
descriptors—typically τ and ∅.

The results obtained by the clustering coefficients are par-
ticularly interesting, since it is often the case that they are well
reproduced by the DCSBM. This contrasts with what is com-
monly assumed, namely, that the DCSBM should not be able
to capture the abundance of triangles often seen in empirical
networks, because in the limit where the number of groups
is much smaller than the total number of nodes, the DCSBM
becomes locally tree-like [22], with a vanishing probability
of forming triangles. Therefore, we may imagine that the
situations where there is an agreement with the DCSBM are
those where the clustering values are low. However, as we see
in Figs. 4(a) to 4(d), this is not quite true, and we observe good
agreements even when the clustering values are high. This
illustrates a point made in Ref. [23], that it is possible to obtain
an abundance of triangles with the SBM simply by increasing
the number of groups, in which case it can be explained as
a byproduct of homophily. Indeed this is a situation we see
in Figs. 4(a) to 4(d), where both the relative deviation and
z-score values can be quite small even for extremal values
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(a) (b) (c) (d)

(e) (f) (g) (h)

FIG. 4. Relative deviation and z-score values for the global and mean local clustering coefficients, Cg and Cl , as well as diameter and
characteristic time of a random walk, ∅ and τ , as a function of their empirical values, for every network in the corpus, when using the
DCSBM. The dashed red line marks the values of |�| = 0.05 and |z| = 3. The size of the symbol corresponds to the logarithm of the number
of edges in the network, and the darkness to the mean degree.

of clustering. However, we do notice a substantial variability
between agreements, and a fair amount of instances where the
DCSBM cannot capture the observed clustering values, even
when they are moderate or even small. This seems to indicate
that there are a variety of processes capable of resulting in
high clustering values, with homophily being only one of
them [23]. Overall, the mean local clustering values tend to
be harder to reproduce than the global clustering values. In
both cases, the z scores are systematically high, indicating
that the clustering values are in general a good criterion to
reject the DCSBM as a statistically plausible model, although
the relative deviation values tend to be lower than what one
would naively expect, meaning that the model can still serve
as a reasonably accurate approximation for clustered networks
in many cases.

In contrast, we observe a different behavior for the di-
ameter and characteristic time of a random walk, which are
the least well reproduced descriptors, as shown in Figs. 4(e)
to 4(h). For both these descriptors—which are closely re-
lated, since a network with a large diameter will also tend
to result in a slow mixing random walk—it is rare to find a
network with very high empirical values which the DCSBM
is able to accurately describe. Therefore it seems indeed
that the DCSBM offers an inadequate ansatz to describe the
structure of these networks, even by optimally adjusting its
complexity.

In Fig. 5 we show how the model assessment depends
on the size of the network. As one could expect, the z-score
values tend to increase for larger networks, as more evidence
becomes available against the plausibility of the DCSBM as
the true generative model. However, the values of the relative
deviation do not change appreciably for larger networks, indi-

cating that it remains a good approximation regardless of the
size of the system.4

In Fig. 6 we show a summary of the fraction of all net-
works for which we obtain good agreement with either model,
according to the network domains. Overall, we see that most
domains show similar levels of agreements, except transporta-
tion and economic networks. Transportation networks are
often embedded in two-dimensional spaces, resulting in large
diameters and slow-mixing random walks. The economic net-
works considered also tend to show large values of these
quantities, so the explanation for their discrepancy is the same.

A. Predicting quality of fit

Now we address the question of whether it is possible to
predict the quality of fit of both models considered based
solely on the empirical values of the networks descriptors.
If we can isolate the descriptors which are most predictive,
this would give us a general direction in which more accurate
models could be constructed.

In order to evaluate the predictability, we frame it as a
binary classification problem, where to each network i is as-
cribed a binary value yi = 0 if we have simultaneously |zi| >

3 and |�i| > 0.05, or otherwise yi = 1. The feature vector for
each network is composed of the empirical values of the de-
scriptors, xi = (r, 〈c〉,Cl ,Cg, λ

A
1 , λH

1 , τ, ∅, Rr, Rt , S, E ), with
the addition of the number of edges E . For each network i,
we train a random forest classifier on the entire corpus with

4Sampling issues with MCMC could also contribute to the elevated
z scores for larger networks, as we discuss in Appendix A.

054311-6



SYSTEMATIC ASSESSMENT OF THE QUALITY OF FIT … PHYSICAL REVIEW E 105, 054311 (2022)

FIG. 5. Absolute value of the relative deviation (top), z score
(middle) and fraction of reproduced descriptors (bottom), as a func-
tion of the number of edges, for every network in the corpus. The
dashed red line marks the values of |�| = 0.05 and |z| = 3. The
fraction of descriptors reproduced correspond to those that have the
value of either � or z below these thresholds. The points in green
color correspond to the descriptors that are not reproduced according
to this combined criterion.

that network removed, and evaluate the prediction score on
the held-out network. We then repeat this procedure for all
networks in the corpus, and evaluate how well the classifier
is able to predict the binary label. We present the results of
this experiment in Fig. 7 (top) which shows the receiver oper-
ating characteristic (ROC) curve, where the true positive rate
and the false positive rate are plotted for all threshold values
used to reach a classification. The area under the ROC curve
(AUC), shown in the legend, can be equivalently interpreted
as the probability that a randomly chosen true positive has a
prediction score higher than a randomly chosen true negative.
For the DCSBM and configuration model, we obtain an AUC
value of 0.91 and 0.88, respectively. This indicates a fairly
high predictability, from which we can conclude that it is
indeed often possible to tell whether the models will provide
a good or bad agreement, based only on the descriptor values.

Further insight can be obtained by inspecting the im-
portance of each descriptor in the overall classification. We

(a) Median
z-score Relative deviation Combined

(b) Mean
z-score Relative deviation Combined

FIG. 6. Fraction of reproduced networks according to their do-
main, considering the (a) median and (b) mean values of either the
z score, the relative deviations, or their combined values, for both
models (as shown in the legend). When the combined values are
used, this means that a model is deemed compatible with a network
when we obtain either |�| < 0.05 or |z| < 3.

compute this via the so-called Gini importance [24], defined
as the total decrease in node “impurity” (i.e., how often a node
in decision tree contributes to a decision), weighted by the
proportion of samples that reach that node, averaged over all
trees in the classifier.5 The results can be seen in Figs. 7(b)
and 7(c). In both cases, we see that the number of edges is
the most predictive descriptor, which is compatible with what
we had already seen in Fig. 5, namely, that the larger the
networks are, the easier it becomes to reject a model according
to the z score. Otherwise, as one would expect, the importance
of the remaining descriptors is largely compatible with their
reproducibility shown in Fig. 3, where the descriptors that
agree the least with the inferred models tend to be the most
useful at predicting quality of fit beforehand.

This analysis allows us to emphasize two points: the char-
acteristic time of a random walk τ and the diameter ∅, both
extremal quantities of the network structure that are closely
related, are the most difficult descriptors to be captured by
the DCSBM. Therefore, an extension of the model that would
cater for these properties would bring the most benefit across
all networks. However, beyond these two descriptors, there
is no substantial difference between the ones that remain,
indicating that there is no obvious direction that would bring
a systematic modeling improvement over all networks. On the
other hand, as we show in Appendix B, the descriptor values
and their predictive posterior deviations show nontrivial cor-
relations, which means that if some of them are specifically

5We also computed different a measure, called permutation impor-
tance, which leads to very similar results (not shown).
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(a)
(b)

(c)

(d) (e)

(f) (g)

FIG. 7. Predictiveness of the quality of fit of the generative mod-
els considered, according to the empirical descriptor values, framed
as a binary classification problem, as described in the text. (a) ROC
curve for a leave-one-out random-forest classifier, (b) Gini feature
importance for the configuration model, (c) same as (b) but for the
DCSBM. Panels (d) and (e) show the best ROC AUC obtained for
a set of descriptors of a given size, for the configuration model and
DSCBM, respectively. Panels (f) and (g) show the same as (d) and
(e), respectively, but with the number of edges excluded from the
analysis.

targeted, it could potentially improve the quality of fit of other
descriptors.

In order to understand what is the minimal amount of infor-
mation required to predict the suitability of both models, and
in this way remove the redundancy provided by the different
descriptors, we computed the best ROC AUC obtained by
a combination of descriptors of a given size, as shown in
Figs. 7(d) and 7(e). In both cases we see that the predictability
is saturated by only few descriptors.6 In the case of the config-
uration model most of the predictability is already achieved by
a combination of (Cl , τ, E ). For the DCSBM we get instead

6Since we optimized exhaustively for all descriptor combinations
of a given size, care should be taken to avoid overfitting, despite
the leave-one-out cross-validation, because the optimization was per-
formed on the same set of networks. Because of this, we consider
always the smallest set of descriptors that reaches a ROC AUC
close to the optimum, not the actual optimum, which is likely to be
overfitting.

(r, ∅, E ). If we remove the number of edges from the set
of features (since it is not informative on the actual network
structure), we obtain instead (Cg, λ

A
1 , τ ) and (Cl , λ

H
1 , ∅), for

the configuration model and DCSBM, respectively. It should
be emphasized that if a descriptor does not appear in the
minimal set this does not mean it is not predictive of the
quality of fit, only that it offers largely redundant information
in that regard. Thus, for both models if we replace ∅ with τ

or λH
1 with λA

1 , etc, we get similar results. This suggests that,
besides spatial embeddedness (which influence ∅ and τ the
most), the addition of explicit mechanisms for triangle for-
mation (which affects Cg,Cl , λ

H
1 , λA

1 directly) might improve
the overall expressiveness of the DCSBM—which in fact has
been observed in a more limited data set [23].

VI. CONCLUSION

We performed a systematic analysis of posterior predictive
checks of the SBM on a diverse corpus of empirical networks,
spanning a broad range of sizes and domains. Using a variety
of network descriptors, we observed that the SBM is able to
accurately capture the structure of the majority of networks
in the corpus. The types of networks that show the worst
agreement with DCSBM tend to possess a large diameter and
a slow mixing of random walks—features that are commonly
associated with a low-dimensional spatial embedding, and a
violation of the “small-world” property. For the other kinds of
networks the agreement tends to be fairly good, even for many
networks with an abundance of triangles, in contradiction to
what is commonly assumed to be possible with this class of
models.

We have also identified the minimal set of network de-
scriptors capable of predicting the quality of fit of the SBM,
which is composed of the network diameter and characteristic
time of a random walk as the most important, followed by
clustering as a secondary feature. This points to the most
productive directions in which this class of models could be
improved.

It is worth emphasizing that the consistency analysis that
we have performed, which compares a posteriori the model-
ing assumptions with the actual properties seen in the data,
is possible only if these assumptions are made explicitly via a
generative model. Community detection methods that are only
descriptive in nature (such as modularity maximization [25])
cannot be used for these purposes. Not only are these methods
not guided by statistical evidence and prone to systematic
overfitting, but they also provide no direct way to scrutinize
the validity of their implicit assumptions [26].

One of the limitations of our analysis is that it is condi-
tioned on the set of descriptors used, and thus shortcomings
or successes of the model with respect to other properties not
analyzed are not uncovered. A natural extension of our work
would be to consider an even broader set of descriptors that
could reveal more relevant dimensions for the comparison.
This kind of analysis is open ended, as there is no short supply
of possible network descriptors. We hope our work will mo-
tivate further study in this direction, and with a larger variety
of generative models within or beyond the SBM family.
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APPENDIX A: POSTERIOR PREDICTIVE SAMPLING

As described in the main text, we obtain samples from the
posterior predictive distribution of Eq. (5) by first sampling
from the posterior distribution of Eq. (4) using MCMC and
then generating new networks from the inferred models. More
specifically, we sample (A, k, e, b) from

P(A, k, e, b|G) = P(G|A)P(A|k, e, b)P(k, e, b)

P(G)
, (A1)

using the merge-split MCMC of Ref. [19], together with the
agglomerative initialization heuristic of Refs. [20,27] and the
multigraph edge moves of Ref. [18]. For networks of size
up to E = 105 edges we observe good equilibration of the
MCMC runs, but for large networks it becomes too slow.
For these large networks we settle for a point estimate of
the partition b obtained by several runs of the initialization
algorithm and keeping the best result, and then we equilibrate
the chain according to A alone (which affects k and e), which
tends to happen quickly. We have verified that performing
this calculation several times yields very similar results. The
only noticeable outcome of this shortcut for larger networks is
that it tends to reduce the variance of the posterior predictive
distributions, which can potentially contribute to the elevated z
scores we obtained in our analysis. However, since the relative
deviation values we obtained did not seem to depend on the
size of the network, this gives us confidence that this approach
does not introduce significant biases.

Given a sample (A, k, e, b), we are interested only in
(k, e, b) (and hence samples from their marginal distribu-
tion), so we discard A and sample a new multigraph A′ from
the model of Eq. 1. This can be done exactly with an effi-
cient algorithm that works similarly to what was proposed
in Refs. [28,29], but is valid for the microcanonical model:
Given the parameters (k, e, b) we proceed by creating for each
group r a multiset of candidate nodes vr , containing ki copies
of each node i with bi = r. Then, for each group pair (r, s)
with r � s and ers > 0, we repeat the following three steps
for an ers number of times (or ers/2 if r = s):

(1) We sample a node i from the multiset vr uniformly at
random, and we remove it from the multiset.

(2) We sample a node j from the multiset vs uniformly at
random, and we remove it from the multiset.

(3) We add an edge (i, j) to A (i.e., increment Ai j by one,
or two if i = j).

The resulting multigraph A is sampled exactly with a prob-
ability given by Eq. (1). Since the number of nonzero entries
of e cannot be larger than the total number of edges E , the
whole algorithm finishes in time O(N + E ), where N is the
number of nodes.

Given a sample A, we obtain a simple graph G simply by
removing all self-loops and truncating the edge multiplicities:

Gi j =
{

1, if Ai j > 0 and i �= j,
0, otherwise. (A2)

Finally, given G we compute the network descriptor f (G) of
interest.

A C + + implementation of every algorithm used in this
analysis is freely available as part of the graph-tool library
[30].

APPENDIX B: NETWORK DESCRIPTORS

Below are the definitions of the descriptors used in our
analyses.

Degree assortativity, r: Defined as [31]

r =
∑

kk′ kk′(mkk′ − mkmk′ )

σkσk′
,

where mkk′ is the fraction of edges with endpoints of degree k
and k′, mk = ∑

k′ mkk′ , and σk is the standard deviation of mk .
Mean k core, 〈c〉: The k core is a maximal set of vertices

such that its induced subgraph only contains vertices with
degree larger than or equal to k. The k-core value ci of node i
is the largest value of k for which i belongs to the k core. The
mean value is then

〈c〉 = 1

N

∑
i

ci.

This can be computed in time O(N + E ) according to the
algorithm of Ref. [32].

Mean local clustering coefficient, Cl : The local clustering
coefficient [33] of node i is given by

Ci =
∑

jk Gi jGkiGjk

ki(ki − 1)
.

It measures the fraction of pairs of neighbors that are also
connected. The mean value is then just

Cl = 1

N

∑
i

Ci.

Global clustering coefficient, Cg: The global clustering
coefficient of is given by

Cg =
∑

i jk Gi jGkiGjk∑
i ki(ki − 1)

.

It measures the fraction of connected triads that close to form
a triangle.

Leading eigenvalue of adjacency matrix, λA
1 : The leading

eigenvalue of the adjacency matrix is the largest value of λ

which solves

Gx = λx,

where x is the associated eigenvector.
Leading eigenvalue of Hashimoto matrix, λH

1 : The leading
eigenvalue of the Hashimoto (a.k.a. nonbacktracking) matrix
[34] is the largest value of λ which solves

Hx = λx,

where x is the associated eigenvector, and H is an asymmetric
E × E matrix with entries defined as

Hk→l,i→ j =
{

1 if Gkl = Gi j = 1, l = i, k �= j,
0 otherwise.
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(a) (b)

FIG. 8. Absolute value of the z score versus absolute value of relative deviation, for every descriptor value and network in the corpus,
according to (a) the configuration model and (b) the DCSBM. The dashed lines mark the values |z| = 3 and |�| = 0.05, and the histograms
the marginal distributions. The solid blue lines mark the median values.

Characteristic time of a random walk, τ : The characteristic
time of a random walk is obtained via the second largest
eigenvalue λT

2 ∈ [0, 1] of the transition matrix T , with entries

Ti j = Gi j

k j
,

where ki = ∑
j G ji. It is defined as

τ = − ln λT
2 .

If the network is disconnected, we compute τ only on the
largest component.

Pseudodiameter, ∅: The pseudodiameter is an approximate
graph diameter. It is obtained by starting from an arbitrary
source node, and finding a target node that is farthest away
from the source. This process is repeated by treating the target
as the new starting node, and ends when the graph distance

no longer increases. This graph distance is taken to be the
pseudodiameter. The algorithm runs in time O(N + E ).

If the network is disconnected, ∅ is taken as the maximum
of pseudodiameters of the connected components.

Node percolation profile (random removal), Rr: We chose
a random node order and remove nodes sequentially from the
graph according to it. If Si is the fraction of nodes in the largest
component after the ith removal, then the profile value is

Rr = 1

N

∑
i

Si.

The value is averaged over several node orderings.
Node percolation profile (targeted removal), Rt : The com-

putation is the same as Rr , but the nodes are always removed
in decreasing order of the degree.

(a) (b) (c)

FIG. 9. (a) Kendall’s correlation coefficient τ between pairs of descriptor values across all networks in the corpus. Panels (b) and (c) show
the same but for z score and relative deviation values, respectively, according to the DCSBM. The insets show the correlation between
coefficients from each respective panel and panel (a).
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TABLE II. Descriptions of network data sets.

Name Description N E Domain

blumenau_drug A network of drug-drug interactions, extracted from 18 months of
electronic health records (EHRs) from the city of Blumenau in
southern Brazil [37].

75 181 Biological

budapest_connectome (1) Brain graphs derived from connectomes of 477 people, computed
from the Human Connectome Project [38].

1015 53 586 Biological

budapest_connectome (2) 1015 62 552 Biological
celegans_2019 (1) Networks among neurons of both the adult male and adult

hermaphrodite worms C. elegans, constructed from electron
microscopy series, to include directed edges (chemical) and
undirected (gap junction), and spanning including nodes for
muscle and nonmuscle end organs [39].

514 2832 Biological

celegans_2019 (2) 575 4500 Biological
celegans_2019 (3) 454 4172 Biological
celegans_2019 (4) 469 1433 Biological
celegans_interactomes (1) Ten networks of protein-protein interactions in C. elegans

(nematode), from yeast two-hybrid experiments, biological
process maps, literature curation, orthologous interactions, and
genetic interactions [40].

2724 13 564 Biological

celegans_interactomes (2) 912 22 738 Biological
celegans_interactomes (3) 537 517 Biological
collins_yeast Network of protein-protein interactions in S. cerevisiae (budding

yeast), measured by co-complex associations identified by
high-throughput affinity purification and mass spectrometry
(AP/MS) [41].

1622 9070 Biological

ecoli_transcription (1) Network of operons and their pairwise interactions for E. coli [42]. 423 519 Biological
foodweb_baywet Networks of carbon exchanges among species in the cypress

wetlands of south Florida, USA . One network covers the wet and
the other the dry season [43].

128 2075 Biological

foodweb_little_rock A food web among the species found in Little Rock Lake in
Wisconsin, USA [44].

183 2434 Biological

fresh_webs (1) Trophic-level species interactions in streams in New Zealand and
Maine and North Carolina, USA [45].

94 424 Biological

fresh_webs (2) 107 965 Biological
genetic_multiplex (1) Multiplex networks representing different types of genetic

interactions, for different organisms. Layers represent (i) physical,
(ii) association, (iii) colocalization, (iv) direct, and (v) suppressive,
(vi) additive, or synthetic genetic interaction [46].

2640 3677 Biological

genetic_multiplex (2) 1005 1155 Biological
genetic_multiplex (3) 313 325 Biological
genetic_multiplex (4) 6570 223 542 Biological
human_brains (1) Networks of neural interactions extracted from human patients

using the Magnetic Resonance One-Click Pipeline (MROCP),
where nodes are voxels of neural tissue and edges represent
connections by single fibers [47].

1215 13 768 Biological

human_brains (2) 200 1231 Biological
human_brains (3) 139 873 Biological
human_brains (4) 1771 3645 Biological
human_brains (5) 1105 19 543 Biological
human_brains (6) 1527 3939 Biological
human_brains (7) 70 1219 Biological
human_brains (8) 200 2808 Biological
human_brains (9) 70 1301 Biological
human_brains (10) 1632 5218 Biological
human_brains (11) 16 783 430 493 Biological
human_brains (12) 72 783 2 411 659 Biological
human_brains (13) 72 783 3 720 694 Biological
human_brains (14) 72 783 4 205 222 Biological
human_brains (15) 72 783 7 175 769 Biological
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(Continued.)

Name Description N E Domain

interactome_figeys A network of human proteins and their binding interactions [48]. 2239 6432 Biological
interactome_yeast A network of protein-protein binding interactions among yeast

proteins [49].
1870 2203 Biological

kegg_metabolic (1) Metabolic networks of various species, as extracted from the
Kyoto Encyclopedia of Genes and Genomes (KEGG) database in
March 2006 [50].

1031 2485 Biological

kegg_metabolic (2) 1917 5803 Biological
kegg_metabolic (3) 505 1144 Biological
macaque_neural A network of cortical regions in the Macaque cortex [51]. 47 313 Biological
malaria_genes (1) Networks of recombinant antigen genes from the human malaria

parasite P. falciparum [52].
307 2684 Biological

malaria_genes (2) 307 3961 Biological
malaria_genes (3) 307 7579 Biological
malaria_genes (4) 307 2812 Biological
messal_shale A network of feeding links among taxa based on the

48-million-yr-old uppermost early Eocene Messel Shale [53].
700 6395 Biological

nematode_mammal A global interaction web of interactions between nematodes and
their host mammal species, extracted from the helminthR package
and data set [54].

30 516 61 597 Biological

plant_pol_kato A bipartite network of plants and pollinators from Kyoto
University Forest of Ashu, Japan, from 1984 to 1987 [55].

772 1206 Biological

plant_pol_robertson A bipartite network of plants and pollinators, from southwestern
Illinois, USA [56].

1884 15 255 Biological

reactome A network of human proteins and their binding interactions,
extracted from Reactome project [57].

6327 146 160 Biological

yeast_transcription Network of operons and their pairwise interactions, via
transcription factor-based regulation, within the yeast S. cerevisiae
[58].

916 1081 Biological

amazon_copurchases Network of items for sale on amazon.com and the items they
“recommend” [155].

403 394 2 443 408 Economic

amazon_ratings A bipartite network of users and products on Amazon.com [156]. 3 376 972 5 743 258 Economic
bookcrossing Bipartite network representing people and the books they have

interacted with, from the BookCrossing website [157].
445 801 1 149 739 Economic

corporate_directors Bipartite network of directors and the companies on whose boards
they sit, spanning 54 countries worldwide, constructed from data
collected by the Financial Times [158].

356 638 376 918 Economic

dbpedia_starring A bipartite network of movies and the actors that played in them,
as extracted from Wikipedia by the DBpedia project [112].

157 184 281 396 Economic

dbpedia_team Bipartite network of the affiliations (employment relations)
between professional athletes and their teams, as extracted from
Wikipedia by the DBpedia project [112].

935 627 1 366 466 Economic

discogs_affiliation A large bipartite network of the affiliations (contractual relations)
among musical artists and record labels, as given in the
discogs.com database [63].

2 025 594 5 302 276 Economic

epinions A bipartite network of users and the products they rated on the
website Epinions.com [159].

876 252 13 668 320 Economic

eu_procurements A bipartite network of public EU procurement contracts, from
2008 to 2016, between issuing buyers (public institutions such as a
ministry or city hall) and supplying winners (a private firm) [160].

839 824 1 841 009 Economic

eu_procurements_alt (1) Networks representing the annual national public procurement
markets of 26 European countries from 2008 to 2016, inclusive
[160].

552 588 Economic

eu_procurements_alt (2) 585 588 Economic
eu_procurements_alt (3) 1038 1009 Economic
eu_procurements_alt (4) 1098 1118 Economic
eu_procurements_alt (5) 2189 2320 Economic
eu_procurements_alt (6) 1656 3132 Economic
eu_procurements_alt (7) 2097 2518 Economic

054311-12



SYSTEMATIC ASSESSMENT OF THE QUALITY OF FIT … PHYSICAL REVIEW E 105, 054311 (2022)

(Continued.)

Name Description N E Domain

eu_procurements_alt (8) 9877 11 185 Economic
eu_procurements_alt (9) 19 438 23 191 Economic
fao_trade Multiplex network representing trade relationships between

countries from the Food and Agricultural Organization of the
United Nations [161].

214 9420 Economic

github The bipartite project-user membership network of the software
development hosting site GitHub [162].

177 386 440 237 Economic

jester Two bipartite networks of users and jokes, extracted from the
online joke recommender system Jester [163].

73 521 4 136 360 Economic

stackoverflow A bipartite network of users and the posts they have favorited,
from the online Q&A site Stack Overflow [63].

641 876 1 301 942 Economic

digg_votes A bipartite network between users and stories on digg.com from
2009 [164].

142 962 3 010 898 Economic

adjnoun A network of word adjacencies of common adjectives and nouns
in the novel David Copperfield by Charles Dickens [68].

112 425 Informational

bag_of_words Five text collections in the form of bags-of-words [69,70]. 67 963 3 710 420 Informational
baidu Four networks from Chinese online encyclopedias Baidu [71]. 2 141 300 17 014 946 Informational
berkstan_web The web graph of the University of California at Berkeley and

Stanford universities [72].
685 231 6 649 470 Informational

bible_nouns A network of noun phrases (places and names) in the King James
Version of the Bible [73].

1773 9131 Informational

citeseer Citations among papers indexed by the CiteSeer digital library
[74].

384 413 1 736 145 Informational

cora Citations among papers indexed by CORA, from 1998, an early
computer science research paper search engine [75].

23 166 89 157 Informational

dblp_cite Citations among papers contained in the DBLP computer science
bibliography [76].

12 590 49 636 Informational

dbtropes_feature A bipartite network of artistic works (movies, novels, etc.) and
their tropes (stylistic conventions or devices), as extracted from
tvtropes [63].

152 093 3 232 134 Informational

discogs_label Two bipartite networks of the affiliations between musical labels
and either musical genres or musical “styles,” as given in the
discogs.com database [63].

270 786 481 661 Informational

edit_wikibooks (1) Two bipartite user-page networks extracted from Wikipedia, about
books [77].

1162 1213 Informational

edit_wikibooks (2) 1584 1748 Informational
edit_wikibooks (3) 7177 7732 Informational
edit_wikinews (1) Two bipartite user-page networks extracted from Wikipedia, about

news events [77].
2511 4986 Informational

edit_wikinews (2) 4523 8891 Informational
edit_wikinews (3) 5541 10 545 Informational
edit_wikinews (4) 2208 2753 Informational
edit_wikinews (5) 4457 5942 Informational
edit_wikiquote (1) A bipartite user-page network extracted from Wikiquotes [77]. 270 243 Informational
edit_wikiquote (2) 1041 1109 Informational
edit_wikiquote (3) 704 800 Informational
edit_wikiquote (4) 1333 2731 Informational
edit_wikiquote (5) 625 823 Informational
edit_wiktionary (1) Three bipartite user-page networks extracted from Wiktionary, for

French, German, and English [77].
271 285 Informational

edit_wiktionary (2) 289 276 Informational
edit_wiktionary (3) 1271 1270 Informational
edit_wiktionary (4) 8552 34 589 Informational
edit_wiktionary (5) 3016 6263 Informational
google_web A web graph representing a crawl of a portion of the general

WWW, from a 2002 Google Programming contest [72].
916 428 4 322 051 Informational

movielens_100k Three bipartite networks that make up the MovieLens 100K data
set, a stable benchmark data set of 100 000 ratings from 1000
users on 1700 movies [78].

24 129 71 154 Informational

054311-13



VACA-RAMÍREZ AND PEIXOTO PHYSICAL REVIEW E 105, 054311 (2022)

(Continued.)

Name Description N E Domain

polblogs A directed network of hyperlinks among a large set of ones in the
USA [79].

1490 16 715 Informational

polbooks A network of books about the USA [80]. 105 441 Informational
scotus_majority (1) Network of legal citations by the U.S. Supreme Court (SCOTUS)

[81,82].
25 417 216 456 Informational

trec_web A web graph network originally constructed in 2003 as a test bed
for information-retrieval techniques, including web search engines
[83].

1 601 787 6 679 248 Informational

unicodelang A bipartite network of languages and the countries in which they
are spoken, as estimated by Unicode [63].

868 1255 Informational

us_patents Citations among patents in the USA, as found in the National
Bureau of Economic Research (NBER) database, from 1975 to
1999 [84].

3 774 768 16 518 947 Informational

webkb (1) Web graphs crawled from four computer science departments in
1998, with each page manually classified into one of seven
categories: course, department, faculty, project, staff, student, or
other [85].

286 493 Informational

webkb (2) 433 954 Informational
webkb (3) 300 565 Informational
webkb (4) 349 696 Informational
webkb (5) 348 16 625 Informational
wiki_science A network of scientific fields, extracted from the English

Wikipedia in early 2020 [86].
687 6523 Informational

word_adjacency (1) Networks of word adjacency in texts of several languages
including English, French, Spanish, and Japanese [87].

8325 23 841 Informational

word_adjacency (2) 2704 7998 Informational
word_assoc A network of word associations showing the count of such

associations as collected from subjects, from the Edinburgh
Associative Thesaurus (EAT) [88].

23 132 297 094 Informational

wordnet A network of English words from the WordNet, denoting
relationships between words (synonymy, hyperonymy, meronymy,
etc.) [89]

146 005 656 999 Informational

yahoo_ads A network of words extracted from phrases on which advertisers
bid, in Yahoo! advertisements [63].

653 260 2 931 698 Informational

7th_graders A network of friendships among 29 seventh-grade students in
Victoria, Australia [101].

29 250 Social

academia_edu Snapshot of the follower relationships among users of
academia.edu, a platform for academics to share research papers,
scrapped in 2011 [102].

200 169 1 022 441 Social

add_health (1) A directed network of friendships obtained through a social survey
of high school students in 1994. The ADD HEALTH data are
constructed from the in-school questionnaire; 90 118 students
representing 84 communities took this survey in 1994–1995 [103].

900 1648 Social

add_health (2) 1929 7035 Social
add_health (3) 1282 3487 Social
add_health (4) 111 378 Social
add_health (5) 74 358 Social
add_health (6) 624 1745 Social
add_health (7) 1755 4017 Social
arxiv_authors (1) Scientific collaborations between authors of papers submitted to

arxiv.org [104].
26 197 14 484 Social

arxiv_collab Collaboration graphs for scientists, extracted from the arXiv
(physics) [105].

8361 15 751 Social

bitcoin_alpha A network of who-trusts-whom relationships among users of the
Bitcoin Alpha platform [106].

3783 14 124 Social
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(Continued.)

Name Description N E Domain

ceo_club A bipartite network of the memberships of chief executive officers
and the social organizations (clubs) to which they belong, from the
Minneapolis–St. Paul, Minnesota, USA area [107].

40 95 Social

chess A network among chess players (nodes) giving the chess match
outcomes (edges), for game-by-game results among the world’s
top chess players [108].

7301 55 899 Social

copenhagen (1) A network of social interactions among university students within
the Copenhagen Networks Study, over a period of 4 weeks,
sampled every 5 minutes [109].

536 621 Social

copenhagen (2) 800 6418 Social
copenhagen (3) 568 697 Social
crime A network of associations among suspects, victims, and/or

witnesses involved in crimes in St. Louis, Missouri, USA in the
1990s [110].

1380 1476 Social

cs_department Multiplex network consisting of five edge types corresponding to
online and offline relationships (Facebook, leisure, work,
coauthorship, lunch) between employees of the computer science
department at Aarhus University, Denmark [111].

61 353 Social

dbpedia_country A bipartite network of the affiliations between notable people and
countries of the world, as extracted from Wikipedia via the
DBpedia project [112].

592 414 624 402 Social

dbpedia_occupation A bipartite network of the affiliations between notable people and
occupations, as extracted from Wikipedia by the DBpedia project
[112].

229 307 250 945 Social

dnc A network representing the exchange of emails among members
of the Democratic National Committee, USA, in the email data
leak released by WikiLeaks in 2016 [63].

2029 10 429 Social

dolphins An undirected social network of frequent associations observed
among 62 dolphins (Tursiops) in a community living off Doubtful
Sound, New Zealand, from 1994 to 2001 [113].

62 159 Social

ego_social (1) Ego networks associated with a set of accounts of three social
media platforms (Facebook, Google+, and Twitter) [114].

150 1693 Social

ego_social (2) 747 30 025 Social
ego_social (3) 452 12 513 Social
email_company A network of emails among employee email addresses at a

midsized manufacturing company [115].
167 3250 Social

email_enron The Enron email corpus, containing all the email communication
from the Enron corporation, which was made public as a result of
legal action [116].

36 692 183 831 Social

escorts A bipartite network of escort and individuals who buy sex from
them in Brazil, extracted from a Brazilian online community for
such ratings [117].

16 730 39 044 Social

facebook_friends A small anonymized Facebook ego network, from April 2014.
Nodes are Facebook profiles, and an edge exists if the two profiles
are “friends” on Facebook [118].

362 1988 Social

facebook_organizations (1) Six networks of friendships among users on Facebook who
indicated employment at one of the target corporations [119].

320 2369 Social

facebook_organizations (2) 165 726 Social
facebook_organizations (3) 1429 19 357 Social
facebook_organizations (4) 3862 87 324 Social
facebook_organizations (5) 5793 30 753 Social
facebook_organizations (6) 5524 94 218 Social
facebook_wall Friendship relationships and interactions (wall posts) for a subset

of the Facebook social network in 2009, recorded over a 2-yr
period [120].

46 952 183 412 Social

fediverse An early snapshot of the federation network among web
publishers using the ActivityPub protocol [121].

4860 426 351 Social

054311-15



VACA-RAMÍREZ AND PEIXOTO PHYSICAL REVIEW E 105, 054311 (2022)

(Continued.)

Name Description N E Domain

flickr_groups Bipartite networks of the affiliations between users and groups on
several online social network sites, including Flickr, YouTube,
LiveJournal, and Orkut, extracted in 2007 [122].

499 610 8 545 307 Social

football_tsevans A network of American football games between Division IA
colleges during the regular season Fall 2000 [123,124].

115 613 Social

foursquare (1) Two bipartite networks of users and restaurant locations in New
York City, New York, USA on Foursquare, from 24 October 2011
to 20 February 2012 [125].

6410 9472 Social

foursquare (2) 4936 13 472 Social
highschool A network of friendships among male students in a small high

school in Illinois, USA, from 1958 [126].
70 274 Social

hiv_transmission A set of networks of HIV transmissions between people through
sexual, needle-sharing, or social connections, based on combining
eight data sets collected from 1988 to 2001 [127].

35 229 48 889 Social

hyves A network of friendships among users of Hyves, an online social
networking site in the Netherlands (comparable to Facebook at the
time) [128].

1 402 673 2 777 419 Social

jazz_collab The network of collaborations among jazz musicians and among
jazz bands, extracted from the Red Hot Jazz Archive digital
database, covering bands that performed between 1912 and 1940
[129].

198 2742 Social

karate (1) Network of friendships among members of a university karate
club [130].

34 78 Social

kidnappings Bipartite network of members of the Abu Sayyaf Group in the
Philippines, and the kidnapping events they were involved in
[131].

351 402 Social

lastfm (1) User-band networks from the music website last.fm [132]. 175 069 898 062 Social
lesmis The network of scene coappearances of characters in Victor

Hugo’s novel Les Miserables. Edge weights denote the number of
such occurrences [91].

77 254 Social

libimseti A network of ratings given between users at Libimseti.cz, a Czech
online dating website [133].

220 970 17 233 144 Social

mislove_osn (1) Network structure for four large online social networks [122]. 1 138 499 2 990 443 Social
netscience A coauthorship network among scientists working on network

science, from 2006. This network is a one-mode projection from
the bipartite graph of authors and their scientific publications [68].

1589 2742 Social

new_zealand_collab A network of scientific collaborations among institutions in New
Zealand [134].

1511 4273 Social

petster A network of friendships among users on catster.com and
dogster.com [63].

623 766 15 695 166 Social

physician_trust A network of trust relationships among physicians in four
Midwestern (USA) cities in 1966 [135].

241 923 Social

physics_collab Coauthorships among the Pierre Auger Collaboration of physicists
[136].

514 6482 Social

reality_mining A network of human proximities among students at Massachusetts
Institute of Technology (MIT), Cambridge, Massachusetts, USA
as measured by personal mobile phones [137].

96 2539 Social

residence_hall A network of friendships among students living in a residence hall
at Australian National University, Canberra [138].

217 1839 Social

sp_high_school (1) Contacts and friendship relations between students in a high
school in Marseilles, France, in December 2013 [139].

329 348 Social

sp_high_school (2) 329 406 Social
sp_high_school_new Network of contacts between students in a high school in

Marseilles, France [46].
126 1709 Social

sp_hypertext Network of contacts among attendees of the ACM Hypertext 2009
conference [140].

113 2196 Social

sp_office A temporal network of contacts between individuals, measured in
an office building in France, from 24 June to 3 July 2013 [141].

92 755 Social
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Name Description N E Domain

sp_primary_school Network of contacts among students and teachers at a primary
school in Lyon, France, on consecutive days of in October 2009
[142].

242 8317 Social

student_cooperation Network of cooperation among students in the “Computer and
Network Security” course at Ben-Gurion University, Beersheba,
Israel, in 2012 [143].

185 311 Social

swingers A bipartite sexual affiliation network representing “swing unit”
couples (one node per couple) and the parties they attended [144].

96 232 Social

twitter A network of following relationships from Twitter, from a
snowball sample crawl across “quality” users in 2009 [145].

465 017 833 540 Social

twitter_15m A network representing follower-following relations among
Twitter users associated with the 15-M Movement or anti-austerity
movement in Spain, in the period April–May 2011 [146].

87 569 4 708 274 Social

twitter_higgs Tweet reply network related to the discovery of the Higgs boson
[147].

38 918 29 552 Social

ugandan_village Complete friendship and health advice social networks among
households in 17 rural villages bordering Lake Victoria in Mayuge
District, Uganda in 2013 [148].

185 638 Social

us_agencies (1) Web-based links between U.S. government agencies websites
[149].

1796 47 686 Social

us_agencies (2) 234 515 Social
us_congress Networks of bill co-sponsorship tendencies among U.S.

congressmen and -women, from 1973 (93rd Congress) to 2016
(114th Congress) [150,151].

101 3914 Social

wiki_talk (1) Interactions among users of 10 language-specific Wikipedias [63]. 1181 2330 Social
wiki_talk (2) 3144 4098 Social
wikipedia-en-talk Nodes in the network represent (English) Wikipedia users and a

directed edge from node i to node j represents that user i at least
once edited a talk page of user j [152].

2 394 385 4 659 565 Social

wikitree A multigraph network representing child-parent connections
among family members, collected in 2012 from WikiTree, an
online genealogical website with 13+ million profiles [153].

1 382 751 4 810 045 Social

windsurfers A network of interpersonal contacts among windsurfers in
southern California during the fall of 1986. The edge weights
indicate the perception of social affiliations majored by the tasks
in which each individual was asked to sort cards with other
surfer’s name in the order of closeness [154].

43 336 Social

caida_as Autonomous system (AS) relationships on the Internet, from 2004
to 2007 [59].

8020 18 203 Technological

gnutella (1) Gnutella peer-to-peer file sharing network from 5–31 August 2002
[60].

6301 20 777 Technological

gnutella (2) 22 687 54 705 Technological
internet_as A symmetrized snapshot of the structure of the Internet at the level

of Autonomous systems (ASs), reconstructed from BGP tables
posted by the University of Oregon Route Views Project [61].

22 963 48 436 Technological

internet_top_pop (1) Assorted snapshots of internet graph at the point of presence (PoP)
level (which lies between the IP and AS levels), collected from
around the world and at various times. The earliest snapshots are
for ARPANET (1969–1972), with a few more from before 2000
[62].

76 115 Technological

internet_top_pop (2) 145 186 Technological
internet_top_pop (3) 47 63 Technological
internet_top_pop (4) 197 243 Technological
internet_top_pop (5) 754 895 Technological
jdk A network of class dependencies within the JDK (Java SE

Development Kit) 1.6 [63].
6434 53 658 Technological

jung A network of software class dependency within the JUNG 2.0
[64].

6120 50 290 Technological
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Name Description N E Domain

linux A network of Linux (v3.16) source code file inclusion [63]. 30 837 213 217 Technological
power A network representing the Western States Power Grid of the USA

[33].
4941 6594 Technological

route_views (1) 733 daily network snapshots denoting BGP traffic among
autonomous systems (ASs) on the Internet, from the Oregon
Route Views Project, spanning 8 November 1997 to 2 January
2000. Data collected by NLANR/MOAT [65].

103 239 Technological

route_views (2) 512 1181 Technological
route_views (3) 767 1734 Technological
route_views (4) 1486 3172 Technological
route_views (5) 6474 12 572 Technological
route_views (6) 6301 12 226 Technological
software_dependencies (1) Several networks of software dependencies. Nodes represent

libraries, and a directed edge denotes a library dependency on
another [64,66].

388 514 Technological

software_dependencies (2) 838 1063 Technological
software_dependencies (3) 799 3579 Technological
software_dependencies (4) 550 1153 Technological
software_dependencies (5) 282 505 Technological
software_dependencies (6) 2124 4809 Technological
topology An integrated snapshot of the structure of the Internet at the level

of autonomous systems (ASs), reconstructed from multiple
sources, including the RouteViews and RIPE BGP trace collectors,
route servers, looking glasses, and Internet Routing Registry
databases [67].

34 761 107 720 Technological

chicago_road A transportation network of Chicago, Illinois, USA, from an
unknown date (probably late 20th century) [90].

12 982 20 627 Transportation

contiguous_usa A network of contiguous states in the USA, in which each state is
a node and two nodes are connected if they share a land-based
geographic border [91].

49 107 Transportation

eu_airlines A multiplex network of airline routes among European airports,
where each of the 37 edge types represents routes by a different
airline [92].

450 2953 Transportation

euroroad A network of international “E-roads,” mostly in Europe [93]. 1174 1417 Transportation
faa_routes A network of air traffic routes, from the U.S. FAA (Federal

Aviation Administration) National Flight Data Center (NFDC)
preferred routes database [94].

1226 2408 Transportation

london_transport Multiplex network with three edge types representing links within
the three layers of London train stations: Underground,
Overground, and DLR [46].

369 430 Transportation

openflights A network of regularly occurring flights among airports
worldwide, extracted from the openflights.org data set [95].

3214 18 858 Transportation

openstreetmap (1) The road network for the entire USA, as extracted from the
OpenStreetMap project [96].

351 434 Transportation

openstreetmap (2) 354 350 Transportation
openstreetmap (3) 831 923 Transportation
openstreetmap (4) 1603 2188 Transportation
openstreetmap (5) 4240 5102 Transportation
openstreetmap (6) 8904 10 549 Transportation
openstreetmap (7) 724 1048 Transportation
openstreetmap (8) 2371 3295 Transportation
openstreetmap (9) 684 823 Transportation
openstreetmap (10) 500 780 Transportation
openstreetmap (11) 3377 4698 Transportation
openstreetmap (12) 1609 1972 Transportation
openstreetmap (13) 612 688 Transportation
openstreetmap (14) 209 734 297 196 Transportation
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Name Description N E Domain

roadnet (1) Road networks from three U.S. states (California, Pennsylvania,
and Texas), in which edges are stretches of road and vertices are
intersections of roads [72].

1 971 281 2 766 607 Transportation

roadnet (2) 1 090 920 1 541 898 Transportation
roadnet (3) 1 393 383 1 921 660 Transportation
urban_streets (1) Urban street networks, corresponding to 1-square-mile maps of 20

cities around the world [97,98].
179 230 Transportation

urban_streets (2) 240 339 Transportation
urban_streets (3) 467 691 Transportation
urban_streets (4) 248 418 Transportation
urban_streets (5) 697 1084 Transportation
urban_streets (6) 169 271 Transportation
urban_streets (7) 1840 2397 Transportation
urban_streets (8) 1496 2252 Transportation
urban_streets (9) 584 958 Transportation
urban_streets (10) 217 222 Transportation
urban_streets (11) 541 771 Transportation
urban_streets (12) 252 328 Transportation
urban_streets (13) 869 1307 Transportation
urban_streets (14) 192 302 Transportation
urban_streets (15) 210 323 Transportation
urban_streets (16) 2870 4375 Transportation
urban_streets (17) 335 494 Transportation
urban_streets (18) 488 729 Transportation
urban_streets (19) 169 196 Transportation
us_air_traffic Yearly snapshots of flights among all commercial airports in the

USA from 1990 to today [99].
2278 58 228 Transportation

us_roads (1) The road networks of the 50 U.S. states and the District of
Columbia based on U.S. Census 2000 TIGER/Line Files [100].

9559 14 841 Transportation

us_roads (2) 194 505 212 345 Transportation
us_roads (3) 330 386 431 398 Transportation
us_roads (4) 630 639 705 083 Transportation
us_roads (5) 716 215 886 897 Transportation

Fraction of nodes in the largest component, S: A component
is a maximal set of nodes that are connected by a path. The
largest component is the component with the largest number
of nodes, and S is the fraction of all nodes that belong to it.

In Fig. 8 we show how the z scores and relative deviation
values are related for every network descriptor, according to
both models used. In Fig. 9 we show Kendall’s τ correlation
coefficient among the descriptor values themselves, as well
as their z scores and relative deviations, according to the
DCSBM. The insets show how the correlations among the
deviations are themselves also correlated with the descriptor
correlations.

APPENDIX C: DATA SET DESCRIPTIONS

Table II gives descriptions of the network data sets used in
this work. The code names in the first row correspond to the
respective entries in the Netzschleuder repository [35] where
the networks can be downloaded. Some of the descriptions
were obtained from the Colorado Index of Complex Networks
[36].

For all networks, the versions considered in this work were
transformed into simple graphs, i.e., symmetrized versions of
directed networks and/or with parallel edges and self-loops
removed.
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